Spaces:
Sleeping
Sleeping
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,324 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torchaudio
|
| 2 |
+
import gradio as gr
|
| 3 |
+
import soundfile as sf
|
| 4 |
+
import tempfile
|
| 5 |
+
import os
|
| 6 |
+
import io
|
| 7 |
+
import librosa
|
| 8 |
+
import numpy as np
|
| 9 |
+
import pandas as pd
|
| 10 |
+
from transformers import ASTFeatureExtractor, AutoModelForAudioClassification, Trainer, Wav2Vec2FeatureExtractor, HubertForSequenceClassification, pipeline
|
| 11 |
+
from datasets import Dataset, DatasetDict
|
| 12 |
+
import torch.nn.functional as F
|
| 13 |
+
import torch
|
| 14 |
+
from collections import Counter
|
| 15 |
+
from scipy.stats import kurtosis
|
| 16 |
+
from huggingface_hub import InferenceClient
|
| 17 |
+
import os
|
| 18 |
+
|
| 19 |
+
access_token_mod_1 = os.getenv('HF_Access_Personal')
|
| 20 |
+
|
| 21 |
+
# Cargar el procesador y modelo
|
| 22 |
+
processor = ASTFeatureExtractor.from_pretrained("MIT/ast-finetuned-audioset-10-10-0.4593")
|
| 23 |
+
model = AutoModelForAudioClassification.from_pretrained("Robertomarting/tmp_trainer",token=access_token_mod_1)
|
| 24 |
+
|
| 25 |
+
def is_white_noise(audio, threshold=0.75):
|
| 26 |
+
kurt = kurtosis(audio)
|
| 27 |
+
return np.abs(kurt) < 0.1 and np.mean(np.abs(audio)) < threshold
|
| 28 |
+
|
| 29 |
+
def create_audio_dataframe(audio_tuple, target_sr=16000, target_duration=1.0):
|
| 30 |
+
data = []
|
| 31 |
+
target_length = int(target_sr * target_duration)
|
| 32 |
+
|
| 33 |
+
wav_buffer = io.BytesIO()
|
| 34 |
+
sf.write(wav_buffer, audio_tuple[1], audio_tuple[0], format='wav')
|
| 35 |
+
|
| 36 |
+
wav_buffer.seek(0)
|
| 37 |
+
audio_data, sample_rate = sf.read(wav_buffer)
|
| 38 |
+
|
| 39 |
+
audio_data = audio_data.astype(np.float32)
|
| 40 |
+
|
| 41 |
+
if len(audio_data.shape) > 1:
|
| 42 |
+
audio_data = np.mean(audio_data, axis=1)
|
| 43 |
+
|
| 44 |
+
if sample_rate != target_sr:
|
| 45 |
+
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=target_sr)
|
| 46 |
+
|
| 47 |
+
audio_data, _ = librosa.effects.trim(audio_data)
|
| 48 |
+
|
| 49 |
+
if len(audio_data) > target_length:
|
| 50 |
+
for i in range(0, len(audio_data), target_length):
|
| 51 |
+
segment = audio_data[i:i + target_length]
|
| 52 |
+
if len(segment) == target_length:
|
| 53 |
+
if not is_white_noise(segment):
|
| 54 |
+
data.append({"audio": segment})
|
| 55 |
+
else:
|
| 56 |
+
if not is_white_noise(audio_data):
|
| 57 |
+
data.append({"audio": audio_data})
|
| 58 |
+
|
| 59 |
+
df = pd.DataFrame(data)
|
| 60 |
+
return df
|
| 61 |
+
|
| 62 |
+
def convert_bytes_to_float64(byte_list):
|
| 63 |
+
return [float(i) for i in byte_list]
|
| 64 |
+
|
| 65 |
+
def preprocess_function(examples):
|
| 66 |
+
audio_arrays = examples["audio"]
|
| 67 |
+
inputs = processor(
|
| 68 |
+
audio_arrays,
|
| 69 |
+
padding=True,
|
| 70 |
+
sampling_rate=processor.sampling_rate,
|
| 71 |
+
max_length=int(processor.sampling_rate * 1),
|
| 72 |
+
truncation=True,
|
| 73 |
+
)
|
| 74 |
+
return inputs
|
| 75 |
+
|
| 76 |
+
def predict_audio(audio):
