Ashokdll's picture
Update app.py
310a013 verified
raw
history blame
32.8 kB
#!/usr/bin/env python3
"""
GAIA Benchmark AI Agent - Hugging Face Space
============================================
A Gradio-based web interface for running GAIA benchmark evaluations
on Hugging Face Spaces with GPU acceleration.
"""
import gradio as gr
import torch
import json
import os
import logging
import time
import re
from datetime import datetime
from typing import Dict, List, Optional, Tuple, Any
from dataclasses import dataclass
import pandas as pd
from pathlib import Path
# Core ML libraries
from transformers import (
AutoTokenizer,
AutoModelForCausalLM,
BitsAndBytesConfig,
pipeline
)
from datasets import load_dataset
from huggingface_hub import HfApi, hf_hub_download
# Import leaderboard integration
from gaia_leaderboard_integration import (
enhanced_gaia_agent,
run_custom_benchmark_interface,
load_test_questions_interface,
preview_dataset_structure_interface,
get_leaderboard_info,
get_question_selection_info
)
# Setup logging
logging.basicConfig(level=logging.INFO)
logger = logging.getLogger(__name__)
# ================================
# MAIN APPLICATION
# ================================
if __name__ == "__main__":
app = create_gaia_app()
app.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)
# CORE DATA STRUCTURES
# ================================
@dataclass
class GAIAQuestion:
"""Structure for GAIA benchmark questions"""
task_id: str
question: str
level: int
final_answer: Optional[str] = None
file_name: Optional[str] = None
annotator_metadata: Optional[Dict] = None
@classmethod
def from_dict(cls, data: dict):
return cls(**{k: v for k, v in data.items() if k in cls.__annotations__})
@dataclass
class GAIAResponse:
"""Structure for GAIA responses"""
task_id: str
model_answer: str
reasoning_trace: str
final_answer: str
processing_time: float = 0.0
confidence_score: float = 0.0
# ================================
# GAIA PROMPT MANAGEMENT
# ================================
class GAIAPromptManager:
"""Manages GAIA-specific prompting and formatting"""
GAIA_SYSTEM_PROMPT = """You are a general AI assistant. I will ask you a question. Report your thoughts, and finish your answer with the following template:
FINAL ANSWER: [YOUR FINAL ANSWER]
YOUR FINAL ANSWER should be a number OR as few words as possible OR a comma separated list of numbers and/or strings. If you are asked for a number, don't use comma to write your number neither use units such as $ or percent sign unless specified otherwise. If you are asked for a string, don't use articles, neither abbreviations (e.g. for cities), and write the digits in plain text unless specified otherwise. If you are asked for a comma separated list, apply the above rules depending of whether the element to be put in the list is a number or a string."""
@staticmethod
def create_gaia_prompt(question: str) -> str:
"""Create properly formatted GAIA prompt"""
return f"{GAIAPromptManager.GAIA_SYSTEM_PROMPT}\n\nQuestion: {question}\n\nLet me think step by step:"
@staticmethod
def extract_final_answer(response: str) -> Tuple[str, str]:
"""Extract final answer and reasoning from model response"""
final_answer_pattern = r"FINAL ANSWER:\s*(.+?)(?:\n|$)"
match = re.search(final_answer_pattern, response, re.IGNORECASE | re.DOTALL)
if match:
final_answer = match.group(1).strip()
reasoning_end = match.start()
reasoning = response[:reasoning_end].strip()
else:
lines = response.strip().split('\n')
final_answer = lines[-1].strip() if lines else ""
reasoning = '\n'.join(lines[:-1]) if len(lines) > 1 else response
return final_answer, reasoning
# ================================
# HF SPACES OPTIMIZED MODEL MANAGER
# ================================
class HFSpaceModelManager:
"""Hugging Face Spaces optimized model manager"""
SPACE_MODELS = {
"Fast & Light": {
"name": "microsoft/DialoGPT-medium",
"size": "~345MB",
"speed": "Fast",
"quality": "Good",
"gpu_required": False
},
"Balanced": {
"name": "stabilityai/stablelm-zephyr-3b",
"size": "~3GB",
"speed": "Medium",
"quality": "Better",
"gpu_required": True
},
"High Quality": {
"name": "HuggingFaceH4/zephyr-7b-beta",
"size": "~7GB",
"speed": "Slower",
"quality": "Best",
"gpu_required": True
},
"Instruction Following": {
"name": "mistralai/Mistral-7B-Instruct-v0.1",
"size": "~7GB",
"speed": "Medium",
"quality": "Excellent",
"gpu_required": True
}
}
def __init__(self, model_choice: str = "Fast & Light"):
self.model_config = self.SPACE_MODELS[model_choice]
self.model_name = self.model_config["name"]
self.tokenizer = None
self.model = None
self.pipeline = None
self.device = "cuda" if torch.cuda.is_available() else "cpu"
def load_model(self, progress_callback=None) -> str:
"""Load model with progress updates"""
try:
if progress_callback:
progress_callback(0.1, "Loading tokenizer...")
