Spaces:
Running
on
Zero
Running
on
Zero
| import torch | |
| from transformers import AutoModelForImageTextToText, AutoProcessor | |
| class TransformersModel: | |
| def __init__(self, model_id: str, to_device: str = "cuda"): | |
| self.model_id = model_id | |
| self.processor = AutoProcessor.from_pretrained(model_id) | |
| self.processor.image_processor.size = {"longest_edge": 3 * 384} | |
| self.model = AutoModelForImageTextToText.from_pretrained(model_id, torch_dtype=torch.bfloat16).to(to_device) | |
| def generate(self, messages: list[dict], **kwargs): | |
| inputs = self.processor.apply_chat_template( | |
| messages, | |
| add_generation_prompt=True, | |
| tokenize=True, | |
| return_dict=True, | |
| return_tensors="pt", | |
| ).to(self.model.device, dtype=torch.bfloat16) | |
| generated_ids = self.model.generate(**inputs, **kwargs) | |
| return self.processor.batch_decode( | |
| generated_ids[:, len(inputs["input_ids"][0]) :], skip_special_tokens=True | |
| )[0] | |