ACloudCenter commited on
Commit
749c08c
·
1 Parent(s): 1d188b4

Refactor: Separate frontend and backend code

Browse files

Moved Gradio app and related files to 'frontend_app/' and Modal backend
code to 'backend_modal/' for clearer separation and easier deployment.

This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. app.py +0 -805
  2. {configs → backend_modal/configs}/qwen2.5_1.5b_64k.json +0 -0
  3. {configs → backend_modal/configs}/qwen2.5_7b_32k.json +0 -0
  4. {example → backend_modal/example}/1p_EN2CH.mp4 +0 -0
  5. {example → backend_modal/example}/2p_see_u_again.mp4 +0 -0
  6. {example → backend_modal/example}/4p_climate_45min.mp4 +0 -0
  7. backend_modal/modal_runner.py +230 -0
  8. {modular → backend_modal/modular}/__init__.py +0 -0
  9. {modular → backend_modal/modular}/configuration_vibevoice.py +0 -0
  10. {modular → backend_modal/modular}/modeling_vibevoice.py +0 -0
  11. {modular → backend_modal/modular}/modeling_vibevoice_inference.py +0 -0
  12. {modular → backend_modal/modular}/modular_vibevoice_diffusion_head.py +0 -0
  13. {modular → backend_modal/modular}/modular_vibevoice_text_tokenizer.py +0 -0
  14. {modular → backend_modal/modular}/modular_vibevoice_tokenizer.py +0 -0
  15. {modular → backend_modal/modular}/streamer.py +0 -0
  16. packages.txt → backend_modal/packages.txt +0 -0
  17. {processor → backend_modal/processor}/__init__.py +0 -0
  18. {processor → backend_modal/processor}/vibevoice_processor.py +0 -0
  19. {processor → backend_modal/processor}/vibevoice_tokenizer_processor.py +0 -0
  20. {schedule → backend_modal/schedule}/__init__.py +0 -0
  21. {schedule → backend_modal/schedule}/dpm_solver.py +0 -0
  22. {schedule → backend_modal/schedule}/timestep_sampler.py +0 -0
  23. {scripts → backend_modal/scripts}/__init__.py +0 -0
  24. {scripts → backend_modal/scripts}/convert_nnscaler_checkpoint_to_transformers.py +0 -0
  25. setup_voices.sh → backend_modal/setup_voices.sh +0 -0
  26. {text_examples → backend_modal/text_examples}/1p_ai_tedtalk.txt +0 -0
  27. {text_examples → backend_modal/text_examples}/1p_ai_tedtalk_natural.txt +0 -0
  28. {text_examples → backend_modal/text_examples}/1p_politcal_speech.txt +0 -0
  29. {text_examples → backend_modal/text_examples}/1p_politcal_speech_natural.txt +0 -0
  30. {text_examples → backend_modal/text_examples}/2p_financeipo_meeting.txt +0 -0
  31. {text_examples → backend_modal/text_examples}/2p_financeipo_meeting_natural.txt +0 -0
  32. {text_examples → backend_modal/text_examples}/2p_telehealth_meeting.txt +0 -0
  33. {text_examples → backend_modal/text_examples}/2p_telehealth_meeting_natural.txt +0 -0
  34. {text_examples → backend_modal/text_examples}/3p_military_meeting.txt +0 -0
  35. {text_examples → backend_modal/text_examples}/3p_military_meeting_natural.txt +0 -0
  36. {text_examples → backend_modal/text_examples}/3p_oil_meeting.txt +0 -0
  37. {text_examples → backend_modal/text_examples}/3p_oil_meeting_natural.txt +0 -0
  38. {text_examples → backend_modal/text_examples}/4p_gamecreation_meeting.txt +0 -0
  39. {text_examples → backend_modal/text_examples}/4p_gamecreation_meeting_natural.txt +0 -0
  40. {text_examples → backend_modal/text_examples}/4p_product_meeting.txt +0 -0
  41. {text_examples → backend_modal/text_examples}/4p_product_meeting_natural.txt +0 -0
  42. {voices → backend_modal/voices}/en-Alice_woman.wav +0 -0
  43. {voices → backend_modal/voices}/en-Alice_woman_bgm.wav +0 -0
  44. {voices → backend_modal/voices}/en-Carter_man.wav +0 -0
  45. {voices → backend_modal/voices}/en-Frank_man.wav +0 -0
  46. {voices → backend_modal/voices}/en-Maya_woman.wav +0 -0
  47. {voices → backend_modal/voices}/en-Yasser_man.wav +0 -0
  48. {voices → backend_modal/voices}/in-Samuel_man.wav +0 -0
  49. {voices → backend_modal/voices}/zh-Anchen_man_bgm.wav +0 -0
  50. {voices → backend_modal/voices}/zh-Bowen_man.wav +0 -0
app.py DELETED
@@ -1,805 +0,0 @@
1
- import os
2
- import time
3
- import numpy as np
4
- import gradio as gr
5
- import librosa
6
- import soundfile as sf
7
- import torch
8
- import traceback
9
- import threading
10
- from spaces import GPU
11
- from datetime import datetime
12
- from contextlib import contextmanager
13
-
14
- from modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
15
- from processor.vibevoice_processor import VibeVoiceProcessor
16
- from modular.streamer import AudioStreamer
17
- from transformers.utils import logging
18
- from transformers import set_seed
19
-
20
- logging.set_verbosity_info()
21
- logger = logging.get_logger(__name__)
22
-
23
-
24
-
25
- class VibeVoiceDemo:
26
- def __init__(self, model_paths: dict, device: str = "cuda", inference_steps: int = 5):
27
- """
28
- model_paths: dict like {"VibeVoice-1.5B": "microsoft/VibeVoice-1.5B",
29
- "VibeVoice-7B": "microsoft/VibeVoice-7B"}
30
- """
31
- self.model_paths = model_paths
32
- self.device = device
33
- self.inference_steps = inference_steps
34
-
35
- self.is_generating = False
36
-
37
- # Multi-model holders
38
- self.models = {} # name -> model
39
- self.processors = {} # name -> processor
40
- self.current_model_name = None
41
-
42
- self.available_voices = {}
43
-
44
- # Set compiler flags for better performance
45
- if torch.cuda.is_available() and hasattr(torch, '_inductor'):
46
- if hasattr(torch._inductor, 'config'):
47
- torch._inductor.config.conv_1x1_as_mm = True
48
- torch._inductor.config.coordinate_descent_tuning = True
49
- torch._inductor.config.epilogue_fusion = False
50
- torch._inductor.config.coordinate_descent_check_all_directions = True
51
-
52
- self.load_models() # load all on CPU
53
- self.setup_voice_presets()
54
- self.load_example_scripts()
55
-
56
- def load_models(self):
57
- print("Loading processors and models on CPU...")