|
| 77 |
+
df = create_audio_dataframe(audio)
|
| 78 |
+
df['audio'] = df['audio'].apply(convert_bytes_to_float64)
|
| 79 |
+
|
| 80 |
+
# Convertir el dataframe a Dataset
|
| 81 |
+
predict_dataset = Dataset.from_pandas(df)
|
| 82 |
+
dataset = DatasetDict({
|
| 83 |
+
'train': predict_dataset
|
| 84 |
+
})
|
| 85 |
+
|
| 86 |
+
if '__index_level_0__' in dataset['train'].column_names:
|
| 87 |
+
dataset['train'] = dataset['train'].remove_columns(['__index_level_0__'])
|
| 88 |
+
|
| 89 |
+
encoded_dataset = dataset.map(preprocess_function, remove_columns=["audio"], batched=True)
|
| 90 |
+
|
| 91 |
+
# Crear el Trainer para la predicción
|
| 92 |
+
trainer = Trainer(
|
| 93 |
+
model=model,
|
| 94 |
+
eval_dataset=encoded_dataset["train"]
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
# Realizar las predicciones
|
| 98 |
+
predictions_output = trainer.predict(encoded_dataset["train"].with_format("torch"))
|
| 99 |
+
|
| 100 |
+
# Obtener las predicciones y etiquetas verdaderas
|
| 101 |
+
predictions = predictions_output.predictions
|
| 102 |
+
labels = predictions_output.label_ids
|
| 103 |
+
|
| 104 |
+
# Convertir logits a probabilidades
|
| 105 |
+
probabilities = F.softmax(torch.tensor(predictions), dim=-1).numpy()
|
| 106 |
+
predicted_classes = probabilities.argmax(axis=1)
|
| 107 |
+
|
| 108 |
+
# Obtener la etiqueta más común
|
| 109 |
+
most_common_predicted_label = Counter(predicted_classes).most_common(1)[0][0]
|
| 110 |
+
|
| 111 |
+
# Mapear etiquetas numéricas a etiquetas de texto
|
| 112 |
+
replace_dict = {0: 'Hambre', 1: 'Problemas para respirar', 2: 'Dolor', 3: 'Cansancio/Incomodidad'}
|
| 113 |
+
most_common_predicted_label = replace_dict[most_common_predicted_label]
|
| 114 |
+
|
| 115 |
+
return most_common_predicted_label
|
| 116 |
+
|
| 117 |
+
def clear_audio_input(audio):
|
| 118 |
+
return ""
|
| 119 |
+
|
| 120 |
+
access_token = os.getenv('HF_ACCESS_TOKEN')
|
| 121 |
+
|
| 122 |
+
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407", token=access_token)
|
| 123 |
+
|
| 124 |
+
def respond(
|
| 125 |
+
message,
|
| 126 |
+
history: list[tuple[str, str]],
|
| 127 |
+
system_message,
|
| 128 |
+
max_tokens,
|
| 129 |
+
temperature,
|
| 130 |
+
top_p,
|
| 131 |
+
):
|
| 132 |
+
messages = [{"role": "system", "content": system_message}]
|
| 133 |
+
|
| 134 |
+
for val in history:
|
| 135 |
+
if val[0]:
|
| 136 |
+
messages.append({"role": "user", "content": val[0]})
|
| 137 |
+
if val[1]:
|
| 138 |
+
messages.append({"role": "assistant", "content": val[1]})
|
| 139 |
+
|
| 140 |
+
messages.append({"role": "user", "content": message})
|
| 141 |
+
|
| 142 |
+
response = ""
|
| 143 |
+
|
| 144 |
+
for message in client.chat_completion(
|
| 145 |
+
messages,
|
| 146 |
+
max_tokens=max_tokens,
|
| 147 |
+
stream=True,
|
| 148 |
+
temperature=temperature,
|
| 149 |
+
top_p=top_p,
|
| 150 |
+
):
|
| 151 |
+
token = message.choices[0].delta.content
|
| 152 |
+
response += token
|
| 153 |
+
yield response
|
| 154 |
+
|
| 155 |
+
my_theme = gr.themes.Soft(
|
| 156 |
+
primary_hue="emerald",
|
| 157 |
+
