Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
Commit
·
d5cf69f
1
Parent(s):
5dc3e05
Added feedback to UI for inference
Browse files- app.py +52 -11
- backend_modal/modal_runner.py +187 -22
app.py
CHANGED
|
@@ -221,6 +221,19 @@ def create_demo_interface():
|
|
| 221 |
lines=8, max_lines=15,
|
| 222 |
interactive=False,
|
| 223 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
|
| 225 |
def update_speaker_visibility(num_speakers):
|
| 226 |
return [gr.update(visible=(i < num_speakers)) for i in range(4)]
|
|
@@ -303,15 +316,23 @@ def create_demo_interface():
|
|
| 303 |
|
| 304 |
def generate_podcast_wrapper(model_choice, num_speakers_val, script, *speakers_and_params):
|
| 305 |
if remote_generate_function is None:
|
| 306 |
-
|
| 307 |
-
|
|
|
|
|
|
|
| 308 |
# Show a message that we are calling the remote function
|
| 309 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 310 |
|
| 311 |
try:
|
| 312 |
speakers = speakers_and_params[:4]
|
| 313 |
cfg_scale_val = speakers_and_params[4]
|
| 314 |
-
|
|
|
|
| 315 |
# Stream updates from the Modal function
|
| 316 |
for update in remote_generate_function.remote_gen(
|
| 317 |
num_speakers=int(num_speakers_val),
|
|
@@ -323,19 +344,39 @@ def create_demo_interface():
|
|
| 323 |
cfg_scale=cfg_scale_val,
|
| 324 |
model_name=model_choice
|
| 325 |
):
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 330 |
except Exception as e:
|
| 331 |
tb = traceback.format_exc()
|
| 332 |
print(f"Error calling Modal: {e}")
|
| 333 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 334 |
|
| 335 |
generate_btn.click(
|
| 336 |
fn=generate_podcast_wrapper,
|
| 337 |
inputs=[model_dropdown, num_speakers, script_input] + speaker_selections + [cfg_scale],
|
| 338 |
-
outputs=[complete_audio_output, log_output]
|
| 339 |
)
|
| 340 |
|
| 341 |
with gr.Tab("Architecture"):
|
|
@@ -414,4 +455,4 @@ if __name__ == "__main__":
|
|
| 414 |
else:
|
| 415 |
# Launch the full Gradio interface
|
| 416 |
interface = create_demo_interface()
|
| 417 |
-
interface.queue().launch(show_error=True)
|
|
|
|
| 221 |
lines=8, max_lines=15,
|
| 222 |
interactive=False,
|
| 223 |
)
|
| 224 |
+
with gr.Row():
|
| 225 |
+
status_display = gr.Markdown(
|
| 226 |
+
value="Status: idle.",
|
| 227 |
+
elem_id="status-display",
|
| 228 |
+
)
|
| 229 |
+
progress_slider = gr.Slider(
|
| 230 |
+
minimum=0,
|
| 231 |
+
maximum=100,
|
| 232 |
+
value=0,
|
| 233 |
+
step=1,
|
| 234 |
+
label="Progress",
|
| 235 |
+
interactive=False,
|
| 236 |
+
)
|
| 237 |
|
| 238 |
def update_speaker_visibility(num_speakers):
|
| 239 |
return [gr.update(visible=(i < num_speakers)) for i in range(4)]
|
|
|
|
| 316 |
|
| 317 |
def generate_podcast_wrapper(model_choice, num_speakers_val, script, *speakers_and_params):
|
| 318 |
if remote_generate_function is None:
|
| 319 |
+
error_message = "ERROR: Modal function not deployed. Please contact the space owner."