58
-
59
- # Debug: Show cache location
60
- import os
61
- cache_dir = os.path.expanduser("~/.cache/huggingface/hub")
62
- print(f"HuggingFace cache directory: {cache_dir}")
63
- if os.path.exists(cache_dir):
64
- print(f"Cache exists. Size: {sum(os.path.getsize(os.path.join(dirpath, filename)) for dirpath, _, filenames in os.walk(cache_dir) for filename in filenames) / (1024**3):.2f} GB")
65
- print("Cached models:")
66
- for item in os.listdir(cache_dir):
67
- if item.startswith("models--"):
68
- print(f" - {item}")
69
-
70
- for name, path in self.model_paths.items():
71
- print(f" - {name} from {path}")
72
- proc = VibeVoiceProcessor.from_pretrained(path)
73
- # Use SDPA (Scaled Dot Product Attention) for better memory efficiency
74
- # Flash Attention 2 disabled to reduce memory usage on L4 GPUs
75
- mdl = VibeVoiceForConditionalGenerationInference.from_pretrained(
76
- path,
77
- torch_dtype=torch.bfloat16,
78
- attn_implementation="sdpa" # More memory efficient than flash_attention_2
79
- )
80
- print(f" SDPA (memory-efficient) attention enabled for {name}")
81
- # Keep on CPU initially
82
- self.processors[name] = proc
83
- self.models[name] = mdl
84
- # choose default
85
- self.current_model_name = next(iter(self.models))
86
- print(f"Default model is {self.current_model_name}")
87
-
88
- def _place_model(self, target_name: str):
89
- """
90
- Move the selected model to CUDA and push all others back to CPU.
91
- """
92
- # Clear GPU cache before moving models
93
- if torch.cuda.is_available():
94
- torch.cuda.empty_cache()
95
-
96
- for name, mdl in self.models.items():
97
- if name == target_name:
98
- self.models[name] = mdl.to(self.device)
99
- else:
100
- self.models[name] = mdl.to("cpu")
101
-
102
- # Clear cache again after model placement
103
- if torch.cuda.is_available():
104
- torch.cuda.empty_cache()
105
-
106
- self.current_model_name = target_name
107
- print(f"Model {target_name} is now on {self.device}. Others moved to CPU.")
108
-
109
- def setup_voice_presets(self):
110
- voices_dir = os.path.join(os.path.dirname(__file__), "voices")
111
- if not os.path.exists(voices_dir):
112
- print(f"Warning: Voices directory not found at {voices_dir}")
113
- return
114
- wav_files = [f for f in os.listdir(voices_dir)
115
- if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))]
116
- for wav_file in wav_files:
117
- name = os.path.splitext(wav_file)[0]
118
- self.available_voices[name] = os.path.join(voices_dir, wav_file)
119
- print(f"Voices loaded: {list(self.available_voices.keys())}")
120
-
121
- # Organize voices by gender
122
- self.male_voices = [
123
- "en-Carter_man",
124
- "en-Frank_man",
125
- "en-Yasser_man",
126
- "in-Samuel_man",
127
- "zh-Anchen_man_bgm",
128
- "zh-Bowen_man"
129
- ]
130
- self.female_voices = [
131
- "en-Alice_woman_bgm",
132
- "en-Alice_woman",
133
- "en-Maya_woman",
134
- "zh-Xinran_woman"
135
- ]
136
-
137
- def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
138
- try:
139
- wav, sr = sf.read(audio_path)
140
- if len(wav.shape) > 1:
141
- wav = np.mean(wav, axis=1)
142
- if sr != target_sr:
143
- wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
144
- return wav
145
- except Exception as e:
146
- print(f"Error reading audio {audio_path}: {e}")
147
- return np.array([])
148
-
149
- @GPU(duration=120)
150
- def generate_podcast(self,
151
- num_speakers: int,
152
- script: str,
153
- speaker_1: str = None,
154
- speaker_2: str = None,
155
- speaker_3: str = None,
156
- speaker_4: str = None,
157
- cfg_scale: float = 1.3,
158
- model_name: str = None):
159
- """
160
- Generates a conference as a single audio file from a script and saves it.
161
- Non-streaming.
162
- """
163
- try:
164
- # pick model
165
- model_name = model_name or self.current_model_name
166
- if model_name not in self.models:
167
- raise gr.Error(f"Unknown model: {model_name}")
168
-
169
- # place models on devices
170
- self._place_model(model_name)
171
- model = self.models[model_name]
172
- processor = self.processors[model_name]
173
-
174
- print(f"Using model {model_name} on {self.device}")
175
-
176
- # Additional cache clear before generation
177
- if torch.cuda.is_available():
178
- torch.cuda.empty_cache()
179
-
180
- model.eval()
181
- model.set_ddpm_inference_steps(num_steps=self.inference_steps)
182
-
183
- self.is_generating = True
184
-
185
- if not script.strip():
186
- raise gr.Error("Error: Please provide a script.")
187
-
188
- script = script.replace("’", "'")
189
-
190
- if not 1 <= num_speakers <= 4:
191
- raise gr.Error("Error: Number of speakers must be between 1 and 4.")
192
-
193
- selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
194
- for i, speaker_name in enumerate(selected_speakers):
195
- if not speaker_name or speaker_name not in self.available_voices:
196
- raise gr.Error(f"Error: Please select a valid speaker for Speaker {i+1}.")