secondary_hue="green",
|
| 158 |
+
neutral_hue="slate",
|
| 159 |
+
text_size="sm",
|
| 160 |
+
spacing_size="sm",
|
| 161 |
+
font=[gr.themes.GoogleFont('Nunito'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
|
| 162 |
+
font_mono=[gr.themes.GoogleFont('Nunito'), 'ui-monospace', 'Consolas', 'monospace'],
|
| 163 |
+
).set(
|
| 164 |
+
body_background_fill='*neutral_50',
|
| 165 |
+
body_text_color='*neutral_600',
|
| 166 |
+
body_text_size='*text_sm',
|
| 167 |
+
embed_radius='*radius_md',
|
| 168 |
+
shadow_drop='*shadow_spread',
|
| 169 |
+
shadow_spread='*button_shadow_active'
|
| 170 |
+
)
|
| 171 |
+
|
| 172 |
+
# Función para mostrar la página 1
|
| 173 |
+
def mostrar_pagina_1():
|
| 174 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 175 |
+
|
| 176 |
+
# Función para mostrar la página 2
|
| 177 |
+
def mostrar_pagina_2():
|
| 178 |
+
return gr.update(visible=False), gr.update(visible=True)
|
| 179 |
+
|
| 180 |
+
# Función para regresar a la pantalla inicial
|
| 181 |
+
def redirigir_a_pantalla_inicial():
|
| 182 |
+
return gr.update(visible=True), gr.update(visible=False)
|
| 183 |
+
|
| 184 |
+
### Monitor
|
| 185 |
+
|
| 186 |
+
processor = Wav2Vec2FeatureExtractor.from_pretrained("ntu-spml/distilhubert")
|
| 187 |
+
|
| 188 |
+
monitor_model = HubertForSequenceClassification.from_pretrained("A-POR-LOS-8000/distilhubert-finetuned-cry-detector",token=access_token_mod_1)
|
| 189 |
+
|
| 190 |
+
pipeline_monitor = pipeline(model=monitor_model,feature_extractor=processor)
|
| 191 |
+
|
| 192 |
+
def predict_monitor(stream, new_chunk):
|
| 193 |
+
sr, y = new_chunk
|
| 194 |
+
y = y.astype(np.float32)
|
| 195 |
+
y /= np.max(np.abs(y))
|
| 196 |
+
|
| 197 |
+
if stream is not None:
|
| 198 |
+
stream = np.concatenate([stream, y])
|
| 199 |
+
else:
|
| 200 |
+
stream = y
|
| 201 |
+
return stream, pipeline_monitor(stream)
|
| 202 |
+
|
| 203 |
+
my_theme = gr.themes.Soft(
|
| 204 |
+
primary_hue="emerald",
|
| 205 |
+
secondary_hue="green",
|
| 206 |
+
neutral_hue="slate",
|
| 207 |
+
text_size="sm",
|
| 208 |
+
spacing_size="sm",
|
| 209 |
+
font=[gr.themes.GoogleFont('Nunito'), 'ui-sans-serif', 'system-ui', 'sans-serif'],
|
| 210 |
+
font_mono=[gr.themes.GoogleFont('Nunito'), 'ui-monospace', 'Consolas', 'monospace'],
|
| 211 |
+
).set(
|
| 212 |
+
body_background_fill='*neutral_50',
|
| 213 |
+
body_text_color='*neutral_600',
|
| 214 |
+
body_text_size='*text_sm',
|
| 215 |
+
embed_radius='*radius_md',
|
| 216 |
+
shadow_drop='*shadow_spread',
|
| 217 |
+
shadow_spread='*button_shadow_active'
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
with gr.Blocks(theme = my_theme) as demo:
|
| 221 |
+
|
| 222 |
+
with gr.Column() as pantalla_inicial:
|
| 223 |
+
gr.HTML(
|
| 224 |
+
"""
|
| 225 |
+
<style>
|
| 226 |
+
@import url('https://fonts.googleapis.com/css2?family=Lobster&display=swap');
|
| 227 |
+
@import url('https://fonts.googleapis.com/css2?family=Roboto&display=swap');
|
| 228 |
+
|
| 229 |
+
h1 {
|
| 230 |
+
font-family: 'Lobster', cursive;
|
| 231 |
+
font-size: 5em !important;
|
| 232 |
+
text-align: center;
|