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name)
if self.tokenizer.pad_token is None:
self.tokenizer.pad_token = self.tokenizer.eos_token
if progress_callback:
progress_callback(0.3, "Configuring model...")
quantization_config = None
if self.device == "cuda" and "7b" in self.model_name.lower():
quantization_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4"
)
if progress_callback:
progress_callback(0.6, "Loading model weights...")
self.model = AutoModelForCausalLM.from_pretrained(
self.model_name,
quantization_config=quantization_config,
device_map="auto" if self.device == "cuda" else None,
torch_dtype=torch.float16 if self.device == "cuda" else torch.float32,
trust_remote_code=True
)
if progress_callback:
progress_callback(0.9, "Creating pipeline...")
self.pipeline = pipeline(
"text-generation",
model=self.model,
tokenizer=self.tokenizer,
max_new_tokens=384,
temperature=0.7,
do_sample=True,
pad_token_id=self.tokenizer.eos_token_id,
device=0 if self.device == "cuda" else -1
)
if progress_callback:
progress_callback(1.0, "Model loaded successfully!")
return f"✅ Model '{self.model_name}' loaded successfully on {self.device.upper()}"
except Exception as e:
error_msg = f"❌ Error loading model: {str(e)}"
logger.error(error_msg)
return error_msg
def generate_response(self, prompt: str, max_tokens: int = 384) -> str:
"""Generate response with error handling"""
if self.pipeline is None:
return "❌ Model not loaded. Please load a model first."
try:
max_input_length = 1000
if len(prompt) > max_input_length:
prompt = prompt[:max_input_length] + "..."
outputs = self.pipeline(
prompt,
max_new_tokens=max_tokens,
temperature=0.7,
do_sample=True,
return_full_text=False,
pad_token_id=self.tokenizer.eos_token_id
)
response = outputs[0]['generated_text'].strip()
return response
except Exception as e:
return f"❌ Error generating response: {str(e)}"
# ================================
# DATASET MANAGEMENT
# ================================
class GAIADatasetManager:
"""Manages GAIA dataset loading and sample generation"""
@staticmethod
def load_gaia_dataset(split: str = "test", max_questions: int = None) -> Tuple[List[GAIAQuestion], str]:
"""Load GAIA dataset from Hugging Face Hub"""
try:
dataset = load_dataset("gaia-benchmark/GAIA", split=split, trust_remote_code=True)
questions = []
items = dataset[:max_questions] if max_questions else dataset
for i, item in enumerate(items):
question = GAIAQuestion(
task_id=item.get('task_id', f'gaia_{split}_{i:03d}'),
question=item['Question'],
level=item['Level'],
final_answer=item.get('Final answer', None),
file_name=item.get('file_name', None),
annotator_metadata=item.get('Annotator Metadata', None)
)
questions.append(question)
status = f"✅ Loaded {len(questions)} questions from GAIA {split} split"
return questions, status
except Exception as e:
error_msg = f"❌ Error loading GAIA dataset: {str(e)}"
return GAIADatasetManager.get_sample_questions(), error_msg
@staticmethod
def get_sample_questions() -> List[GAIAQuestion]:
"""Get sample questions for testing"""
sample_data = [
{
"task_id": "sample_001",