197
-
198
- log = f"Generating conference with {num_speakers} speakers\n"
199
- log += f"Model: {model_name}\n"
200
- log += f"Parameters: CFG Scale={cfg_scale}\n"
201
- log += f"Speakers: {', '.join(selected_speakers)}\n"
202
-
203
- voice_samples = []
204
- for speaker_name in selected_speakers:
205
- audio_path = self.available_voices[speaker_name]
206
- audio_data = self.read_audio(audio_path)
207
- if len(audio_data) == 0:
208
- raise gr.Error(f"Error: Failed to load audio for {speaker_name}")
209
- voice_samples.append(audio_data)
210
-
211
- log += f"Loaded {len(voice_samples)} voice samples\n"
212
-
213
- lines = script.strip().split('\n')
214
- formatted_script_lines = []
215
- for line in lines:
216
- line = line.strip()
217
- if not line:
218
- continue
219
- if line.startswith('Speaker ') and ':' in line:
220
- formatted_script_lines.append(line)
221
- else:
222
- speaker_id = len(formatted_script_lines) % num_speakers
223
- formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
224
-
225
- formatted_script = '\n'.join(formatted_script_lines)
226
- log += f"Formatted script with {len(formatted_script_lines)} turns\n"
227
- log += "Processing with VibeVoice...\n"
228
-
229
- inputs = processor(
230
- text=[formatted_script],
231
- voice_samples=[voice_samples],
232
- padding=True,
233
- return_tensors="pt",
234
- return_attention_mask=True,
235
- )
236
-
237
- start_time = time.time()
238
-
239
- # Use efficient attention backend
240
- if torch.cuda.is_available() and hasattr(torch.nn.attention, 'SDPBackend'):
241
- from torch.nn.attention import SDPBackend, sdpa_kernel
242
- with sdpa_kernel(SDPBackend.EFFICIENT_ATTENTION):
243
- outputs = model.generate(
244
- **inputs,
245
- max_new_tokens=None,
246
- cfg_scale=cfg_scale,
247
- tokenizer=processor.tokenizer,
248
- generation_config={'do_sample': False},
249
- verbose=False,
250
- )
251
- else:
252
- outputs = model.generate(
253
- **inputs,
254
- max_new_tokens=None,
255
- cfg_scale=cfg_scale,
256
- tokenizer=processor.tokenizer,
257
- generation_config={'do_sample': False},
258
- verbose=False,
259
- )
260
- generation_time = time.time() - start_time
261
-
262
- if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
263
- audio_tensor = outputs.speech_outputs[0]
264
- audio = audio_tensor.cpu().float().numpy()
265
- else:
266
- raise gr.Error("Error: No audio was generated by the model. Please try again.")
267
-
268
- if audio.ndim > 1:
269
- audio = audio.squeeze()
270
-
271
- sample_rate = 24000
272
-
273
- output_dir = "outputs"
274
- os.makedirs(output_dir, exist_ok=True)
275
- timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
276
- file_path = os.path.join(output_dir, f"conference_{timestamp}.wav")
277
- sf.write(file_path, audio, sample_rate)
278
- print(f"Conference saved to {file_path}")
279
-
280
- total_duration = len(audio) / sample_rate
281
- log += f"Generation completed in {generation_time:.2f} seconds\n"
282
- log += f"Final audio duration: {total_duration:.2f} seconds\n"
283
- log += f"Successfully saved conference to: {file_path}\n"
284
-
285
- self.is_generating = False
286
- return (sample_rate, audio), log
287
-
288
- except gr.Error as e:
289
- self.is_generating = False
290
- error_msg = f"Input Error: {str(e)}"
291
- print(error_msg)
292
- return None, error_msg
293
-
294
- except Exception as e:
295
- self.is_generating = False
296
- error_msg = f"An unexpected error occurred: {str(e)}"
297
- print(error_msg)
298
- traceback.print_exc()
299
- return None, error_msg
300
-
301
-
302
- @staticmethod
303
- def _infer_num_speakers_from_script(script: str) -> int:
304
- """
305
- Infer number of speakers by counting distinct 'Speaker X:' tags in the script.
306
- Robust to 0- or 1-indexed labels and repeated turns.
307
- Falls back to 1 if none found.
308
- """
309
- import re
310
- ids = re.findall(r'(?mi)^\s*Speaker\s+(\d+)\s*:', script)
311
- return len({int(x) for x in ids}) if ids else 1
312
-
313
- def load_example_scripts(self):
314
- examples_dir = os.path.join(os.path.dirname(__file__), "text_examples")
315
- self.example_scripts = []
316
- self.example_scripts_natural = []
317
- if not os.path.exists(examples_dir):
318
- return
319
-
320
- original_files = [
321
- "1p_ai_tedtalk.txt",
322
- "1p_politcal_speech.txt",
323
- "2p_financeipo_meeting.txt",
324
- "2p_telehealth_meeting.txt",
325
- "3p_military_meeting.txt",
326
- "3p_oil_meeting.txt",
327
- "4p_gamecreation_meeting.txt",
328
- "4p_product_meeting.txt"
329
- ]
330
-
331
- # Gender mapping for each script's speakers
332
- self.script_speaker_genders = [
333
- ["female"], # AI TED Talk - Rachel
334
- ["neutral"], # Political Speech - generic speaker
335
- ["male", "female"], # Finance IPO - James, Patricia
336
- ["female", "male"], # Telehealth - Jennifer, Tom
337
- ["female", "male", "female"], # Military - Sarah, David, Lisa
338
- ["male", "female", "male"], # Oil - Robert, Lisa, Michael
339
- ["male", "female", "male", "male"], # Game Creation - Alex, Sarah, Marcus, Emma
340
- ["female", "male", "female", "male"] # Product Meeting - Sarah, Marcus, Jennifer, David
341
- ]
342
-
343
- for txt_file in original_files:
344
- try:
345
- with open(os.path.join(examples_dir, txt_file), 'r', encoding='utf-8') as f:
346
- script_content = f.read().strip()
347
- if script_content:
348
- num_speakers = self._infer_num_speakers_from_script(script_content)
349
- self.example_scripts.append([num_speakers, script_content])
350
-
351
- natural_file = txt_file.replace('.txt', '_natural.txt')
352
- natural_path = os.path.join(examples_dir, natural_file)
353
- if os.path.exists(natural_path):
354
- with open(natural_path, 'r', encoding='utf-8') as f:
355
- natural_content = f.read().strip()
356
- if natural_content:
357
- num_speakers = self._infer_num_speakers_from_script(natural_content)
358
- self.example_scripts_natural.append([num_speakers, natural_content])
359
- else:
360
- self.example_scripts_natural.append([num_speakers, script_content])
361
- except Exception as e:
362
- print(f"Error loading {txt_file}: {e}")
363
-
364
-
365
- def convert_to_16_bit_wav(data):
366
- if torch.is_tensor(data):
367
- data = data.detach().cpu().numpy()
368
- data = np.array(data)
369
- if np.max(np.abs(data)) > 1.0:
370
- data = data / np.max(np.abs(data))
371
- return (data * 32767).astype(np.int16)
372
-
373
- # Set synthwave theme
374
- theme = gr.themes.Ocean(
375
- primary_hue="indigo",
376
- secondary_hue="fuchsia",
377
- neutral_hue="slate",
378
- ).set(
379
- button_large_radius='*radius_sm'
380
- )
381
-
382
- def set_working_state(*components, transcript_box=None):
383
- """
384
- Disable all interactive components and show progress in transcript/log box.