|
| 320 |
+
yield None, error_message, "Status: error.", gr.update(value=0)
|
| 321 |
+
return
|
| 322 |
+
|
| 323 |
# Show a message that we are calling the remote function
|
| 324 |
+
yield (
|
| 325 |
+
None,
|
| 326 |
+
"🔄 Calling remote GPU on Modal.com... this may take a moment to start.",
|
| 327 |
+
"**Connecting**\nRequesting GPU resources…",
|
| 328 |
+
gr.update(value=0),
|
| 329 |
+
)
|
| 330 |
|
| 331 |
try:
|
| 332 |
speakers = speakers_and_params[:4]
|
| 333 |
cfg_scale_val = speakers_and_params[4]
|
| 334 |
+
current_log = ""
|
| 335 |
+
|
| 336 |
# Stream updates from the Modal function
|
| 337 |
for update in remote_generate_function.remote_gen(
|
| 338 |
num_speakers=int(num_speakers_val),
|
|
|
|
| 344 |
cfg_scale=cfg_scale_val,
|
| 345 |
model_name=model_choice
|
| 346 |
):
|
| 347 |
+
if not update:
|
| 348 |
+
continue
|
| 349 |
+
|
| 350 |
+
audio_payload = update.get("audio")
|
| 351 |
+
progress_pct = update.get("pct", 0)
|
| 352 |
+
stage_label = update.get("stage", "").replace("_", " ").title() or "Status"
|
| 353 |
+
status_line = update.get("status") or "Processing…"
|
| 354 |
+
current_log = update.get("log", current_log)
|
| 355 |
+
|
| 356 |
+
status_formatted = f"**{stage_label}**\n{status_line}"
|
| 357 |
+
audio_output = audio_payload if audio_payload is not None else gr.update()
|
| 358 |
+
|
| 359 |
+
yield (
|
| 360 |
+
audio_output,
|
| 361 |
+
current_log,
|
| 362 |
+
status_formatted,
|
| 363 |
+
gr.update(value=progress_pct),
|
| 364 |
+
)
|
| 365 |
except Exception as e:
|
| 366 |
tb = traceback.format_exc()
|
| 367 |
print(f"Error calling Modal: {e}")
|
| 368 |
+
error_log = f"❌ An error occurred: {e}\n\n{tb}"
|
| 369 |
+
yield (
|
| 370 |
+
None,
|
| 371 |
+
error_log,
|
| 372 |
+
"**Error**\nInference failed.",
|
| 373 |
+
gr.update(value=0),
|
| 374 |
+
)
|
| 375 |
|
| 376 |
generate_btn.click(
|
| 377 |
fn=generate_podcast_wrapper,
|
| 378 |
inputs=[model_dropdown, num_speakers, script_input] + speaker_selections + [cfg_scale],
|
| 379 |
+
outputs=[complete_audio_output, log_output, status_display, progress_slider]
|
| 380 |
)
|
| 381 |
|
| 382 |
with gr.Tab("Architecture"):
|
|
|
|
| 455 |
else:
|
| 456 |
# Launch the full Gradio interface
|
| 457 |
interface = create_demo_interface()
|
| 458 |
+
interface.queue().launch(show_error=True)
|
backend_modal/modal_runner.py
CHANGED
|
@@ -5,6 +5,9 @@ import librosa
|
|
| 5 |
import soundfile as sf
|
| 6 |
import torch
|
| 7 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Modal-specific imports
|
| 10 |
import modal
|
|
@@ -38,8 +41,14 @@ app = modal.App(
|
|
| 38 |
image=image,
|
| 39 |
)
|
| 40 |
|
|
|
|
|
|
|
| 41 |
|
| 42 |
-
@app.cls(
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
class VibeVoiceModel:
|
| 44 |
def __init__(self):
|
| 45 |
self.model_paths = {
|
|
@@ -48,6 +57,8 @@ class VibeVoiceModel:
|
|
| 48 |
}
|
| 49 |
self.device = "cuda"
|
| 50 |
self.inference_steps = 5
|
|
|
|
|
|
|
| 51 |
|
| 52 |
@modal.enter()
|
| 53 |
def load_models(self):
|
|
@@ -113,6 +124,95 @@ class VibeVoiceModel:
|
|
| 113 |
self.available_voices[name] = os.path.join(voices_dir, wav_file)
|
| 114 |
print(f"Voices loaded: {list(self.available_voices.keys())}")
|
| 115 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
|
| 117 |
try:
|
| 118 |
wav, sr = sf.read(audio_path)
|
|
@@ -193,15 +293,36 @@ class VibeVoiceModel:
|
|
| 193 |
Yields progress updates during generation.
|
| 194 |
"""
|
| 195 |
try:
|
| 196 |
-
# Yield initial status
|
| 197 |
-
yield None, "🔄 Initializing generation..."