"question": "What is the capital of France?",
"level": 1,
"final_answer": "Paris"
},
{
"task_id": "sample_002",
"question": "Calculate 144 divided by 12.",
"level": 1,
"final_answer": "12"
},
{
"task_id": "sample_003",
"question": "What is the largest planet in our solar system?",
"level": 1,
"final_answer": "Jupiter"
},
{
"task_id": "sample_004",
"question": "Convert 100 degrees Celsius to Fahrenheit.",
"level": 2,
"final_answer": "212"
},
{
"task_id": "sample_005",
"question": "List the first three even numbers greater than zero.",
"level": 1,
"final_answer": "2, 4, 6"
},
{
"task_id": "sample_006",
"question": "What year did the Berlin Wall fall?",
"level": 1,
"final_answer": "1989"
},
{
"task_id": "sample_007",
"question": "What is the chemical symbol for water?",
"level": 1,
"final_answer": "H2O"
},
{
"task_id": "sample_008",
"question": "How many continents are there?",
"level": 1,
"final_answer": "7"
}
]
return [GAIAQuestion.from_dict(data) for data in sample_data]
# ================================
# MAIN GAIA AGENT FOR HF SPACES
# ================================
class GAIASpaceAgent:
"""Main GAIA agent optimized for Hugging Face Spaces"""
def __init__(self):
self.model_manager = None
self.prompt_manager = GAIAPromptManager()
self.current_model = None
self.evaluation_results: List[GAIAResponse] = []
def initialize_model(self, model_choice: str, progress=gr.Progress()) -> str:
"""Initialize model with progress tracking"""
try:
progress(0, desc="Initializing model manager...")
self.model_manager = HFSpaceModelManager(model_choice)
self.current_model = model_choice
def progress_callback(value, desc):
progress(value, desc=desc)
result = self.model_manager.load_model(progress_callback)
self.evaluation_results = []
return result
except Exception as e:
return f"❌ Failed to initialize model: {str(e)}"
def process_single_question(self, question_text: str, progress=gr.Progress()) -> Tuple[str, str, str, float]:
"""Process a single question with detailed output"""
if self.model_manager is None or self.model_manager.pipeline is None:
return "❌ No model loaded", "", "", 0.0
start_time = time.time()
try:
progress(0.2, desc="Creating GAIA prompt...")
prompt = self.prompt_manager.create_gaia_prompt(question_text)
progress(0.4, desc="Generating response...")
raw_response = self.model_manager.generate_response(prompt)
progress(0.8, desc="Extracting final answer...")
final_answer, reasoning = self.prompt_manager.extract_final_answer(raw_response)
processing_time = time.time() - start_time
progress(1.0, desc="Complete!")
return final_answer, raw_response, reasoning, processing_time
except Exception as e:
processing_time = time.time() - start_time
error_msg = f"❌ Error processing question: {str(e)}"
return error_msg, "", "", processing_time
def batch_evaluate(self, questions: List[GAIAQuestion], progress=gr.Progress()) -> Tuple[str, str, str]:
"""Evaluate multiple questions with progress tracking"""
if self.model_manager is None:
return "❌ No model loaded", "", ""
results = []
total_questions = len(questions)
progress(0, desc=f"Starting evaluation of {total_questions} questions...")