385
- Usage: set_working_state(generate_btn, random_example_btn, transcript_box=log_output)
386
- """
387
- updates = [gr.update(interactive=False) for _ in components]
388
- if transcript_box is not None:
389
- updates.append(gr.update(value="Generating... please wait", interactive=False))
390
- return tuple(updates)
391
-
392
- def set_idle_state(*components, transcript_box=None):
393
- """
394
- Re-enable all interactive components and transcript/log box.
395
- Usage: set_idle_state(generate_btn, random_example_btn, transcript_box=log_output)
396
- """
397
- updates = [gr.update(interactive=True) for _ in components]
398
- if transcript_box is not None:
399
- updates.append(gr.update(interactive=True))
400
- return tuple(updates)
401
-
402
-
403
- def create_demo_interface(demo_instance: VibeVoiceDemo):
404
- custom_css = """ """
405
-
406
- with gr.Blocks(
407
- title="VibeVoice - Conference Generator",
408
- css=custom_css,
409
- theme=theme,
410
- ) as interface:
411
-
412
- # Simple image
413
- gr.HTML("""
414
- <div style="width: 100%; margin-bottom: 20px;">
415
- <img src="https://huggingface.co/spaces/ACloudCenter/Conference-Generator-VibeVoice/resolve/main/public/images/banner.png"
416
- style="width: 100%; height: auto; border-radius: 15px; box-shadow: 0 10px 40px rgba(0,0,0,0.2);"
417
- alt="Canary-Qwen Transcriber Banner">
418
- </div>
419
- """)
420
- gr.Markdown("## NOTE: The Large model takes significant generation time with limited increase in quality. I recommend trying 1.5 first.")
421
-
422
- with gr.Tabs():
423
- with gr.Tab("Generate"):
424
- gr.Markdown("### Generated Conference")
425
- complete_audio_output = gr.Audio(
426
- label="Complete Conference (Download)",
427
- type="numpy",
428
- elem_classes="audio-output complete-audio-section",
429
- autoplay=False,
430
- show_download_button=True,
431
- visible=True
432
- )
433
-
434
- with gr.Row():
435
- with gr.Column(scale=1, elem_classes="settings-card"):
436
- gr.Markdown("### Conference Settings")
437
-
438
- # Model dropdown
439
- model_dropdown = gr.Dropdown(
440
- choices=list(demo_instance.models.keys()),
441
- value=demo_instance.current_model_name,
442
- label="Model",
443
- )
444
-
445
- num_speakers = gr.Slider(
446
- minimum=1, maximum=4, value=2, step=1,
447
- label="Number of Speakers",
448
- elem_classes="slider-container"
449
- )
450
-
451
- gr.Markdown("### Speaker Selection")
452
- available_speaker_names = list(demo_instance.available_voices.keys())
453
- default_speakers = ['en-Alice_woman', 'en-Carter_man', 'en-Frank_man', 'en-Maya_woman']
454
-
455
- speaker_selections = []
456
- for i in range(4):
457
- default_value = default_speakers[i] if i < len(default_speakers) else None
458
- speaker = gr.Dropdown(
459
- choices=available_speaker_names,
460
- value=default_value,
461
- label=f"Speaker {i+1}",
462
- visible=(i < 2),
463
- elem_classes="speaker-item"
464
- )
465
- speaker_selections.append(speaker)
466
-
467
- gr.Markdown("### Advanced Settings")
468
- with gr.Accordion("Generation Parameters", open=False):
469
- cfg_scale = gr.Slider(
470
- minimum=1.0, maximum=2.0, value=1.3, step=0.05,
471
- label="CFG Scale (Guidance Strength)",
472
- elem_classes="slider-container"
473
- )
474
-
475
- with gr.Column(scale=2, elem_classes="generation-card"):
476
- gr.Markdown("### Script Input")
477
- script_input = gr.Textbox(
478
- label="Conversation Script",
479
- placeholder="Enter your conference script here...",
480
- lines=12,
481
- max_lines=20,
482
- elem_classes="script-input"
483
- )
484
-
485
- with gr.Row():
486
- random_example_btn = gr.Button(
487
- "Random Example", size="lg",
488
- variant="secondary", elem_classes="random-btn", scale=1
489
- )
490
- generate_btn = gr.Button(
491
- "🚀 Generate Conference", size="lg",
492
- variant="primary", elem_classes="generate-btn", scale=2
493
- )
494
-
495
- with gr.Row():
496
- with gr.Column(scale=1):
497
- gr.Markdown("### Example Scripts")
498
- with gr.Row():
499
- use_natural = gr.Checkbox(
500
- value=True,
501
- label="Natural talking sounds",
502
- scale=1
503
- )
504
- duration_display = gr.Textbox(
505
- value="",
506
- label="Est. Duration",
507
- interactive=False,
508
- scale=1
509
- )
510
-
511
- example_names = [
512
- "AI TED Talk",
513
- "Political Speech",
514
- "Finance IPO Meeting",
515
- "Telehealth Meeting",
516
- "Military Meeting",
517
- "Oil Meeting",
518
- "Game Creation Meeting",
519
- "Product Meeting"
520
- ]
521
-
522
- example_buttons = []
523
- with gr.Row():
524
- for i in range(min(4, len(example_names))):
525
- btn = gr.Button(example_names[i], size="sm", variant="secondary")
526
- example_buttons.append(btn)
527
-
528
- with gr.Row():
529
- for i in range(4, min(8, len(example_names))):
530
- btn = gr.Button(example_names[i], size="sm", variant="secondary")
531
- example_buttons.append(btn)
532
-
533
- log_output = gr.Textbox(
534
- label="Generation Log",
535
- lines=8, max_lines=15,
536
- interactive=False,
537
- elem_classes="log-output"
538
- )
539
-
540
- def update_speaker_visibility(num_speakers):
541
- return [gr.update(visible=(i < num_speakers)) for i in range(4)]
542
-
543
- num_speakers.change(
544
- fn=update_speaker_visibility,
545
- inputs=[num_speakers],
546
- outputs=speaker_selections
547
- )
548
-
549
- def update_duration_display(script_text):
550
- if not script_text or script_text.strip() == "":
551
- return ""
552
-
553
- words = script_text.split()
554
- word_count = len(words)
555
- wpm = 150
556
- estimated_minutes = word_count / wpm
557
-
558
- if estimated_minutes < 1:
559
- duration_str = f"{int(estimated_minutes * 60)} sec"
560
- else:
561
- minutes = int(estimated_minutes)
562
- seconds = int((estimated_minutes - minutes) * 60)
563
- if seconds > 0:
564
- duration_str = f"{minutes}m {seconds}s"
565
- else:
566
- duration_str = f"{minutes} min"