| 233 |
+
margin: 0;
|
| 234 |
+
}
|
| 235 |
+
h2 {
|
| 236 |
+
font-family: 'Lobster', cursive;
|
| 237 |
+
font-size: 3em !important;
|
| 238 |
+
text-align: center;
|
| 239 |
+
margin: 0;
|
| 240 |
+
}
|
| 241 |
+
p.slogan, h4, p, h3 {
|
| 242 |
+
font-family: 'Roboto', sans-serif;
|
| 243 |
+
text-align: center;
|
| 244 |
+
}
|
| 245 |
+
</style>
|
| 246 |
+
<h1>Iremia</h1>
|
| 247 |
+
<h4 style='text-align: center; font-size: 1.5em'>El mejor aliado para el bienestar de tu bebé</h4>
|
| 248 |
+
"""
|
| 249 |
+
)
|
| 250 |
+
gr.Markdown("<h4 style='text-align: left; font-size: 1.5em;'>¿Qué es Iremia?</h4>")
|
| 251 |
+
gr.Markdown("<p style='text-align: left'>Iremia es un proyecto llevado a cabo por un grupo de estudiantes interesados en el desarrollo de modelos de inteligencia artificial, enfocados específicamente en casos de uso relevantes para ayudar a cuidar a los más pequeños de la casa.</p>")
|
| 252 |
+
gr.Markdown("<h4 style='text-align: left; font-size: 1.5em;'>Nuestra misión</h4>")
|
| 253 |
+
gr.Markdown("<p style='text-align: left'>Sabemos que la paternidad puede suponer un gran desafío. Nuestra misión es brindarles a todos los padres unas herramientas de última tecnología que los ayuden a navegar esos primeros meses de vida tan cruciales en el desarrollo de sus pequeños.</p>")
|
| 254 |
+
gr.Markdown("<h4 style='text-align: left; font-size: 1.5em;'>¿Qué ofrece Iremia?</h4>")
|
| 255 |
+
gr.Markdown("<p style='text-align: left'>Iremia ofrece dos funcionalidades muy interesantes:</p>")
|
| 256 |
+
gr.Markdown("<p style='text-align: left'>Predictor: Con nuestro modelo de inteligencia artificial, somos capaces de predecir por qué tu hijo de menos de 2 años está llorando. Además, tendrás acceso a un asistente personal para consultar cualquier duda que tengas sobre el cuidado de tu pequeño.</p>")
|
| 257 |
+
gr.Markdown("<p style='text-align: left'>Monitor: Nuestro monitor no es como otros que hay en el mercado, ya que es capaz de reconocer si un sonido es un llanto del bebé o no, y si está llorando, predice automáticamente la causa, lo cual te brindará la tranquilidad de saber siempre qué pasa con tu pequeño y te ahorrará tiempo y muchas horas de sueño.</p>")
|
| 258 |
+
|
| 259 |
+
with gr.Row():
|
| 260 |
+
with gr.Column():
|
| 261 |
+
gr.Markdown("<h2>Predictor</h2>")
|
| 262 |
+
boton_pagina_1 = gr.Button("Prueba el predictor")
|
| 263 |
+
gr.Markdown("<p>Descubre por qué llora tu bebé y resuelve dudas sobre su cuidado con nuestro Iremia assistant</p>")
|
| 264 |
+
with gr.Column():
|
| 265 |
+
gr.Markdown("<h2>Monitor</h2>")
|
| 266 |
+
boton_pagina_2 = gr.Button("Prueba el monitor")
|
| 267 |
+
gr.Markdown("<p>Un monitor inteligente que detecta si tu hijo está llorando y te indica el motivo antes de que puedas levantarte del sofá</p>")
|
| 268 |
+
|
| 269 |
+
with gr.Column(visible=False) as pagina_1:
|
| 270 |
+
with gr.Row():
|
| 271 |
+
with gr.Column():
|
| 272 |
+
gr.Markdown("<h2>Predictor</h2>")
|
| 273 |
+
audio_input = gr.Audio(type="numpy", label="Baby recorder")
|
| 274 |
+
classify_btn = gr.Button("¿Por qué llora?")
