Spaces:
				
			
			
	
			
			
					
		Running
		
	
	
	
			
			
	
	
	
	
		
		
					
		Running
		
	Commit 
							
							ยท
						
						d75a844
	
1
								Parent(s):
							
							ccbca0a
								
update leaderboard
Browse files- app.py +12 -12
- arena_elo/elo_rating/clean_battle_data.py +92 -95
- arena_elo/elo_rating/elo_analysis.py +37 -19
- arena_elo/elo_rating/generate_leaderboard.py +52 -32
- arena_elo/results/latest/elo_results_image2shape.pkl +3 -0
- arena_elo/results/latest/elo_results_text2shape.pkl +3 -0
- arena_elo/results/latest/image2shape_leaderboard.csv +14 -0
- arena_elo/results/latest/text2shape_leaderboard.csv +11 -0
- model/model_registry.py +1 -1
- serve/leaderboard.py +132 -77
- serve/utils.py +1 -0
    	
        app.py
    CHANGED
    
    | @@ -26,7 +26,7 @@ def build_combine_demo(models, elo_results_file, leaderboard_table_file): | |
| 26 | 
             
                                    build_t2s_ui_single_model(models)
         | 
| 27 | 
             
                                if elo_results_file:
         | 
| 28 | 
             
                                    with gr.Tab("Text-to-3D Leaderboard", id=3):
         | 
| 29 | 
            -
                                        build_leaderboard_tab(elo_results_file[' | 
| 30 | 
             
                                else:
         | 
| 31 | 
             
                                    with gr.Tab("Text-to-3D Leaderboard", id=3):
         | 
| 32 | 
             
                                        build_empty_leaderboard_tab()
         | 
| @@ -43,7 +43,7 @@ def build_combine_demo(models, elo_results_file, leaderboard_table_file): | |
| 43 | 
             
                                    build_i2s_ui_single_model(models)
         | 
| 44 | 
             
                                if elo_results_file:
         | 
| 45 | 
             
                                    with gr.Tab("Image-to-3D Leaderboard", id=8):
         | 
| 46 | 
            -
                                        build_leaderboard_tab(elo_results_file[' | 
| 47 | 
             
                                else:
         | 
| 48 | 
             
                                    with gr.Tab("Image-to-3D Leaderboard", id=8):
         | 
| 49 | 
             
                                        build_empty_leaderboard_tab()
         | 
| @@ -62,17 +62,17 @@ def load_elo_results(elo_results_dir): | |
| 62 | 
             
                    elo_results_file = {}
         | 
| 63 | 
             
                    leaderboard_table_file = {}
         | 
| 64 | 
             
                    for file in elo_results_dir.glob('elo_results_*.pkl'):
         | 
| 65 | 
            -
                        if ' | 
| 66 | 
            -
                            elo_results_file[' | 
| 67 | 
            -
                        elif ' | 
| 68 | 
            -
                            elo_results_file[' | 
| 69 | 
             
                        else:
         | 
| 70 | 
             
                            raise ValueError(f"Unknown file name: {file.name}")
         | 
| 71 | 
             
                    for file in elo_results_dir.glob('*_leaderboard.csv'):
         | 
| 72 | 
            -
                        if ' | 
| 73 | 
            -
                            leaderboard_table_file[' | 
| 74 | 
            -
                        elif ' | 
| 75 | 
            -
                            leaderboard_table_file[' | 
| 76 | 
             
                        else:
         | 
| 77 | 
             
                            raise ValueError(f"Unknown file name: {file.name}")
         | 
| 78 |  | 
| @@ -84,7 +84,7 @@ if __name__ == "__main__": | |
| 84 | 
             
                elo_results_dir = ELO_RESULTS_DIR
         | 
| 85 | 
             
                models = ModelManager()
         | 
| 86 |  | 
| 87 | 
            -
                 | 
| 88 | 
            -
                elo_results_file, leaderboard_table_file = None, None
         | 
| 89 | 
             
                demo = build_combine_demo(models, elo_results_file, leaderboard_table_file)
         | 
| 90 | 
             
                demo.queue(max_size=20).launch(server_port=server_port, root_path=ROOT_PATH, debug=True)
         | 
|  | |
| 26 | 
             