567
-
568
- return f"{word_count} words • ~{duration_str}"
569
-
570
- script_input.change(
571
- fn=update_duration_display,
572
- inputs=[script_input],
573
- outputs=[duration_display]
574
- )
575
-
576
- def generate_podcast_wrapper(model_choice, num_speakers, script, *speakers_and_params):
577
- try:
578
- speakers = speakers_and_params[:4]
579
- cfg_scale_val = speakers_and_params[4]
580
- audio, log = demo_instance.generate_podcast(
581
- num_speakers=int(num_speakers),
582
- script=script,
583
- speaker_1=speakers[0],
584
- speaker_2=speakers[1],
585
- speaker_3=speakers[2],
586
- speaker_4=speakers[3],
587
- cfg_scale=cfg_scale_val,
588
- model_name=model_choice
589
- )
590
- return audio, log
591
- except Exception as e:
592
- traceback.print_exc()
593
- return None, f"Error: {str(e)}"
594
-
595
- def on_generate_start():
596
- return gr.update(interactive=False), gr.update(interactive=False), gr.update(value="🔄 Initializing generation...\n⏳ This may take up to 2 minutes depending on script length...")
597
-
598
- def on_generate_complete(audio, log):
599
- return gr.update(interactive=True), gr.update(interactive=True), audio, log
600
-
601
- generate_click = generate_btn.click(
602
- fn=on_generate_start,
603
- inputs=[],
604
- outputs=[generate_btn, random_example_btn, log_output],
605
- queue=False
606
- ).then(
607
- fn=generate_podcast_wrapper,
608
- inputs=[model_dropdown, num_speakers, script_input] + speaker_selections + [cfg_scale],
609
- outputs=[complete_audio_output, log_output],
610
- queue=True
611
- ).then(
612
- fn=lambda: (gr.update(interactive=True), gr.update(interactive=True)),
613
- inputs=[],
614
- outputs=[generate_btn, random_example_btn],
615
- queue=False
616
- )
617
-
618
- def load_random_example(use_natural_checkbox):
619
- import random
620
- scripts_list = demo_instance.example_scripts_natural if use_natural_checkbox else demo_instance.example_scripts
621
- if scripts_list:
622
- idx = random.randint(0, len(scripts_list) - 1)
623
- num_speakers_value, script_value = scripts_list[idx]
624
-
625
- # Get gender preferences for this script
626
- genders = demo_instance.script_speaker_genders[idx] if idx < len(demo_instance.script_speaker_genders) else []
627
-
628
- # Select appropriate voices based on gender
629
- voice_selections = []
630
- for i in range(4):
631
- if i < len(genders):
632
- gender = genders[i]
633
- if gender == "male" and demo_instance.male_voices:
634
- voice = random.choice(demo_instance.male_voices)
635
- elif gender == "female" and demo_instance.female_voices:
636
- voice = random.choice(demo_instance.female_voices)
637
- else:
638
- # neutral or fallback
639
- all_voices = list(demo_instance.available_voices.keys())
640
- voice = random.choice(all_voices) if all_voices else None
641
- else:
642
- voice = None
643
- voice_selections.append(voice)
644
-
645
- return [num_speakers_value, script_value] + voice_selections
646
- return [2, "Speaker 0: Welcome to our AI conference demo!\nSpeaker 1: Thanks, excited to be here!"] + [None, None, None, None]
647
-
648
- random_example_btn.click(
649
- fn=load_random_example,
650
- inputs=[use_natural],
651
- outputs=[num_speakers, script_input] + speaker_selections,
652
- queue=False
653
- )
654
-
655
- def load_specific_example(idx, use_natural_checkbox):
656
- import random
657
- scripts_list = demo_instance.example_scripts_natural if use_natural_checkbox else demo_instance.example_scripts
658
- if idx < len(scripts_list):
659
- num_speakers_value, script_value = scripts_list[idx]
660
- # Get gender preferences for this script
661
- genders = demo_instance.script_speaker_genders[idx] if idx < len(demo_instance.script_speaker_genders) else []
662
-
663
- # Select appropriate voices based on gender
664
- voice_selections = []
665
- for i in range(4):
666
- if i < len(genders):
667
- gender = genders[i]
668
- if gender == "male" and demo_instance.male_voices:
669
- voice = random.choice(demo_instance.male_voices)
670
- elif gender == "female" and demo_instance.female_voices:
671
- voice = random.choice(demo_instance.female_voices)
672
- else:
673
- # neutral or fallback
674
- all_voices = list(demo_instance.available_voices.keys())
675
- voice = random.choice(all_voices) if all_voices else None
676
- else:
677
- voice = None
678
- voice_selections.append(voice)
679
-
680
- # Return values for all outputs
681
- return [num_speakers_value, script_value] + voice_selections
682
- return [2, ""] + [None, None, None, None]
683
-
684
- for idx, btn in enumerate(example_buttons):
685
- btn.click(
686
- fn=lambda nat, i=idx: load_specific_example(i, nat),
687
- inputs=[use_natural],
688
- outputs=[num_speakers, script_input] + speaker_selections,
689
- queue=False
690
- )
691
-
692
- with gr.Tab("Architecture"):
693
- with gr.Row():
694
- gr.Markdown('''VibeVoice is a novel framework designed for generating expressive, long-form, multi-speaker conversational audio, "
695
- "such as conferences, from text. It addresses significant challenges in traditional Text-to-Speech (TTS) systems, particularly "
696
- "in scalability, speaker consistency, and natural turn-taking. A core innovation of VibeVoice is its use of continuous "
697
- "speech tokenizers (Acoustic and Semantic) operating at an ultra-low frame rate of 7.5 Hz. These tokenizers efficiently "
698
- "preserve audio fidelity while significantly boosting computational efficiency for processing long sequences. VibeVoice "
699
- "employs a next-token diffusion framework, leveraging a Large Language Model (LLM) to understand textual context and "
700
- "dialogue flow, and a diffusion head to generate high-fidelity acoustic details. The model can synthesize speech up to "
701
- "90 minutes long with up to 4 distinct speakers, surpassing the typical 1-2 speaker limits of many prior models.''')
