Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -106,6 +106,36 @@ def clear_audio_input(audio):
|
|
| 106 |
Monitor
|
| 107 |
'''
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
#Sacamos extractor de caracter铆sticas:
|
| 110 |
FEATURE_EXTRACTOR = Wav2Vec2FeatureExtractor.from_pretrained("ntu-spml/distilhubert")
|
| 111 |
#Y nuestro modelo:
|
|
@@ -130,41 +160,33 @@ def preprocess_audio_monitor(audio_segments):
|
|
| 130 |
|
| 131 |
#Funci贸n de predicci贸n en streaming:
|
| 132 |
def predict_audio_stream(audio_data, sample_rate):
|
| 133 |
-
|
| 134 |
-
audio_segments = process_audio(audio_data)
|
| 135 |
-
inputs = preprocess_audio_monitor(audio_segments)
|
| 136 |
|
|
|
|
|
|
|
| 137 |
with torch.no_grad():
|
| 138 |
outputs = model_monitor(**inputs)
|
| 139 |
-
|
| 140 |
logits = outputs.logits
|
| 141 |
probabilities = torch.nn.functional.softmax(logits, dim=-1).numpy()
|
| 142 |
crying_probabilities = probabilities[:, 1]
|
| 143 |
avg_crying_probability = crying_probabilities.mean()
|
| 144 |
-
|
| 145 |
-
if avg_crying_probability < 0.15:
|
| 146 |
-
return "Est谩 llorando", avg_crying_probability
|
| 147 |
-
else:
|
| 148 |
-
return "No est谩 llorando", avg_crying_probability
|
| 149 |
-
|
| 150 |
-
#Funci贸n que realiza la predicci贸n
|
| 151 |
-
def continuous_prediction_with_status(audio, sample_rate=16000,duration=3):
|
| 152 |
-
audio_segments = []
|
| 153 |
-
start_time = time.time()
|
| 154 |
-
|
| 155 |
-
max_samples = sample_rate * duration
|
| 156 |
-
audio_data = audio[:max_samples]
|
| 157 |
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 165 |
|
| 166 |
-
|
| 167 |
-
|
|
|
|
| 168 |
|
| 169 |
#Funci贸n que se encarga de indicarle al usuario si se ha pasado el umbral:
|
| 170 |
def update_status_to_predicting(audio, visual_threshold):
|
|
@@ -177,7 +199,29 @@ def update_status_to_predicting(audio, visual_threshold):
|
|
| 177 |
return f"Esperando... Decibelios: {db_level}"
|
| 178 |
else:
|
| 179 |
return f"Prediciendo... Decibelios: {db_level}"
|
|
|
|
| 180 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 181 |
'''
|
| 182 |
Asistente
|
| 183 |
'''
|
|
@@ -345,7 +389,7 @@ with gr.Blocks(theme = my_theme) as demo:
|
|
| 345 |
|
| 346 |
audio_stream = gr.Audio(sources=["microphone"], streaming=True)
|
| 347 |
|
| 348 |
-
threshold_db = gr.Slider(minimum=0, maximum=200, step=1, value=
|
| 349 |
|
| 350 |
status_label = gr.Textbox(value="Esperando...", label="Estado")
|
| 351 |
prediction_label = gr.Textbox(label="Predicci贸n")
|
|
@@ -359,7 +403,7 @@ with gr.Blocks(theme = my_theme) as demo:
|
|
| 359 |
# Captura el audio y realiza la predicci贸n si se supera el umbral
|
| 360 |
audio_stream.stream(
|
| 361 |
fn=capture_and_predict,
|
| 362 |
-
inputs=audio_stream,
|
| 363 |
outputs=prediction_label
|
| 364 |
)
|
| 365 |
|
|
|
|
| 106 |
Monitor
|
| 107 |
'''
|
| 108 |
|
| 109 |
+
def process_audio_monitor(audio_tuple, target_sr=16000, target_duration=1.0):
|
| 110 |
+
data = []
|
| 111 |
+
target_length = int(target_sr * target_duration)
|
| 112 |
+
|
| 113 |
+
wav_buffer = io.BytesIO()
|
| 114 |
+
sf.write(wav_buffer, audio_tuple[1], audio_tuple[0], format='wav')
|
| 115 |
+
|
| 116 |
+
wav_buffer.seek(0)
|
| 117 |
+
audio_data, sample_rate = sf.read(wav_buffer)
|
| 118 |
+
|
| 119 |
+
audio_data = audio_data.astype(np.float32)
|
| 120 |
+
|
| 121 |
+
if len(audio_data.shape) > 1:
|
| 122 |
+
audio_data = np.mean(audio_data, axis=1)
|
| 123 |
+
|
| 124 |
+
if sample_rate != target_sr:
|
| 125 |
+
audio_data = librosa.resample(audio_data, orig_sr=sample_rate, target_sr=target_sr)
|
| 126 |
+
|
| 127 |
+
audio_data, _ = librosa.effects.trim(audio_data)
|
| 128 |
+
|
| 129 |
+
if len(audio_data) > target_length:
|
| 130 |
+