for i, question in enumerate(questions):
try:
progress((i + 1) / total_questions,
desc=f"Processing question {i + 1}/{total_questions}: {question.task_id}")
start_time = time.time()
prompt = self.prompt_manager.create_gaia_prompt(question.question)
raw_response = self.model_manager.generate_response(prompt)
final_answer, reasoning = self.prompt_manager.extract_final_answer(raw_response)
processing_time = time.time() - start_time
response = GAIAResponse(
task_id=question.task_id,
model_answer=raw_response,
reasoning_trace=reasoning,
final_answer=final_answer,
processing_time=processing_time
)
results.append(response)
self.evaluation_results.append(response)
except Exception as e:
logger.error(f"Error processing {question.task_id}: {e}")
error_response = GAIAResponse(
task_id=question.task_id,
model_answer=f"Error: {str(e)}",
reasoning_trace="Processing failed",
final_answer="ERROR",
processing_time=0.0
)
results.append(error_response)
self.evaluation_results.append(error_response)
summary = self._generate_summary(results)
detailed_results = self._generate_detailed_results(results, questions)
jsonl_content = self._generate_jsonl(results)
return summary, detailed_results, jsonl_content
def _generate_summary(self, results: List[GAIAResponse]) -> str:
"""Generate evaluation summary"""
total = len(results)
errors = sum(1 for r in results if r.final_answer == "ERROR")
successful = total - errors
avg_time = sum(r.processing_time for r in results) / total if total > 0 else 0
total_time = sum(r.processing_time for r in results)
summary = f"""
# 📊 GAIA Evaluation Summary
## Overall Statistics
- **Total Questions**: {total}
- **Successful**: {successful}
- **Errors**: {errors}
- **Success Rate**: {(successful/total*100):.1f}%
## Performance Metrics
- **Average Processing Time**: {avg_time:.2f}s
- **Total Processing Time**: {total_time:.2f}s
- **Questions per Minute**: {(total/(total_time/60)):.1f}
## Model Information
- **Model**: {self.current_model}
- **Device**: {self.model_manager.device.upper() if self.model_manager else 'Unknown'}
"""
return summary
def _generate_detailed_results(self, results: List[GAIAResponse], questions: List[GAIAQuestion]) -> str:
"""Generate detailed results breakdown"""
detailed = "# 📋 Detailed Results\n\n"
for i, (result, question) in enumerate(zip(results, questions), 1):
status = "✅" if result.final_answer != "ERROR" else "❌"
detailed += f"""
## Question {i}: {question.task_id} {status}
**Question**: {question.question}
**Model Answer**: {result.final_answer}
**Expected Answer**: {question.final_answer if question.final_answer else 'N/A'}
**Processing Time**: {result.processing_time:.2f}s
**Level**: {question.level}
---
"""
return detailed
def _generate_jsonl(self, results: List[GAIAResponse]) -> str:
"""Generate JSONL format for download"""
jsonl_lines = []
for result in results:
line = {
"task_id": result.task_id,
"model_answer": result.model_answer,
"reasoning_trace": result.reasoning_trace
}
jsonl_lines.append(json.dumps(line))
return '\n'.join(jsonl_lines)
# ================================
# GLOBAL AGENT INSTANCE
# ================================
gaia_agent = GAIASpaceAgent()
# ================================
# GRADIO INTERFACE FUNCTIONS
# ================================
def load_model_interface(model_choice: str, progress=gr.Progress()):
"""Interface function for model loading"""
return gaia_agent.initialize_model(model_choice, progress)
def single_question_interface(question: str, progress=gr.Progress()):
"""Interface function for single question processing"""
if not question.strip():
return "Please enter a question", "", "", "0.00s"
final_answer, full_response, reasoning, proc_time = gaia_agent.process_single_question(question, progress)
return (
final_answer,
full_response,
reasoning,
f"{proc_time:.2f}s"
)
def batch_evaluate_interface(dataset_choice: str, max_questions: int, progress=gr.Progress()):
"""Interface function for batch evaluation"""
if gaia_agent.model_manager is None:
return "❌ Please load a model first", "", ""
progress(0.1, desc="Loading dataset...")