                                    build_t2s_ui_single_model(models)
         | 
| 27 | 
             
                                if elo_results_file:
         | 
| 28 | 
             
                                    with gr.Tab("Text-to-3D Leaderboard", id=3):
         | 
| 29 | 
            +
                                        build_leaderboard_tab(elo_results_file['text2shape'], leaderboard_table_file['text2shape'])
         | 
| 30 | 
             
                                else:
         | 
| 31 | 
             
                                    with gr.Tab("Text-to-3D Leaderboard", id=3):
         | 
| 32 | 
             
                                        build_empty_leaderboard_tab()
         | 
|  | |
| 43 | 
             
                                    build_i2s_ui_single_model(models)
         | 
| 44 | 
             
                                if elo_results_file:
         | 
| 45 | 
             
                                    with gr.Tab("Image-to-3D Leaderboard", id=8):
         | 
| 46 | 
            +
                                        build_leaderboard_tab(elo_results_file['image2shape'], leaderboard_table_file['image2shape'])
         | 
| 47 | 
             
                                else:
         | 
| 48 | 
             
                                    with gr.Tab("Image-to-3D Leaderboard", id=8):
         | 
| 49 | 
             
                                        build_empty_leaderboard_tab()
         | 
|  | |
| 62 | 
             
                    elo_results_file = {}
         | 
| 63 | 
             
                    leaderboard_table_file = {}
         | 
| 64 | 
             
                    for file in elo_results_dir.glob('elo_results_*.pkl'):
         | 
| 65 | 
            +
                        if 'text2shape' in file.name:
         | 
| 66 | 
            +
                            elo_results_file['text2shape'] = file
         | 
| 67 | 
            +
                        elif 'image2shape' in file.name:
         | 
| 68 | 
            +
                            elo_results_file['image2shape'] = file
         | 
| 69 | 
             
                        else:
         | 
| 70 | 
             
                            raise ValueError(f"Unknown file name: {file.name}")
         | 
| 71 | 
             
                    for file in elo_results_dir.glob('*_leaderboard.csv'):
         | 
| 72 | 
            +
                        if 'text2shape' in file.name:
         | 
| 73 | 
            +
                            leaderboard_table_file['text2shape'] = file
         | 
| 74 | 
            +
                        elif 'image2shape' in file.name:
         | 
| 75 | 
            +
                            leaderboard_table_file['image2shape'] = file
         | 
| 76 | 
             
                        else:
         | 
| 77 | 
             
                            raise ValueError(f"Unknown file name: {file.name}")
         | 
| 78 |  | 
|  | |
| 84 | 
             
                elo_results_dir = ELO_RESULTS_DIR
         | 
| 85 | 
             
                models = ModelManager()
         | 
| 86 |  | 
| 87 | 
            +
                elo_results_file, leaderboard_table_file = load_elo_results(elo_results_dir)
         | 
| 88 | 
            +
                # elo_results_file, leaderboard_table_file = None, None
         | 
| 89 | 
             
                demo = build_combine_demo(models, elo_results_file, leaderboard_table_file)
         | 
| 90 | 
             
                demo.queue(max_size=20).launch(server_port=server_port, root_path=ROOT_PATH, debug=True)
         | 
    	
        arena_elo/elo_rating/clean_battle_data.py
    CHANGED
    
    | @@ -21,42 +21,6 @@ from .basic_stats import get_log_files, NUM_SERVERS, LOG_ROOT_DIR | |
| 21 | 
             
            from .utils import detect_language, get_time_stamp_from_date
         | 
| 22 |  | 
| 23 | 
             
            VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
         | 
| 24 | 
            -
            IDENTITY_WORDS = [
         | 
| 25 | 
            -
                "vicuna",
         | 
| 26 | 
            -
                "lmsys",
         | 
| 27 | 
            -
                "koala",
         | 
| 28 | 
            -
                "uc berkeley",
         | 
| 29 | 
            -
                "open assistant",
         | 
| 30 | 
            -
                "laion",
         | 
| 31 | 
            -
                "chatglm",
         | 
| 32 | 
            -
                "chatgpt",
         | 
| 33 | 
            -
                "gpt-4",
         | 
| 34 | 
            -
                "openai",
         | 
| 35 | 
            -
                "anthropic",
         | 
| 36 | 
            -
                "claude",
         | 
| 37 | 
            -
                "bard",
         | 
| 38 | 
            -
                "palm",
         | 
| 39 | 
            -
                "lamda",
         | 
| 40 | 
            -
                "google",
         | 
| 41 | 
            -
                "llama",
         | 
| 42 | 
            -
                "qianwan",
         | 
| 43 | 
            -
                "alibaba",
         | 
| 44 | 
            -
                "mistral",
         | 
| 45 | 
            -
                "zhipu",
         | 
| 46 | 
            -
                "KEG lab",
         | 
| 47 | 
            -
                "01.AI",
         | 
| 48 | 
            -
                "AI2",
         | 
| 49 | 
            -
                "Tรผlu",
         | 
| 50 | 
            -
                "Tulu",
         | 
| 51 | 
            -
                "NETWORK ERROR DUE TO HIGH TRAFFIC. PLEASE REGENERATE OR REFRESH THIS PAGE.",
         | 
| 52 | 
            -
                "$MODERATION$ YOUR INPUT VIOLATES OUR CONTENT MODERATION GUIDELINES.",
         | 
| 53 | 
            -
                "API REQUEST ERROR. Please increase the number of max tokens.",
         | 
| 54 | 
            -
                "**API REQUEST ERROR** Reason: The response was blocked.",
         | 
| 55 | 
            -
                "**API REQUEST ERROR**",
         | 
| 56 | 
            -
            ]
         | 
| 57 | 
            -
             | 
| 58 | 
            -
            for i in range(len(IDENTITY_WORDS)):
         | 
| 59 | 
            -
                IDENTITY_WORDS[i] = IDENTITY_WORDS[i].lower()
         | 
| 60 |  | 
| 61 |  | 
| 62 | 
             
            def remove_html(raw):
         | 
| @@ -77,22 +41,28 @@ def to_openai_format(messages): | |
| 77 |  | 
| 78 | 
             
            def replace_model_name(old_name, tstamp):
         | 
| 79 | 
             
                replace_dict = {
         | 
| 80 | 
            -
                    " | 
| 81 | 
            -
                    " | 
| 82 | 
            -
                    " | 
| 83 | 
            -
                    " | 
| 84 | 
            -
                    " | 
| 85 | 
            -
                    " | 
|  | |
|  | |
| 86 | 
             
                }
         | 
| 87 | 
            -
                if old_name in  | 
| 88 | 
            -
                    if tstamp > 1687849200:
         | 
| 89 | 
            -
                        return old_name + "-0613"
         | 
| 90 | 
            -
                    else:
         | 
| 91 | 
            -
                        return old_name + "-0314"
         | 
| 92 | 
            -
                if old_name in replace_dict:
         | 
| 93 | 
             
                    return replace_dict[old_name]
         | 
| 94 | 
             
                return old_name
         | 
| 95 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 96 |  | 
| 97 | 
             
            def read_file(filename):
         | 
| 98 | 
             
                data = []
         | 
| @@ -126,7 +96,7 @@ def load_image(image_path): | |
| 126 | 
             
                    return None
         | 
| 127 |  | 
| 128 | 
             
            def clean_battle_data(
         | 
| 129 | 
            -
                log_files, exclude_model_names, ban_ip_list=None, sanitize_ip=False, mode="simple", task_name=" | 
| 130 | 
             
            ):
         | 
| 131 | 
             
                data = read_file_parallel(log_files, num_threads=16)
         | 
| 132 |  | 
| @@ -139,6 +109,7 @@ def clean_battle_data( | |
| 139 |  | 
| 140 | 
             
                all_models = set()
         | 
| 141 | 
             
                all_ips = dict()
         | 
|  | |
| 142 | 
             
                ct_anony = 0
         | 
| 143 | 
             
                ct_invalid = 0
         | 
| 144 | 
             
                ct_leaked_identity = 0
         | 
| @@ -165,17 +136,18 @@ def clean_battle_data( | |
| 165 | 
             
                    ):
         | 
| 166 | 
             
                        ct_invalid += 1
         | 
| 167 | 
             
                        continue
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 168 |  | 
| 169 | 
            -
                    if  | 
| 170 | 
            -
                         | 
| 171 | 
            -
                         | 
| 172 | 
            -
                        ct_anony += 1
         | 
| 173 | 
             
                    else:
         | 
| 174 | 
            -
                        anony =  | 
| 175 | 
            -
                        models = models_public
         | 
| 176 | 
            -
                        if not models_public == models_hidden:
         | 
| 177 | 
            -
                            ct_invalid += 1
         | 
| 178 | 
            -
                            continue
         | 
| 179 |  | 
| 180 | 
             
