Spaces:
Running
Running
| # ------------------------------------------------------------------------------------------------ | |
| # Deformable DETR | |
| # Copyright (c) 2020 SenseTime. All Rights Reserved. | |
| # Licensed under the Apache License, Version 2.0 [see LICENSE for details] | |
| # ------------------------------------------------------------------------------------------------ | |
| # Modified from https://github.com/chengdazhi/Deformable-Convolution-V2-PyTorch/tree/pytorch_1.0.0 | |
| # ------------------------------------------------------------------------------------------------ | |
| # Copyright (c) Facebook, Inc. and its affiliates. | |
| # Modified by Bowen Cheng from https://github.com/fundamentalvision/Deformable-DETR | |
| from __future__ import absolute_import | |
| from __future__ import print_function | |
| from __future__ import division | |
| import time | |
| import torch | |
| import torch.nn as nn | |
| from torch.autograd import gradcheck | |
| from functions.ms_deform_attn_func import MSDeformAttnFunction, ms_deform_attn_core_pytorch | |
| N, M, D = 1, 2, 2 | |
| Lq, L, P = 2, 2, 2 | |
| shapes = torch.as_tensor([(6, 4), (3, 2)], dtype=torch.long).cuda() | |
| level_start_index = torch.cat((shapes.new_zeros((1, )), shapes.prod(1).cumsum(0)[:-1])) | |
| S = sum([(H*W).item() for H, W in shapes]) | |
| torch.manual_seed(3) | |
| def check_forward_equal_with_pytorch_double(): | |
| value = torch.rand(N, S, M, D).cuda() * 0.01 | |
| sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() | |
| attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 | |
| attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) | |
| im2col_step = 2 | |
| output_pytorch = ms_deform_attn_core_pytorch(value.double(), shapes, sampling_locations.double(), attention_weights.double()).detach().cpu() | |
| output_cuda = MSDeformAttnFunction.apply(value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step).detach().cpu() | |
| fwdok = torch.allclose(output_cuda, output_pytorch) | |
| max_abs_err = (output_cuda - output_pytorch).abs().max() | |
| max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() | |
| print(f'* {fwdok} check_forward_equal_with_pytorch_double: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') | |
| def check_forward_equal_with_pytorch_float(): | |
| value = torch.rand(N, S, M, D).cuda() * 0.01 | |
| sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() | |
| attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 | |
| attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) | |
| im2col_step = 2 | |
| output_pytorch = ms_deform_attn_core_pytorch(value, shapes, sampling_locations, attention_weights).detach().cpu() | |
| output_cuda = MSDeformAttnFunction.apply(value, shapes, level_start_index, sampling_locations, attention_weights, im2col_step).detach().cpu() | |
| fwdok = torch.allclose(output_cuda, output_pytorch, rtol=1e-2, atol=1e-3) | |
| max_abs_err = (output_cuda - output_pytorch).abs().max() | |
| max_rel_err = ((output_cuda - output_pytorch).abs() / output_pytorch.abs()).max() | |
| print(f'* {fwdok} check_forward_equal_with_pytorch_float: max_abs_err {max_abs_err:.2e} max_rel_err {max_rel_err:.2e}') | |
| def check_gradient_numerical(channels=4, grad_value=True, grad_sampling_loc=True, grad_attn_weight=True): | |
| value = torch.rand(N, S, M, channels).cuda() * 0.01 | |
| sampling_locations = torch.rand(N, Lq, M, L, P, 2).cuda() | |
| attention_weights = torch.rand(N, Lq, M, L, P).cuda() + 1e-5 | |
| attention_weights /= attention_weights.sum(-1, keepdim=True).sum(-2, keepdim=True) | |
| im2col_step = 2 | |
| func = MSDeformAttnFunction.apply | |
| value.requires_grad = grad_value | |
| sampling_locations.requires_grad = grad_sampling_loc | |
| attention_weights.requires_grad = grad_attn_weight | |
| gradok = gradcheck(func, (value.double(), shapes, level_start_index, sampling_locations.double(), attention_weights.double(), im2col_step)) | |
| print(f'* {gradok} check_gradient_numerical(D={channels})') | |
| if __name__ == '__main__': | |
| check_forward_equal_with_pytorch_double() | |
| check_forward_equal_with_pytorch_float() | |
| for channels in [30, 32, 64, 71, 1025, 2048, 3096]: | |
| check_gradient_numerical(channels, True, True, True) | |