if dataset_choice == "Sample Questions":
questions = GAIADatasetManager.get_sample_questions()
status_msg = f"✅ Loaded {len(questions)} sample questions"
else:
questions, status_msg = GAIADatasetManager.load_gaia_dataset("test", max_questions)
if max_questions and len(questions) > max_questions:
questions = questions[:max_questions]
progress(0.2, desc=f"{status_msg}. Starting evaluation...")
summary, detailed, jsonl = gaia_agent.batch_evaluate(questions, progress)
return summary, detailed, jsonl
def get_model_info(model_choice: str):
"""Get information about selected model"""
if model_choice in HFSpaceModelManager.SPACE_MODELS:
config = HFSpaceModelManager.SPACE_MODELS[model_choice]
return f"""
**Model**: {config['name']}
**Size**: {config['size']}
**Speed**: {config['speed']}
**Quality**: {config['quality']}
**GPU Required**: {'Yes' if config['gpu_required'] else 'No'}
"""
return "Model information not available"
# ================================
# GRADIO APP CREATION
# ================================
def create_gaia_app():
"""Create the main Gradio application"""
with gr.Blocks(
title="GAIA Benchmark AI Agent",
theme=gr.themes.Soft()
) as app:
gr.HTML("""
<div style="text-align: center; font-size: 2.5em; font-weight: bold; margin-bottom: 20px;">
🧠 GAIA Benchmark AI Agent
</div>
<p style="text-align: center; font-size: 1.2em; color: #666;">
Evaluate AI models on the GAIA benchmark with step-by-step reasoning
</p>
""")
with gr.Tabs():
# TAB 1: MODEL SETUP
with gr.Tab("🔧 Model Setup"):
gr.Markdown("## Choose and Load Your Model")
with gr.Row():
with gr.Column(scale=2):
model_dropdown = gr.Dropdown(
choices=list(HFSpaceModelManager.SPACE_MODELS.keys()),
value="Fast & Light",
label="Select Model"
)
model_info = gr.Markdown(
value=get_model_info("Fast & Light"),
label="Model Information"
)
load_btn = gr.Button("🚀 Load Model", variant="primary", size="lg")
with gr.Column(scale=1):
gpu_info = gr.Markdown(f"""
### System Info
**CUDA Available**: {torch.cuda.is_available()}
{f"**GPU**: {torch.cuda.get_device_name(0)}" if torch.cuda.is_available() else "**Device**: CPU"}
""")
model_status = gr.Textbox(
label="Model Status",
value="No model loaded",
interactive=False
)
model_dropdown.change(
fn=get_model_info,
inputs=[model_dropdown],
outputs=[model_info]
)
load_btn.click(
fn=load_model_interface,
inputs=[model_dropdown],
outputs=[model_status]
)
# TAB 2: SINGLE QUESTION
with gr.Tab("❓ Single Question"):
gr.Markdown("## Test Individual Questions")
with gr.Row():
with gr.Column():
question_input = gr.Textbox(
label="Enter your question",
placeholder="e.g., What is the capital of France?",
lines=3
)
process_btn = gr.Button("🤔 Process Question", variant="primary")
gr.Markdown("### Example Questions:")
example_questions = [
"What is the capital of France?",
"Calculate 144 divided by 12",
"What is the largest planet in our solar system?",
"Convert 100 degrees Celsius to Fahrenheit"
]
for example in example_questions:
gr.Button(f"📝 {example}", size="sm").click(
lambda x=example: x,
outputs=[question_input]
)
with gr.Column():
final_answer_output = gr.Textbox(
label="🎯 Final Answer",
interactive=False
)
processing_time = gr.Textbox(
label="⏱️ Processing Time",
interactive=False
)
with gr.Accordion("🧠 Full Response", open=False):
full_response = gr.Textbox(
label="Complete Model Response",
lines=8,
interactive=False
)
with gr.Accordion("🔍 Reasoning Trace", open=False):
reasoning_trace = gr.Textbox(
label="Step-by-step Reasoning",
lines=6,
interactive=False
)
process_btn.click(
fn=single_question_interface,
inputs=[question_input],