                    # # Detect langauge
         | 
| 181 | 
             
                    # state = row["states"][0]
         | 
| @@ -204,26 +176,37 @@ def clean_battle_data( | |
| 204 | 
             
                    #     continue
         | 
| 205 |  | 
| 206 | 
             
                    # Replace bard with palm
         | 
| 207 | 
            -
                    if task_name == "image_editing":
         | 
| 208 | 
            -
             | 
| 209 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 210 | 
             
                            ct_invalid += 1
         | 
| 211 | 
             
                            continue
         | 
| 212 | 
            -
             | 
| 213 | 
            -
             | 
| 214 | 
            -
                        if not all("playground" in x.lower() or (x.startswith("imagenhub_") and x.endswith("_generation")) for x in models):
         | 
| 215 | 
            -
                            # print(f"Invalid model names: {models}")
         | 
| 216 | 
             
                            ct_invalid += 1
         | 
| 217 | 
             
                            continue
         | 
| 218 | 
            -
                        # models = [x[len("imagenhub_"):-len("_generation")] for x in models]
         | 
| 219 | 
            -
                        for i, model_name in enumerate(models):
         | 
| 220 | 
            -
                            if model_name.startswith("imagenhub_"):
         | 
| 221 | 
            -
                                models[i] = model_name[len("imagenhub_"):-len("_generation")]
         | 
| 222 | 
            -
             | 
| 223 | 
             
                    else:
         | 
| 224 | 
             
                        raise ValueError(f"Invalid task_name: {task_name}")
         | 
| 225 | 
            -
                    models = [replace_model_name(m, row["tstamp"]) for m in models]
         | 
| 226 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 227 | 
             
                    # Exclude certain models
         | 
| 228 | 
             
                    if exclude_model_names and any(x in exclude_model_names for x in models):
         | 
| 229 | 
             
                        ct_invalid += 1
         | 
| @@ -237,30 +220,36 @@ def clean_battle_data( | |
| 237 | 
             
                    #     print(f"Invalid vote before the valid starting date for {models[0]} and {models[1]}")
         | 
| 238 | 
             
                    #     ct_invalid += 1
         | 
| 239 | 
             
                    #     continue
         | 
| 240 | 
            -
                    
         | 
| 241 | 
            -
                    
         | 
| 242 |  | 
| 243 | 
             
                    if mode == "conv_release":
         | 
| 244 | 
            -
                         | 
| 245 | 
            -
                        date = datetime.datetime.fromtimestamp(row["tstamp"], tz=timezone("US/Pacific")).strftime("%Y-%m-%d") # 2024-02-29
         | 
| 246 | 
            -
                        image_path_format = f"{LOG_ROOT_DIR}/{date}-convinput_images/input_image_"
         | 
| 247 | 
            -
                        image_path_0 = image_path_format + str(row["states"][0]["conv_id"]) + ".png"
         | 
| 248 | 
            -
                        image_path_1 = image_path_format + str(row["states"][1]["conv_id"]) + ".png"
         | 
| 249 | 
            -
                        if not os.path.exists(image_path_0) or not os.path.exists(image_path_1):
         | 
| 250 | 
            -
                            print(f"Image not found for {image_path_0} or {image_path_1}")
         | 
| 251 | 
            -
                            ct_invalid += 1
         | 
| 252 | 
            -
                            continue
         | 
| 253 | 
            -
                        
         | 
| 254 | 
            -
                        image_0 = load_image(image_path_0)
         | 
| 255 | 
            -
                        image_1 = load_image(image_path_1)
         | 
| 256 | 
            -
                        if image_0 is None or image_1 is None:
         | 
| 257 | 
            -
                            print(f"Image not found for {image_path_0} or {image_path_1}")
         | 
| 258 | 
            -
                            ct_invalid += 1
         | 
| 259 | 
            -
                            continue
         | 
| 260 | 
            -
                        if image_0.tobytes() != image_1.tobytes():
         | 
| 261 | 
            -
                            print(f"Image not the same for {image_path_0} and {image_path_1}")
         | 
| 262 | 
             