702
- with gr.Row():
703
- with gr.Column():
704
- gr.Markdown("## VibeVoice: A Frontier Open-Source Text-to-Speech Model")
705
-
706
- gr.Markdown("""
707
- ### Overview
708
-
709
- VibeVoice is a novel framework designed for generating expressive, long-form, multi-speaker conversational audio,
710
- such as conferences, from text. It addresses significant challenges in traditional Text-to-Speech (TTS) systems,
711
- particularly in scalability, speaker consistency, and natural turn-taking.
712
-
713
- ### Training Architecture
714
-
715
- **Transformer-based Large Language Model** integrated with specialized acoustic and semantic tokenizers and a diffusion-based decoding head.
716
-
717
- **Core Components:**
718
- - **LLM**: Qwen2.5-1.5B for this release
719
- - **Acoustic Tokenizer**: Based on a σ-VAE variant with mirror-symmetric encoder-decoder structure (~340M parameters each)
720
- - 7 stages of modified Transformer blocks
721
- - Achieves 3200x downsampling from 24kHz input
722
- - **Semantic Tokenizer**: Encoder mirrors the Acoustic Tokenizer's architecture
723
- - Trained with an ASR proxy task
724
- - **Diffusion Head**: Lightweight module (4 layers, ~123M parameters)
725
- - Conditioned on LLM hidden states
726
- - Uses DDPM process with Classifier-Free Guidance
727
-
728
- ### Training Details
729
-
730
- **Context Length**: Trained with curriculum up to 65,536 tokens
731
-
732
- **Training Stages:**
733
- 1. **Tokenizer Pre-training**: Acoustic and Semantic tokenizers trained separately
734
- 2. **VibeVoice Training**: Frozen tokenizers, only LLM and diffusion head trained
735
- - Curriculum learning: 4k → 16K → 32K → 64K tokens
736
-
737
- ### Model Variants
738
-
739
- | Model | Context Length | Generation Length | Parameters |
740
- |-------|---------------|-------------------|------------|
741
- | VibeVoice-0.5B-Streaming | - | - | Coming Soon |
742
- | **VibeVoice-1.5B** | 64K | ~90 min | 2.7B |
743
- | VibeVoice-Large | 32K | ~45 min | Redacted |
744
-
745
- ### Technical Specifications
746
- - **Frame Rate**: Ultra-low 7.5 Hz for efficiency
747
- - **Sample Rate**: 24kHz audio output
748
- - **Max Duration**: Up to 90 minutes
749
- - **Speaker Capacity**: 1-4 distinct speakers
750
- - **Languages**: English and Chinese
751
-
752
- ### Key Innovations
753
- - Continuous speech tokenizers at ultra-low frame rate
754
- - Next-token diffusion framework
755
- - Curriculum learning for long-form generation
756
- - Multi-speaker consistency without explicit modeling
757
- """)
758
-
759
- with gr.Column(scale=2):
760
- gr.HTML("""
761
- <div style="text-align: center;">
762
- <div style="margin: 20px 0;">
763
- <img src="https://huggingface.co/spaces/ACloudCenter/Conference-Generator-VibeVoice/resolve/main/public/images/diagram.jpg"
764
- style="max-width: 100%; height: auto; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);"
765
- alt="VibeVoice Architecture Diagram">
766
- </div>
767
- <div style="margin: 20px 0;">
768
- <img src="https://huggingface.co/spaces/ACloudCenter/Conference-Generator-VibeVoice/resolve/main/public/images/chart.png"
769
- style="max-width: 100%; height: auto; border-radius: 10px; box-shadow: 0 4px 6px rgba(0,0,0,0.1);"
770
- alt="VibeVoice Performance Chart">
771
- </div>
772
- </div>
773
- """)
774
-
775
- return interface
776
-
777
- def run_demo(
778
- model_paths: dict = None,
779
- device: str = "cuda",
780
- inference_steps: int = 5,
781
- share: bool = True,
782
- ):
783
- """
784
- model_paths default includes two entries. Replace paths as needed.