for i in range(0, len(audio_data), target_length):
|
| 131 |
+
segment = audio_data[i:i + target_length]
|
| 132 |
+
if len(segment) == target_length:
|
| 133 |
+
data.append(segment)
|
| 134 |
+
else:
|
| 135 |
+
data.append(audio_data)
|
| 136 |
+
|
| 137 |
+
return data
|
| 138 |
+
|
| 139 |
#Sacamos extractor de caracter铆sticas:
|
| 140 |
FEATURE_EXTRACTOR = Wav2Vec2FeatureExtractor.from_pretrained("ntu-spml/distilhubert")
|
| 141 |
#Y nuestro modelo:
|
|
|
|
| 160 |
|
| 161 |
#Funci贸n de predicci贸n en streaming:
|
| 162 |
def predict_audio_stream(audio_data, sample_rate):
|
| 163 |
+
audio_segments = process_audio_monitor(audio_data)
|
|
|
|
|
|
|
| 164 |
|
| 165 |
+
inputs = preprocess_audio_monitor(audio_segments)
|
| 166 |
+
|
| 167 |
with torch.no_grad():
|
| 168 |
outputs = model_monitor(**inputs)
|
| 169 |
+
|
| 170 |
logits = outputs.logits
|
| 171 |
probabilities = torch.nn.functional.softmax(logits, dim=-1).numpy()
|
| 172 |
crying_probabilities = probabilities[:, 1]
|
| 173 |
avg_crying_probability = crying_probabilities.mean()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
+
if avg_crying_probability < 0.25:
|
| 176 |
+
|
| 177 |
+
inputs = preprocess_audio(audio_segments)
|
| 178 |
+
with torch.no_grad():
|
| 179 |
+
outputs = model(**inputs)
|
| 180 |
+
logits = outputs.logits
|
| 181 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1).numpy()
|
| 182 |
+
predicted_classes = probabilities.argmax(axis=1)
|
| 183 |
+
most_common_predicted_label = Counter(predicted_classes).most_common(1)[0][0]
|
| 184 |
+
replace_dict = {0: 'Hambre', 1: 'Problemas para respirar', 2: 'Dolor', 3: 'Cansancio/Incomodidad'}
|
| 185 |
+
most_common_predicted_label = replace_dict[most_common_predicted_label]
|
| 186 |
|
| 187 |
+
return "Est谩 llorando", 1-avg_crying_probability, most_common_predicted_label
|
| 188 |
+
else:
|
| 189 |
+
return "No est谩 llorando", 1-avg_crying_probability, ""
|
| 190 |
|
| 191 |
#Funci贸n que se encarga de indicarle al usuario si se ha pasado el umbral:
|
| 192 |
def update_status_to_predicting(audio, visual_threshold):
|
|
|
|
| 199 |
return f"Esperando... Decibelios: {db_level}"
|
| 200 |
else:
|
| 201 |
return f"Prediciendo... Decibelios: {db_level}"
|
| 202 |
+
time.sleep(5)
|
| 203 |
|
| 204 |
+
#Funci贸n que realiza la predicci贸n
|
| 205 |
+
def capture_and_predict(audio,visual_threshold, sample_rate=16000, duration=5):
|
| 206 |
+
|
| 207 |
+
sample_rate, audio_data = audio
|
| 208 |
+
audio_data = np.array(audio_data, dtype=np.float32)
|
| 209 |
+
db_level = compute_db(audio_data)
|
| 210 |
+
|
| 211 |
+
if db_level > visual_threshold:
|
| 212 |
+
max_samples = sample_rate * duration
|
| 213 |
+
audio_data = audio[:max_samples]
|
| 214 |
+
if len(audio_data) != 0:
|
| 215 |
+
result, probabilidad, result_2 = predict_audio_stream(audio_data, sample_rate)
|
| 216 |
+
if result == "Est谩 llorando":
|
| 217 |
+
return f"{result}, por {result_2}"
|
| 218 |
+
time.sleep(10)
|
| 219 |
+
else:
|
| 220 |
+
return "No est谩 llorando"
|
| 221 |
+
time.sleep(5)
|
| 222 |
+
else:
|
| 223 |
+
time.sleep(1)
|
| 224 |
+
|
| 225 |
'''
|
| 226 |
Asistente
|
| 227 |
'''
|
|
|
|
| 389 |
|
| 390 |
audio_stream = gr.Audio(sources=["microphone"], streaming=True)
|
| 391 |
|
| 392 |
+
threshold_db = gr.Slider(minimum=0, maximum=200, step=1, value=50, label="Umbral de dB para activar la predicci贸n")
|
| 393 |
|
| 394 |
status_label = gr.Textbox(value="Esperando...", label="Estado")
|
| 395 |
prediction_label = gr.Textbox(label="Predicci贸n")
|
|
|
|
| 403 |
# Captura el audio y realiza la predicci贸n si se supera el umbral
|
| 404 |
audio_stream.stream(
|
| 405 |
fn=capture_and_predict,
|
| 406 |
+
inputs=[audio_stream,threshold_db],
|
| 407 |
outputs=prediction_label
|
| 408 |
)
|
| 409 |
|