                            ct_invalid += 1
         | 
| 263 | 
             
                            continue
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 264 |  | 
| 265 |  | 
| 266 | 
             
                    question_id = row["states"][0]["conv_id"]
         | 
| @@ -284,24 +273,30 @@ def clean_battle_data( | |
| 284 | 
             
                        ct_banned += 1
         | 
| 285 | 
             
                        continue
         | 
| 286 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 287 | 
             
                    # Save the results
         | 
| 288 | 
             
                    battles.append(
         | 
| 289 | 
             
                        dict(
         | 
| 290 | 
             
                            question_id=question_id,
         | 
|  | |
| 291 | 
             
                            model_a=models[0],
         | 
| 292 | 
             
                            model_b=models[1],
         | 
| 293 | 
             
                            winner=convert_type[row["type"]],
         | 
| 294 | 
             
                            judge=f"arena_user_{user_id}",
         | 
| 295 | 
             
                            # conversation_a=conversation_a,
         | 
| 296 | 
             
                            # conversation_b=conversation_b,
         | 
| 297 | 
            -
                             | 
| 298 | 
             
                            anony=anony,
         | 
| 299 | 
             
                            # language=lang_code,
         | 
| 300 | 
             
                            tstamp=row["tstamp"],
         | 
| 301 | 
             
                        )
         | 
| 302 | 
             
                    )
         | 
| 303 |  | 
| 304 | 
            -
                    all_models.update( | 
| 305 | 
             
                battles.sort(key=lambda x: x["tstamp"])
         | 
| 306 | 
             
                last_updated_tstamp = battles[-1]["tstamp"]
         | 
| 307 |  | 
| @@ -316,6 +311,8 @@ def clean_battle_data( | |
| 316 | 
             
                )
         | 
| 317 | 
             
                print(f"#battles: {len(battles)}, #anony: {ct_anony}")
         | 
| 318 | 
             
                print(f"#models: {len(all_models)}, {all_models}")
         | 
|  | |
|  | |
| 319 | 
             
                print(f"last-updated: {last_updated_datetime}")
         | 
| 320 |  | 
| 321 | 
             
                if ban_ip_list is not None:
         | 
| @@ -331,9 +328,9 @@ if __name__ == "__main__": | |
| 331 | 
             
                parser = argparse.ArgumentParser()
         | 
| 332 | 
             
                parser.add_argument("--max-num-files", type=int)
         | 
| 333 | 
             
                parser.add_argument(
         | 
| 334 | 
            -
                    "--mode", type=str, choices=["simple", "conv_release"], default=" | 
| 335 | 
             
                )
         | 
| 336 | 
            -
                parser.add_argument("--task_name", type=str, choices=[" | 
| 337 | 
             
                parser.add_argument("--exclude-model-names", type=str, nargs="+")
         | 
| 338 | 
             
                parser.add_argument("--ban-ip-file", type=str)
         | 
| 339 | 
             
                parser.add_argument("--sanitize-ip", action="store_true", default=False)
         | 
|  | |
| 21 | 
             
            from .utils import detect_language, get_time_stamp_from_date
         | 
| 22 |  | 
| 23 | 
             
            VOTES = ["tievote", "leftvote", "rightvote", "bothbad_vote"]
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 24 |  | 
| 25 |  | 
| 26 | 
             
            def remove_html(raw):
         | 
|  | |
| 41 |  | 
| 42 | 
             
            def replace_model_name(old_name, tstamp):
         | 
| 43 | 
             
                replace_dict = {
         | 
| 44 | 
            +
                    "point-e-t": "point-e",
         | 
| 45 | 
            +
                    "shap-e-t": "shap-e",
         | 
| 46 | 
            +
                    "point-e-i": "point-e",
         | 
| 47 | 
            +
                    "shap-e-i": "shap-e",
         | 
| 48 | 
            +
                    "point-e_t": "point-e",
         | 
| 49 | 
            +
                    "shap-e_t": "shap-e",
         | 
| 50 | 
            +
                    "point-e_i": "point-e",
         | 
| 51 | 
            +
                    "shap-e_i": "shap-e",
         | 
| 52 | 
             