|
| 198 |
if model_name not in self.models:
|
| 199 |
raise ValueError(f"Unknown model: {model_name}")
|
| 200 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 201 |
# Move the selected model to GPU, others to CPU
|
| 202 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
self._place_model(model_name)
|
| 204 |
-
|
| 205 |
model = self.models[model_name]
|
| 206 |
processor = self.processors[model_name]
|
| 207 |
model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
|
@@ -216,17 +337,18 @@ class VibeVoiceModel:
|
|
| 216 |
if not 1 <= num_speakers <= 4:
|
| 217 |
raise ValueError("Error: Number of speakers must be between 1 and 4.")
|
| 218 |
|
| 219 |
-
selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
|
| 220 |
for i, speaker_name in enumerate(selected_speakers):
|
| 221 |
if not speaker_name or speaker_name not in self.available_voices:
|
| 222 |
raise ValueError(f"Error: Please select a valid speaker for Speaker {i+1}.")
|
| 223 |
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
|
|
|
|
|
|
| 230 |
|
| 231 |
voice_samples = []
|
| 232 |
for i, speaker_name in enumerate(selected_speakers):
|
|
@@ -235,9 +357,18 @@ class VibeVoiceModel:
|
|
| 235 |
if len(audio_data) == 0:
|
| 236 |
raise ValueError(f"Error: Failed to load audio for {speaker_name}")
|
| 237 |
voice_samples.append(audio_data)
|
| 238 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
|
|
|
|
| 241 |
|
| 242 |
lines = script.strip().split('\n')
|
| 243 |
formatted_script_lines = []
|
|
@@ -251,8 +382,14 @@ class VibeVoiceModel:
|
|
| 251 |
formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
|
| 252 |
|
| 253 |
formatted_script = '\n'.join(formatted_script_lines)
|
| 254 |
-
|
| 255 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 256 |
|
| 257 |
inputs = processor(
|
| 258 |
text=[formatted_script],
|
|
@@ -262,7 +399,14 @@ class VibeVoiceModel:
|
|
| 262 |
return_attention_mask=True,
|
| 263 |
).to(self.device)
|
| 264 |
|
| 265 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 266 |
start_time = time.time()
|
| 267 |
|
| 268 |
with torch.inference_mode():
|
|
@@ -276,7 +420,15 @@ class VibeVoiceModel:
|
|
| 276 |
)
|
| 277 |
generation_time = time.time() - start_time
|
| 278 |
|
| 279 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
|
| 282 |
audio_tensor = outputs.speech_outputs[0]
|
|
@@ -289,15 +441,28 @@ class VibeVoiceModel:
|
|
| 289 |
|
| 290 |
sample_rate = 24000
|
| 291 |
total_duration = len(audio) / sample_rate
|
| 292 |
-
|
| 293 |
-
|
|
|
|
| 294 |
|
| 295 |
# Final yield with both audio and complete log
|
| 296 |
-
yield (
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
except Exception as e:
|
| 299 |
import traceback
|
| 300 |
error_msg = f"❌ An unexpected error occurred on Modal: {str(e)}\n{traceback.format_exc()}"
|
| 301 |
print(error_msg)
|
| 302 |
# Yield error state
|
| 303 |
-
yield
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
import soundfile as sf
|
| 6 |
import torch
|
| 7 |
from datetime import datetime
|
| 8 |
+
import hashlib
|
| 9 |
+
import json
|
| 10 |
+
import pickle
|
| 11 |
|
| 12 |
# Modal-specific imports
|
| 13 |
import modal
|
|
|
|
| 41 |
image=image,
|
| 42 |
)
|
| 43 |
|
| 44 |
+
# Create a volume for caching generated audio
|
| 45 |
+
cache_volume = modal.Volume.from_name("vibevoice-cache", create_if_missing=True)
|
| 46 |
|
| 47 |
+
@app.cls(
|
| 48 |
+
gpu="A100-40GB",
|
| 49 |
+
scaledown_window=300,
|
| 50 |
+
volumes={"/cache": cache_volume}
|
| 51 |
+
)
|
| 52 |
class VibeVoiceModel:
|
| 53 |
def __init__(self):
|
| 54 |
self.model_paths = {
|
|
|
|
| 57 |
}
|
| 58 |
self.device = "cuda"
|
| 59 |
self.inference_steps = 5
|
| 60 |
+
self.cache_dir = "/cache"
|
| 61 |
+
self.max_cache_size_gb = 10 # Limit cache to 10GB
|
| 62 |
|
| 63 |
@modal.enter()
|
| 64 |
def load_models(self):
|
|
|
|
| 124 |
self.available_voices[name] = os.path.join(voices_dir, wav_file)
|
| 125 |
print(f"Voices loaded: {list(self.available_voices.keys())}")
|
| 126 |
|
| 127 |
+
def _emit_progress(self, stage: str, pct: float, status: str, log_text: str,
|
| 128 |
+
audio=None, done: bool = False):
|
| 129 |
+
"""Package a structured progress update for streaming back to Gradio."""
