Spaces:
Running
Running
| import torch | |
| from torch.nn import functional as F | |
| import numpy as np | |
| from scipy.spatial.distance import cdist, euclidean | |
| def geometric_median(X, eps=1e-5): | |
| y = np.mean(X, 0) | |
| while True: | |
| D = cdist(X, [y]) | |
| nonzeros = (D != 0)[:, 0] | |
| Dinv = 1 / D[nonzeros] | |
| Dinvs = np.sum(Dinv) | |
| W = Dinv / Dinvs | |
| T = np.sum(W * X[nonzeros], 0) | |
| num_zeros = len(X) - np.sum(nonzeros) | |
| if num_zeros == 0: | |
| y1 = T | |
| elif num_zeros == len(X): | |
| return y | |
| else: | |
| R = (T - y) * Dinvs | |
| r = np.linalg.norm(R) | |
| rinv = 0 if r == 0 else num_zeros/r | |
| y1 = max(0, 1-rinv)*T + min(1, rinv)*y | |
| if euclidean(y, y1) < eps: | |
| return y1 | |
| y = y1 | |
| # Transformation code fomr pytorch3d https://pytorch3d.readthedocs.io/en/latest/_modules/pytorch3d/transforms/rotation_conversions.html#matrix_to_quaternion | |
| def rotation_6d_to_matrix(d6: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Converts 6D rotation representation by Zhou et al. [1] to rotation matrix | |
| using Gram--Schmidt orthogonalization per Section B of [1]. | |
| Args: | |
| d6: 6D rotation representation, of size (*, 6) | |
| Returns: | |
| batch of rotation matrices of size (*, 3, 3) | |
| [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. | |
| On the Continuity of Rotation Representations in Neural Networks. | |
| IEEE Conference on Computer Vision and Pattern Recognition, 2019. | |
| Retrieved from http://arxiv.org/abs/1812.07035 | |
| """ | |
| a1, a2 = d6[..., :3], d6[..., 3:] | |
| b1 = F.normalize(a1, dim=-1) | |
| b2 = a2 - (b1 * a2).sum(-1, keepdim=True) * b1 | |
| b2 = F.normalize(b2, dim=-1) | |
| b3 = torch.cross(b1, b2, dim=-1) | |
| return torch.stack((b1, b2, b3), dim=-2) | |
| def matrix_to_rotation_6d(matrix: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Converts rotation matrices to 6D rotation representation by Zhou et al. [1] | |
| by dropping the last row. Note that 6D representation is not unique. | |
| Args: | |
| matrix: batch of rotation matrices of size (*, 3, 3) | |
| Returns: | |
| 6D rotation representation, of size (*, 6) | |
| [1] Zhou, Y., Barnes, C., Lu, J., Yang, J., & Li, H. | |
| On the Continuity of Rotation Representations in Neural Networks. | |
| IEEE Conference on Computer Vision and Pattern Recognition, 2019. | |
| Retrieved from http://arxiv.org/abs/1812.07035 | |
| """ | |
| batch_dim = matrix.size()[:-2] | |
| return matrix[..., :2, :].clone().reshape(batch_dim + (6,)) | |
| def _sqrt_positive_part(x: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Returns torch.sqrt(torch.max(0, x)) | |
| but with a zero subgradient where x is 0. | |
| """ | |
| ret = torch.zeros_like(x) | |
| positive_mask = x > 0 | |
| ret[positive_mask] = torch.sqrt(x[positive_mask]) | |
| return ret | |
| def matrix_to_quaternion(matrix: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Convert rotations given as rotation matrices to quaternions. | |
| Args: | |
| matrix: Rotation matrices as tensor of shape (..., 3, 3). | |
| Returns: | |
| quaternions with real part first, as tensor of shape (..., 4). | |
| """ | |
| if matrix.size(-1) != 3 or matrix.size(-2) != 3: | |
| raise ValueError(f"Invalid rotation matrix shape {matrix.shape}.") | |
| batch_dim = matrix.shape[:-2] | |
| m00, m01, m02, m10, m11, m12, m20, m21, m22 = torch.unbind( | |
| matrix.reshape(batch_dim + (9,)), dim=-1 | |
| ) | |
| q_abs = _sqrt_positive_part( | |
| torch.stack( | |
| [ | |
| 1.0 + m00 + m11 + m22, | |
| 1.0 + m00 - m11 - m22, | |
| 1.0 - m00 + m11 - m22, | |
| 1.0 - m00 - m11 + m22, | |
| ], | |
| dim=-1, | |
| ) | |
| ) | |
| # we produce the desired quaternion multiplied by each of r, i, j, k | |
| quat_by_rijk = torch.stack( | |
| [ | |
| torch.stack([q_abs[..., 0] ** 2, m21 - m12, m02 - m20, m10 - m01], dim=-1), | |
| torch.stack([m21 - m12, q_abs[..., 1] ** 2, m10 + m01, m02 + m20], dim=-1), | |
| torch.stack([m02 - m20, m10 + m01, q_abs[..., 2] ** 2, m12 + m21], dim=-1), | |
| torch.stack([m10 - m01, m20 + m02, m21 + m12, q_abs[..., 3] ** 2], dim=-1), | |
| ], | |
| dim=-2, | |
| ) | |
| # We floor here at 0.1 but the exact level is not important; if q_abs is small, | |
| # the candidate won't be picked. | |
| flr = torch.tensor(0.1).to(dtype=q_abs.dtype, device=q_abs.device) | |
| quat_candidates = quat_by_rijk / (2.0 * q_abs[..., None].max(flr)) | |
| # if not for numerical problems, quat_candidates[i] should be same (up to a sign), | |
| # forall i; we pick the best-conditioned one (with the largest denominator) | |
| return quat_candidates[ | |
| F.one_hot(q_abs.argmax(dim=-1), num_classes=4) > 0.5, : # pyre-ignore[16] | |
| ].reshape(batch_dim + (4,)) | |
| def quaternion_to_matrix(quaternions: torch.Tensor) -> torch.Tensor: | |
| """ | |
| Convert rotations given as quaternions to rotation matrices. | |
| Args: | |
| quaternions: quaternions with real part first, | |
| as tensor of shape (..., 4). | |
| Returns: | |
| Rotation matrices as tensor of shape (..., 3, 3). | |
| """ | |
| r, i, j, k = torch.unbind(quaternions, -1) | |
| two_s = 2.0 / (quaternions * quaternions).sum(-1) | |
| o = torch.stack( | |
| ( | |
| 1 - two_s * (j * j + k * k), | |
| two_s * (i * j - k * r), | |
| two_s * (i * k + j * r), | |
| two_s * (i * j + k * r), | |
| 1 - two_s * (i * i + k * k), | |
| two_s * (j * k - i * r), | |
| two_s * (i * k - j * r), | |
| two_s * (j * k + i * r), | |
| 1 - two_s * (i * i + j * j), | |
| ), | |
| -1, | |
| ) | |
| return o.reshape(quaternions.shape[:-1] + (3, 3)) |