|
| 275 |
+
classification_output = gr.Textbox(label="Tu bebé llora por:")
|
| 276 |
+
|
| 277 |
+
classify_btn.click(predict_audio, inputs=audio_input, outputs=classification_output)
|
| 278 |
+
audio_input.change(fn=clear_audio_input, inputs=audio_input, outputs=classification_output)
|
| 279 |
+
|
| 280 |
+
|
| 281 |
+
with gr.Column():
|
| 282 |
+
gr.Markdown("<h2>Assistant</h2>")
|
| 283 |
+
system_message = "You are a Chatbot specialized in baby health and care."
|
| 284 |
+
max_tokens = 512
|
| 285 |
+
temperature = 0.7
|
| 286 |
+
top_p = 0.95
|
| 287 |
+
|
| 288 |
+
chatbot = gr.ChatInterface(
|
| 289 |
+
respond,
|
| 290 |
+
additional_inputs=[
|
| 291 |
+
gr.State(value=system_message),
|
| 292 |
+
gr.State(value=max_tokens),
|
| 293 |
+
gr.State(value=temperature),
|
| 294 |
+
gr.State(value=top_p)
|
| 295 |
+
],
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
gr.Markdown("Este chatbot no sustituye a un profesional de la salud. Ante cualquier preocupación o duda, consulta con tu pediatra.")
|
| 299 |
+
|
| 300 |
+
boton_volver_inicio_1 = gr.Button("Volver a la pantalla inicial")
|
| 301 |
+
boton_volver_inicio_1.click(redirigir_a_pantalla_inicial, inputs=None, outputs=[pantalla_inicial, pagina_1])
|
| 302 |
+
|
| 303 |
+
with gr.Column(visible=False) as pagina_2:
|
| 304 |
+
gr.Markdown("<h2>Monitor</h2>")
|
| 305 |
+
gr.Markdown("# Detección en tiempo real del llanto del bebé con Pipeline")
|
| 306 |
+
|
| 307 |
+
# Componente de audio en streaming
|
| 308 |
+
audio_input = gr.Audio(source="microphone", streaming=True, format="wav", label="Habla cerca del micrófono")
|
| 309 |
+
|
| 310 |
+
# Salida del texto donde se muestra la predicción
|
| 311 |
+
output_text = gr.Textbox(label="Resultado de la predicción")
|
| 312 |
+
|
| 313 |
+
# Vincular la predicción en streaming con el audio
|
| 314 |
+
audio_input.stream(fn=lambda audio: predict_monitor(audio, audio_classifier),
|
| 315 |
+
inputs=audio_input,
|
| 316 |
+
outputs=output_text)
|
| 317 |
+
|
| 318 |
+
boton_volver_inicio_2 = gr.Button("Volver a la pantalla inicial")
|
| 319 |
+
boton_volver_inicio_2.click(redirigir_a_pantalla_inicial, inputs=None, outputs=[pantalla_inicial, pagina_2])
|
| 320 |
+
|
| 321 |
+
boton_pagina_1.click(mostrar_pagina_1, inputs=None, outputs=[pantalla_inicial, pagina_1])
|
| 322 |
+
boton_pagina_2.click(mostrar_pagina_2, inputs=None, outputs=[pantalla_inicial, pagina_2])
|
| 323 |
+
|
| 324 |
+
demo.launch()
|