|
| 130 |
+
payload = {
|
| 131 |
+
"stage": stage,
|
| 132 |
+
"pct": pct,
|
| 133 |
+
"status": status,
|
| 134 |
+
"log": log_text,
|
| 135 |
+
}
|
| 136 |
+
if audio is not None:
|
| 137 |
+
payload["audio"] = audio
|
| 138 |
+
if done:
|
| 139 |
+
payload["done"] = True
|
| 140 |
+
return payload
|
| 141 |
+
|
| 142 |
+
def _generate_cache_key(self, script: str, model_name: str, speakers: list, cfg_scale: float) -> str:
|
| 143 |
+
"""Generate a unique cache key for this generation."""
|
| 144 |
+
cache_data = {
|
| 145 |
+
"script": script.strip().lower(), # Normalize script
|
| 146 |
+
"model": model_name,
|
| 147 |
+
"speakers": sorted(speakers), # Sort for consistency
|
| 148 |
+
"cfg_scale": cfg_scale,
|
| 149 |
+
"inference_steps": self.inference_steps
|
| 150 |
+
}
|
| 151 |
+
cache_str = json.dumps(cache_data, sort_keys=True)
|
| 152 |
+
return hashlib.sha256(cache_str.encode()).hexdigest()
|
| 153 |
+
|
| 154 |
+
def _get_cached_audio(self, cache_key: str):
|
| 155 |
+
"""Check if audio is cached and return it."""
|
| 156 |
+
cache_path = os.path.join(self.cache_dir, f"{cache_key}.pkl")
|
| 157 |
+
if os.path.exists(cache_path):
|
| 158 |
+
try:
|
| 159 |
+
with open(cache_path, 'rb') as f:
|
| 160 |
+
cached_data = pickle.load(f)
|
| 161 |
+
print(f"Cache hit! Loading from {cache_key}")
|
| 162 |
+
return cached_data['audio'], cached_data['sample_rate']
|
| 163 |
+
except Exception as e:
|
| 164 |
+
print(f"Cache read error: {e}")
|
| 165 |
+
return None, None
|
| 166 |
+
|
| 167 |
+
def _save_to_cache(self, cache_key: str, audio: np.ndarray, sample_rate: int):
|
| 168 |
+
"""Save generated audio to cache."""
|
| 169 |
+
try:
|
| 170 |
+
# Check cache size
|
| 171 |
+
self._cleanup_cache_if_needed()
|
| 172 |
+
|
| 173 |
+
cache_path = os.path.join(self.cache_dir, f"{cache_key}.pkl")
|
| 174 |
+
cached_data = {
|
| 175 |
+
'audio': audio,
|
| 176 |
+
'sample_rate': sample_rate,
|
| 177 |
+
'timestamp': time.time()
|
| 178 |
+
}
|
| 179 |
+
with open(cache_path, 'wb') as f:
|
| 180 |
+
pickle.dump(cached_data, f)
|
| 181 |
+
print(f"Saved to cache: {cache_key}")
|
| 182 |
+
|
| 183 |
+
# Commit the volume changes
|
| 184 |
+
cache_volume.commit()
|
| 185 |
+
except Exception as e:
|
| 186 |
+
print(f"Cache write error: {e}")
|
| 187 |
+
|
| 188 |
+
def _cleanup_cache_if_needed(self):
|
| 189 |
+
"""Remove old cache files if cache is too large."""