785
- """
786
- if model_paths is None:
787
- model_paths = {
788
- "VibeVoice-1.5B": "microsoft/VibeVoice-1.5B",
789
- "VibeVoice-7B": "vibevoice/VibeVoice-7B",
790
- }
791
-
792
- set_seed(42)
793
- demo_instance = VibeVoiceDemo(model_paths, device, inference_steps)
794
- interface = create_demo_interface(demo_instance)
795
- interface.queue().launch(
796
- share=share,
797
- server_name="0.0.0.0" if share else "127.0.0.1",
798
- show_error=True,
799
- show_api=False
800
- )
801
-
802
-
803
-
804
- if __name__ == "__main__":
805
- run_demo()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
{configs → backend_modal/configs}/qwen2.5_1.5b_64k.json RENAMED
File without changes
{configs → backend_modal/configs}/qwen2.5_7b_32k.json RENAMED
File without changes
{example → backend_modal/example}/1p_EN2CH.mp4 RENAMED
File without changes
{example → backend_modal/example}/2p_see_u_again.mp4 RENAMED
File without changes
{example → backend_modal/example}/4p_climate_45min.mp4 RENAMED
File without changes
backend_modal/modal_runner.py ADDED
@@ -0,0 +1,230 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import time
3
+ import numpy as np
4
+ import librosa
5
+ import soundfile as sf
6
+ import torch
7
+ from datetime import datetime
8
+
9
+ # Modal-specific imports
10
+ import modal
11
+
12
+ # Define the Modal Stub
13
+ image = (
14
+ modal.Image.debian_slim(python_version="3.10")
15
+ .pip_install(
16
+ "torch",
17
+ "accelerate==1.6.0",
18
+ "transformers==4.51.3",
19
+ "diffusers",
20
+ "tqdm",
21
+ "numpy",
22
+ "scipy",
23
+ "ml-collections",
24
+ "absl-py",
25
+ "soundfile",
26
+ "librosa",
27
+ "pydub",
28
+ )
29
+ .add_local_dir("./modular", remote_path="/root/modular")
30
+ .add_local_dir("./processor", remote_path="/root/processor")
31
+ .add_local_dir("./voices", remote_path="/root/voices")
32
+ .add_local_dir("./text_examples", remote_path="/root/text_examples")
33
+ .add_local_dir("./schedule", remote_path="/root/schedule")
34
+ )
35
+
36
+ app = modal.App(
37
+ name="vibevoice-generator",
38
+ image=image,
39
+ )
40
+
41
+
42
+ @app.cls(gpu="T4", scaledown_window=300, secrets=[modal.Secret.from_name("hf-secret")])
43
+ class VibeVoiceModel:
44
+ def __init__(self, model_paths: dict = None):
45
+ if model_paths is None:
46
+ self.model_paths = {
47
+ "VibeVoice-1.5B": "microsoft/VibeVoice-1.5B",
48
+ "VibeVoice-7B": "vibevoice/VibeVoice-7B",
49
+ }
50
+ else:
51
+ self.model_paths = model_paths
52
+
53
+ self.device = "cuda"
54
+ self.inference_steps = 5
55
+
56
+ @modal.enter()
57
+ def load_models(self):
58
+ """
59
+ This method is run once when the container starts.
60
+ It downloads and loads all models onto the GPU.
61
+ """
62
+ # Project-specific imports are moved here to run inside the container
63
+ from modular.modeling_vibevoice_inference import VibeVoiceForConditionalGenerationInference
64
+ from processor.vibevoice_processor import VibeVoiceProcessor
65
+
66
+ print("Entering container and loading models to GPU...")
67
+
68
+ # Set compiler flags for better performance
69
+ if torch.cuda.is_available() and hasattr(torch, '_inductor'):
70
+ if hasattr(torch._inductor, 'config'):
71
+ torch._inductor.config.conv_1x1_as_mm = True
72
+ torch._inductor.config.coordinate_descent_tuning = True
73
+ torch._inductor.config.epilogue_fusion = False
74
+ torch._inductor.config.coordinate_descent_check_all_directions = True
75
+
76
+ self.models = {}
77
+ self.processors = {}
78
+
79
+ for name, path in self.model_paths.items():
80
+ print(f" - Loading {name} from {path}")
81
+ proc = VibeVoiceProcessor.from_pretrained(path)
82
+ mdl = VibeVoiceForConditionalGenerationInference.from_pretrained(
83
+ path,
84
+ torch_dtype=torch.bfloat16,
85
+ attn_implementation="sdpa"
86
+ ).to(self.device)
87
+ mdl.eval()
88
+ print(f" {name} loaded to {self.device}")
89
+ self.processors[name] = proc
90
+ self.models[name] = mdl
91
+
92
+ self.setup_voice_presets()
93
+ print("Model loading complete.")
94
+
95
+ def setup_voice_presets(self):
96
+ self.available_voices = {}
97
+ voices_dir = "/root/voices" # Using remote path from Mount
98
+ if not os.path.exists(voices_dir):
99
+ print(f"Warning: Voices directory not found at {voices_dir}")
100
+ return
101
+ wav_files = [f for f in os.listdir(voices_dir)
102
+ if f.lower().endswith(('.wav', '.mp3', '.flac', '.ogg', '.m4a', '.aac'))]
103
+ for wav_file in wav_files:
104
+ name = os.path.splitext(wav_file)[0]
105
+ self.available_voices[name] = os.path.join(voices_dir, wav_file)
106
+ print(f"Voices loaded: {list(self.available_voices.keys())}")
107
+
108
+ def read_audio(self, audio_path: str, target_sr: int = 24000) -> np.ndarray:
109
+ try:
110
+ wav, sr = sf.read(audio_path)
111
+ if len(wav.shape) > 1:
112
+ wav = np.mean(wav, axis=1)
113
+ if sr != target_sr:
114
+ wav = librosa.resample(wav, orig_sr=sr, target_sr=target_sr)
115
+ return wav
116
+ except Exception as e:
117
+ print(f"Error reading audio {audio_path}: {e}")
118
+ return np.array([])
119
+
120
+ @modal.method()
121
+ def generate_podcast(self,
122
+ num_speakers: int,
123
+ script: str,
124
+ model_name: str,
125
+ cfg_scale: float,
126
+ speaker_1: str = None,
127
+ speaker_2: str = None,
128
+ speaker_3: str = None,
129
+ speaker_4: str = None):
130
+ """
131
+ This is the main inference function that will be called from the Gradio app.
132
+ """
133
+ try:
134
+ if model_name not in self.models:
135
+ raise ValueError(f"Unknown model: {model_name}")
136
+
137
+ model = self.models[model_name]
138
+ processor = self.processors[model_name]
139
+ model.set_ddpm_inference_steps(num_steps=self.inference_steps)
140
+
141
+ print(f"Generating with model {model_name} on {self.device}")
142
+
143
+ if not script.strip():
144
+ raise ValueError("Error: Please provide a script.")
145
+
146
+ script = script.replace("’", "'")
147
+
148
+ if not 1 <= num_speakers <= 4:
149
+ raise ValueError("Error: Number of speakers must be between 1 and 4.")
150
+
151
+ selected_speakers = [speaker_1, speaker_2, speaker_3, speaker_4][:num_speakers]
152
+ for i, speaker_name in enumerate(selected_speakers):
153
+ if not speaker_name or speaker_name not in self.available_voices:
154
+ raise ValueError(f"Error: Please select a valid speaker for Speaker {i+1}.")