outputs=[final_answer_output, full_response, reasoning_trace, processing_time]
)
# TAB 3: BATCH EVALUATION
with gr.Tab("📊 Batch Evaluation"):
gr.Markdown("## Evaluate Multiple Questions")
with gr.Row():
dataset_choice = gr.Radio(
choices=["Sample Questions", "GAIA Test Set"],
value="Sample Questions",
label="Dataset Choice"
)
max_questions = gr.Slider(
minimum=1,
maximum=50,
value=5,
step=1,
label="Max Questions"
)
evaluate_btn = gr.Button("🚀 Start Batch Evaluation", variant="primary", size="lg")
with gr.Row():
with gr.Column():
summary_output = gr.Markdown(
label="📊 Evaluation Summary",
value="No evaluation completed yet"
)
with gr.Column():
download_output = gr.File(
label="💾 Download Results (JSONL)",
visible=False
)
with gr.Accordion("📋 Detailed Results", open=False):
detailed_output = gr.Markdown(
value="Run an evaluation to see detailed results"
)
def batch_eval_with_download(*args):
summary, detailed, jsonl_content = batch_evaluate_interface(*args)
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
filename = f"gaia_results_{timestamp}.jsonl"
with open(filename, 'w') as f:
f.write(jsonl_content)
return summary, detailed, filename
evaluate_btn.click(
fn=batch_eval_with_download,
inputs=[dataset_choice, max_questions],
outputs=[summary_output, detailed_output, download_output]
).then(
lambda: gr.update(visible=True),
outputs=[download_output]
)
# TAB 4: FULL BENCHMARK
with gr.Tab("🏆 Full Benchmark"):
gr.Markdown("## Official GAIA Leaderboard Benchmark")
with gr.Row():
with gr.Column():
test_preview_btn = gr.Button("🔍 Preview Test Questions", variant="secondary")
test_preview_output = gr.Markdown(
value="Click above to preview official test questions"
)
dataset_structure_btn = gr.Button("📁 Preview Dataset Structure", variant="secondary")
dataset_structure_output = gr.Markdown(
value="Click above to see actual GAIA dataset structure"
)
with gr.Column():
question_count = gr.Slider(
minimum=10,
maximum=300,
value=20,
step=10,
label="Number of Questions"
)
selection_strategy = gr.Dropdown(
choices=["balanced", "random", "sequential"],
value="balanced",
label="Selection Strategy"
)
benchmark_btn = gr.Button("🎯 Run Benchmark", variant="primary", size="lg")
benchmark_status = gr.Textbox(
label="📊 Benchmark Status",
value="Ready to run benchmark",
interactive=False
)
with gr.Row():
with gr.Column():
benchmark_report = gr.Markdown(
label="📈 Benchmark Report",
value="Run benchmark to see detailed results"
)
with gr.Column():
submission_file = gr.File(
label="💾 Download Submission File (JSONL)",
visible=False
)
metadata_file = gr.File(
label="📋 Download Metadata File",
visible=False
)
# Event handlers
test_preview_btn.click(
fn=lambda: load_test_questions_interface(max_questions=10, selection_type="balanced"),
outputs=[test_preview_output]
)
dataset_structure_btn.click(
fn=preview_dataset_structure_interface,
outputs=[dataset_structure_output]
)
def run_benchmark_wrapper(count, strategy, progress=gr.Progress()):
return run_custom_benchmark_interface(count, strategy, progress)
def show_download_files(status, report, sub_file, meta_file):
return (
status,
report,
sub_file,
meta_file,
gr.update(visible=True),
gr.update(visible=True)
)
benchmark_btn.click(
fn=run_benchmark_wrapper,
inputs=[question_count, selection_strategy],
outputs=[benchmark_status, benchmark_report, submission_file, metadata_file]
).then(
fn=show_download_files,
inputs=[benchmark_status, benchmark_report, submission_file, metadata_file],
outputs=[benchmark_status, benchmark_report, submission_file, metadata_file, submission_file, metadata_file]
)
return app
# ================================