|
| 190 |
+
try:
|
| 191 |
+
cache_files = []
|
| 192 |
+
total_size = 0
|
| 193 |
+
|
| 194 |
+
for filename in os.listdir(self.cache_dir):
|
| 195 |
+
if filename.endswith('.pkl'):
|
| 196 |
+
filepath = os.path.join(self.cache_dir, filename)
|
| 197 |
+
size = os.path.getsize(filepath)
|
| 198 |
+
mtime = os.path.getmtime(filepath)
|
| 199 |
+
cache_files.append((filepath, size, mtime))
|
| 200 |
+
total_size += size
|
| 201 |
+
|
| 202 |
+
# If cache is too large, remove oldest files
|
| 203 |
+
max_size = self.max_cache_size_gb * 1024 * 1024 * 1024
|
| 204 |
+
if total_size > max_size:
|
| 205 |
+
# Sort by modification time (oldest first)
|
| 206 |
+
cache_files.sort(key=lambda x: x[2])
|
| 207 |
+
|
| 208 |
+
while total_size > max_size * 0.8 and cache_files: # Keep 80% full
|
| 209 |
+
filepath, size, _ = cache_files.pop(0)
|
| 210 |
+
os.remove(filepath)
|
| 211 |
+
total_size -= size
|
| 212 |
+
print(f"Removed old cache: {os.path.basename(filepath)}")
|
| 213 |
+
except Exception as e:
|
| 214 |
+
print(f"Cache cleanup error: {e}")
|
| 215 |
+
|
| 216 |
def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
|
| 217 |
try:
|
| 218 |
wav, sr = sf.read(audio_path)
|
|
|
|
| 293 |
Yields progress updates during generation.
|
| 294 |
"""
|
| 295 |
try:
|
|
|
|
|
|
|
| 296 |
if model_name not in self.models:
|
| 297 |
raise ValueError(f"Unknown model: {model_name}")
|
| 298 |
|
| 299 |
+
# Initialize log scaffold
|
| 300 |
+
selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
|
| 301 |
+
log_lines = [
|
| 302 |
+
f"Generating conference with {num_speakers} speakers",
|
| 303 |
+
f"Model: {model_name}",
|
| 304 |
+
f"Parameters: CFG Scale={cfg_scale}",
|
| 305 |
+
f"Speakers: {', '.join(selected_speakers)}",
|
| 306 |
+
]
|
| 307 |
+
log_text = "\n".join(log_lines)
|
| 308 |
+
|
| 309 |
+
# Emit initial status before heavy work kicks in
|
| 310 |
+
yield self._emit_progress(
|
| 311 |
+
stage="queued",
|
| 312 |
+
pct=5,
|
| 313 |
+
status="Queued GPU job and validating inputs…",
|
| 314 |
+
log_text=log_text,
|
| 315 |
+
)
|
| 316 |
+
|
| 317 |
# Move the selected model to GPU, others to CPU
|
| 318 |
+
yield self._emit_progress(
|
| 319 |
+
stage="loading_model",
|
| 320 |
+
pct=15,
|
| 321 |
+
status=f"Loading {model_name} weights to GPU…",
|
| 322 |
+
log_text=log_text,
|
| 323 |
+
)
|
| 324 |
self._place_model(model_name)
|
| 325 |
+
|
| 326 |
model = self.models[model_name]
|
| 327 |
processor = self.processors[model_name]
|
| 328 |
model.set_ddpm_inference_steps(num_steps=self.inference_steps)
|
|
|
|
| 337 |
if not 1 <= num_speakers <= 4:
|
| 338 |
raise ValueError("Error: Number of speakers must be between 1 and 4.")
|
| 339 |
|
|
|
|
| 340 |
for i, speaker_name in enumerate(selected_speakers):
|
| 341 |
if not speaker_name or speaker_name not in self.available_voices:
|
| 342 |
raise ValueError(f"Error: Please select a valid speaker for Speaker {i+1}.")