155
+
156
+ log = f"Generating conference with {num_speakers} speakers\n"
157
+ log += f"Model: {model_name}\n"
158
+ log += f"Parameters: CFG Scale={cfg_scale}\n"
159
+ log += f"Speakers: {', '.join(selected_speakers)}\n"
160
+
161
+ voice_samples = []
162
+ for speaker_name in selected_speakers:
163
+ audio_path = self.available_voices[speaker_name]
164
+ audio_data = self.read_audio(audio_path)
165
+ if len(audio_data) == 0:
166
+ raise ValueError(f"Error: Failed to load audio for {speaker_name}")
167
+ voice_samples.append(audio_data)
168
+
169
+ log += f"Loaded {len(voice_samples)} voice samples\n"
170
+
171
+ lines = script.strip().split('\n')
172
+ formatted_script_lines = []
173
+ for line in lines:
174
+ line = line.strip()
175
+ if not line: continue
176
+ if line.startswith('Speaker ') and ':' in line:
177
+ formatted_script_lines.append(line)
178
+ else:
179
+ speaker_id = len(formatted_script_lines) % num_speakers
180
+ formatted_script_lines.append(f"Speaker {speaker_id}: {line}")
181
+
182
+ formatted_script = '\n'.join(formatted_script_lines)
183
+ log += f"Formatted script with {len(formatted_script_lines)} turns\n"
184
+ log += "Processing with VibeVoice...\n"
185
+
186
+ inputs = processor(
187
+ text=[formatted_script],
188
+ voice_samples=[voice_samples],
189
+ padding=True,
190
+ return_tensors="pt",
191
+ return_attention_mask=True,
192
+ ).to(self.device)
193
+
194
+ start_time = time.time()
195
+
196
+ with torch.inference_mode():
197
+ outputs = model.generate(
198
+ **inputs,
199
+ max_new_tokens=None,
200
+ cfg_scale=cfg_scale,
201
+ tokenizer=processor.tokenizer,
202
+ generation_config={'do_sample': False},
203
+ verbose=False,
204
+ )
205
+ generation_time = time.time() - start_time
206
+
207
+ if hasattr(outputs, 'speech_outputs') and outputs.speech_outputs[0] is not None:
208
+ audio_tensor = outputs.speech_outputs[0]
209
+ audio = audio_tensor.cpu().float().numpy()
210
+ else:
211
+ raise RuntimeError("Error: No audio was generated by the model.")
212
+
213
+ if audio.ndim > 1:
214
+ audio = audio.squeeze()
215
+
216
+ sample_rate = 24000
217
+ total_duration = len(audio) / sample_rate
218
+ log += f"Generation completed in {generation_time:.2f} seconds\n"
219
+ log += f"Final audio duration: {total_duration:.2f} seconds\n"
220
+
221
+ # Return the raw audio data and sample rate, Gradio will handle the rest
222
+ return (sample_rate, audio), log
223
+
224
+ except Exception as e:
225
+ import traceback
226
+ error_msg = f"An unexpected error occurred on Modal: {str(e)}\n{traceback.format_exc()}"
227
+ print(error_msg)
228
+ # Return a special value or raise an exception that the client can handle
229
+ # For Gradio, returning a log message is often best.
230
+ return None, error_msg
{modular → backend_modal/modular}/__init__.py RENAMED
File without changes
{modular → backend_modal/modular}/configuration_vibevoice.py RENAMED
File without changes
{modular → backend_modal/modular}/modeling_vibevoice.py RENAMED
File without changes
{modular → backend_modal/modular}/modeling_vibevoice_inference.py RENAMED
File without changes
{modular → backend_modal/modular}/modular_vibevoice_diffusion_head.py RENAMED
File without changes
{modular → backend_modal/modular}/modular_vibevoice_text_tokenizer.py RENAMED
File without changes
{modular → backend_modal/modular}/modular_vibevoice_tokenizer.py RENAMED
File without changes
{modular → backend_modal/modular}/streamer.py RENAMED
File without changes
packages.txt → backend_modal/packages.txt RENAMED
File without changes
{processor → backend_modal/processor}/__init__.py RENAMED
File without changes
{processor → backend_modal/processor}/vibevoice_processor.py RENAMED
File without changes
{processor → backend_modal/processor}/vibevoice_tokenizer_processor.py RENAMED
File without changes
{schedule → backend_modal/schedule}/__init__.py RENAMED
File without changes
{schedule → backend_modal/schedule}/dpm_solver.py RENAMED
File without changes
{schedule → backend_modal/schedule}/timestep_sampler.py RENAMED
File without changes
{scripts → backend_modal/scripts}/__init__.py RENAMED
File without changes
{scripts → backend_modal/scripts}/convert_nnscaler_checkpoint_to_transformers.py RENAMED
File without changes
setup_voices.sh → backend_modal/setup_voices.sh RENAMED
File without changes
{text_examples → backend_modal/text_examples}/1p_ai_tedtalk.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/1p_ai_tedtalk_natural.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/1p_politcal_speech.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/1p_politcal_speech_natural.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/2p_financeipo_meeting.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/2p_financeipo_meeting_natural.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/2p_telehealth_meeting.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/2p_telehealth_meeting_natural.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/3p_military_meeting.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/3p_military_meeting_natural.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/3p_oil_meeting.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/3p_oil_meeting_natural.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/4p_gamecreation_meeting.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/4p_gamecreation_meeting_natural.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/4p_product_meeting.txt RENAMED
File without changes
{text_examples → backend_modal/text_examples}/4p_product_meeting_natural.txt RENAMED
File without changes
{voices → backend_modal/voices}/en-Alice_woman.wav RENAMED
File without changes
{voices → backend_modal/voices}/en-Alice_woman_bgm.wav RENAMED
File without changes
{voices → backend_modal/voices}/en-Carter_man.wav RENAMED
File without changes
{voices → backend_modal/voices}/en-Frank_man.wav RENAMED
File without changes
{voices → backend_modal/voices}/en-Maya_woman.wav RENAMED
File without changes
{voices → backend_modal/voices}/en-Yasser_man.wav RENAMED
File without changes
{voices → backend_modal/voices}/in-Samuel_man.wav RENAMED
File without changes
{voices → backend_modal/voices}/zh-Anchen_man_bgm.wav RENAMED
File without changes
{voices → backend_modal/voices}/zh-Bowen_man.wav RENAMED
File without changes