                }
         | 
| 53 | 
            +
                if old_name in replace_dict.keys():
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 54 | 
             
                    return replace_dict[old_name]
         | 
| 55 | 
             
                return old_name
         | 
| 56 |  | 
| 57 | 
            +
            def replace_dim(dim_name):
         | 
| 58 | 
            +
                replace_dict = {
         | 
| 59 | 
            +
                    "Geometry Quality": "Geometry Details",
         | 
| 60 | 
            +
                }
         | 
| 61 | 
            +
                if dim_name.endswith(": "):
         | 
| 62 | 
            +
                    dim_name = dim_name[:-2]
         | 
| 63 | 
            +
                if dim_name in replace_dict.keys():
         | 
| 64 | 
            +
                    return replace_dict[dim_name]
         | 
| 65 | 
            +
                return dim_name
         | 
| 66 |  | 
| 67 | 
             
            def read_file(filename):
         | 
| 68 | 
             
                data = []
         | 
|  | |
| 96 | 
             
                    return None
         | 
| 97 |  | 
| 98 | 
             
            def clean_battle_data(
         | 
| 99 | 
            +
                log_files, exclude_model_names, ban_ip_list=None, sanitize_ip=False, mode="simple", task_name="text2shape"
         | 
| 100 | 
             
            ):
         | 
| 101 | 
             
                data = read_file_parallel(log_files, num_threads=16)
         | 
| 102 |  | 
|  | |
| 109 |  | 
| 110 | 
             
                all_models = set()
         | 
| 111 | 
             
                all_ips = dict()
         | 
| 112 | 
            +
                dim_counts = dict()
         | 
| 113 | 
             
                ct_anony = 0
         | 
| 114 | 
             
                ct_invalid = 0
         | 
| 115 | 
             
                ct_leaked_identity = 0
         | 
|  | |
| 136 | 
             
                    ):
         | 
| 137 | 
             
                        ct_invalid += 1
         | 
| 138 | 
             
                        continue
         | 
| 139 | 
            +
                    
         | 
| 140 | 
            +
                    if not models_public == models_hidden:
         | 
| 141 | 
            +
                        ct_invalid += 1
         | 
| 142 | 
            +
                        continue
         | 
| 143 | 
            +
                    else:
         | 
| 144 | 
            +
                         models = models_hidden
         | 
| 145 |  | 
| 146 | 
            +
                    if 'anony' not in row.keys():
         | 
| 147 | 
            +
                        ct_invalid += 1
         | 
| 148 | 
            +
                        continue
         | 
|  | |
| 149 | 
             
                    else:
         | 
| 150 | 
            +
                        anony = row['anony']
         | 
|  | |
|  | |
|  | |
|  | |
| 151 |  | 
| 152 | 
             
                    # # Detect langauge
         | 
| 153 | 
             
                    # state = row["states"][0]
         | 
|  | |
| 176 | 
             
                    #     continue
         | 
| 177 |  | 
| 178 | 
             
                    # Replace bard with palm
         | 
| 179 | 
            +
                    # if task_name == "image_editing":
         | 
| 180 | 
            +
                    #     if not all(x.startswith("imagenhub_") and x.endswith("_edition") for x in models):
         | 
| 181 | 
            +
                    #         # print(f"Invalid model names: {models}")
         | 
| 182 | 
            +
                    #         ct_invalid += 1
         | 
| 183 | 
            +
                    #         continue
         | 
| 184 | 
            +
                    #     models = [x[len("imagenhub_"):-len("_edition")] for x in models]
         | 
| 185 | 
            +
                    # elif task_name == "t2i_generation":
         | 
| 186 | 
            +
                    #     if not all("playground" in x.lower() or (x.startswith("imagenhub_") and x.endswith("_generation")) for x in models):
         | 
| 187 | 
            +
                    #         # print(f"Invalid model names: {models}")
         | 
| 188 | 
            +
                    #         ct_invalid += 1
         | 
| 189 | 
            +
                    #         continue
         | 
| 190 | 
            +
                    #     # models = [x[len("imagenhub_"):-len("_generation")] for x in models]
         | 
| 191 | 
            +
                    #     for i, model_name in enumerate(models):
         | 
| 192 | 
            +
                    #         if model_name.startswith("imagenhub_"):
         | 
| 193 | 
            +
                    #             models[i] = model_name[len("imagenhub_"):-len("_generation")]
         | 
| 194 | 
            +
                    if task_name == 'text2shape':
         | 
| 195 | 
            +
                        if row['states'][0]['i2s_mode'] or row['states'][1]['i2s_mode']:
         | 
| 196 | 
             