|
| 343 |
|
| 344 |
+
log_lines.append("Loading voice samples…")
|
| 345 |
+
log_text = "\n".join(log_lines)
|
| 346 |
+
yield self._emit_progress(
|
| 347 |
+
stage="loading_voices",
|
| 348 |
+
pct=25,
|
| 349 |
+
status="Loading reference voices…",
|
| 350 |
+
log_text=log_text,
|
| 351 |
+
)
|
| 352 |
|
| 353 |
voice_samples = []
|
| 354 |
for i, speaker_name in enumerate(selected_speakers):
|
|
|
|
| 357 |
if len(audio_data) == 0:
|
| 358 |
raise ValueError(f"Error: Failed to load audio for {speaker_name}")
|
| 359 |
voice_samples.append(audio_data)
|
| 360 |
+
voice_pct = 25 + ((i + 1) / len(selected_speakers)) * 15
|
| 361 |
+
log_lines.append(f"Loaded voice {i+1}/{len(selected_speakers)}: {speaker_name}")
|
| 362 |
+
log_text = "\n".join(log_lines)
|
| 363 |
+
yield self._emit_progress(
|
| 364 |
+
stage="loading_voices",
|
| 365 |
+
pct=voice_pct,
|
| 366 |
+
status=f"Loaded {speaker_name}",
|
| 367 |
+
log_text=log_text,
|
| 368 |
+
)
|
| 369 |
|
| 370 |
+
log_lines.append(f"Loaded {len(voice_samples)} voice samples")
|
| 371 |
+
log_text = "\n".join(log_lines)
|
| 372 |
|
| 373 |
lines = script.strip().split('\n')
|
| 374 |
formatted_script_lines = []
|
|
|
|
| 382 |
formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
|
| 383 |
|
| 384 |
formatted_script = '\n'.join(formatted_script_lines)
|
| 385 |
+
log_lines.append(f"Formatted script with {len(formatted_script_lines)} turns")
|
| 386 |
+
log_text = "\n".join(log_lines)
|
| 387 |
+
yield self._emit_progress(
|
| 388 |
+
stage="preparing_inputs",
|
| 389 |
+
pct=50,
|
| 390 |
+
status="Formatting script and preparing tensors…",
|
| 391 |
+
log_text=log_text,
|
| 392 |
+
)
|
| 393 |
|
| 394 |
inputs = processor(
|
| 395 |
text=[formatted_script],
|
|
|
|
| 399 |
return_attention_mask=True,
|
| 400 |
).to(self.device)
|
| 401 |
|
| 402 |
+
log_lines.append("Inputs prepared; starting diffusion generation…")
|
| 403 |
+
log_text = "\n".join(log_lines)
|
| 404 |
+
yield self._emit_progress(
|
| 405 |
+
stage="generating_audio",
|
| 406 |
+
pct=70,
|
| 407 |
+
status="Running VibeVoice diffusion (this may take 1-2 minutes)…",
|
| 408 |
+
log_text=log_text,
|
| 409 |
+
)
|
| 410 |
start_time = time.time()
|
| 411 |
|
| 412 |
with torch.inference_mode():
|
|
|
|
| 420 |
)
|
| 421 |
generation_time = time.time() - start_time
|
| 422 |
|
| 423 |
+
log_lines.append(f"Generation completed in {generation_time:.2f} seconds")
|
| 424 |
+
log_lines.append("Processing audio output…")
|
| 425 |
+
log_text = "\n".join(log_lines)
|
| 426 |
+
yield self._emit_progress(
|
| 427 |
+
stage="processing_audio",
|
| 428 |
+
pct=90,
|
| 429 |
+
status="Post-processing audio output…",
|
| 430 |
+
log_text=log_text,
|
| 431 |
+
)
|
| 432 |
|
| 433 |
if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
|
| 434 |
audio_tensor = outputs.speech_outputs[0]
|
|
|
|
| 441 |
|
| 442 |
sample_rate = 24000
|
| 443 |
total_duration = len(audio) / sample_rate
|
| 444 |
+
log_lines.append(f"Audio duration: {total_duration:.2f} seconds")
|
| 445 |
+
log_lines.append("Complete!")
|
| 446 |
+
log_text = "\n".join(log_lines)
|
| 447 |
|
| 448 |
# Final yield with both audio and complete log
|
| 449 |
+
yield self._emit_progress(
|
| 450 |
+
stage="complete",
|
| 451 |
+
pct=100,
|
| 452 |
+
status="Conference ready to download.",
|
| 453 |
+
log_text=log_text,
|
| 454 |
+
audio=(sample_rate, audio),
|
| 455 |
+
done=True,
|
| 456 |
+
)
|
| 457 |
|
| 458 |
except Exception as e:
|
| 459 |
import traceback
|
| 460 |
error_msg = f"❌ An unexpected error occurred on Modal: {str(e)}\n{traceback.format_exc()}"
|
| 461 |
print(error_msg)
|
| 462 |
# Yield error state
|
| 463 |
+
yield self._emit_progress(
|
| 464 |
+
stage="error",
|
| 465 |
+
pct=0,
|
| 466 |
+
status="Generation failed.",
|
| 467 |
+
log_text=error_msg,
|
| 468 |
+
)
|