                            ct_invalid += 1
         | 
| 197 | 
             
                            continue
         | 
| 198 | 
            +
                    elif task_name == 'image2shape':
         | 
| 199 | 
            +
                        if not row['states'][0]['i2s_mode'] or not row['states'][1]['i2s_mode']:
         | 
|  | |
|  | |
| 200 | 
             
                            ct_invalid += 1
         | 
| 201 | 
             
                            continue
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 202 | 
             
                    else:
         | 
| 203 | 
             
                        raise ValueError(f"Invalid task_name: {task_name}")
         | 
|  | |
| 204 |  | 
| 205 | 
            +
                    models = [replace_model_name(m, row["tstamp"]) for m in models]
         | 
| 206 | 
            +
             | 
| 207 | 
            +
                    if anony:
         | 
| 208 | 
            +
                        ct_anony += 1
         | 
| 209 | 
            +
             | 
| 210 | 
             
                    # Exclude certain models
         | 
| 211 | 
             
                    if exclude_model_names and any(x in exclude_model_names for x in models):
         | 
| 212 | 
             
                        ct_invalid += 1
         | 
|  | |
| 220 | 
             
                    #     print(f"Invalid vote before the valid starting date for {models[0]} and {models[1]}")
         | 
| 221 | 
             
                    #     ct_invalid += 1
         | 
| 222 | 
             
                    #     continue
         | 
|  | |
|  | |
| 223 |  | 
| 224 | 
             
                    if mode == "conv_release":
         | 
| 225 | 
            +
                        if row['states'][0]['offline'] != row['states'][1]['offline']:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 226 | 
             
                            ct_invalid += 1
         | 
| 227 | 
             
                            continue
         | 
| 228 | 
            +
                        elif row['states'][0]['offline']:
         | 
| 229 | 
            +
                            if row['states'][0]['offline_idx'] != row['states'][1]['offline_idx']:
         | 
| 230 | 
            +
                                ct_invalid += 1
         | 
| 231 | 
            +
                                continue
         | 
| 232 | 
            +
                        else:
         | 
| 233 | 
            +
                            # assert the two images are the same
         | 
| 234 | 
            +
                            date = datetime.datetime.fromtimestamp(row["tstamp"], tz=timezone("US/Pacific")).strftime("%Y-%m-%d") # 2024-02-29
         | 
| 235 | 
            +
                            image_path_format = f"{LOG_ROOT_DIR}/{date}-convinput_images/input_image_"
         | 
| 236 | 
            +
                            image_path_0 = image_path_format + str(row["states"][0]["conv_id"]) + ".png"
         | 
| 237 | 
            +
                            image_path_1 = image_path_format + str(row["states"][1]["conv_id"]) + ".png"
         | 
| 238 | 
            +
                            if not os.path.exists(image_path_0) or not os.path.exists(image_path_1):
         | 
| 239 | 
            +
                                print(f"Image not found for {image_path_0} or {image_path_1}")
         | 
| 240 | 
            +
                                ct_invalid += 1
         | 
| 241 | 
            +
                                continue
         | 
| 242 | 
            +
                            
         | 
| 243 | 
            +
                            image_0 = load_image(image_path_0)
         | 
| 244 | 
            +
                            image_1 = load_image(image_path_1)
         | 
| 245 | 
            +
                            if image_0 is None or image_1 is None:
         | 
| 246 | 
            +
                                print(f"Image not found for {image_path_0} or {image_path_1}")
         | 
| 247 | 
            +
                                ct_invalid += 1
         | 
| 248 | 
            +
                                continue
         | 
| 249 | 
            +
                            if image_0.tobytes() != image_1.tobytes():
         | 
| 250 | 
            +
                                print(f"Image not the same for {image_path_0} and {image_path_1}")
         | 
| 251 | 
            +
                                ct_invalid += 1
         | 
| 252 | 
            +
                                continue
         | 
| 253 |  | 
| 254 |  | 
| 255 | 
             
                    question_id = row["states"][0]["conv_id"]
         | 
|  | |
| 273 | 
             
                        ct_banned += 1
         | 
| 274 | 
             
                        continue
         | 
| 275 |  | 
| 276 | 
            +
                    dim = replace_dim(row['dim'])
         | 
| 277 | 
            +
                    if dim not in dim_counts.keys():
         | 
| 278 | 
            +
                        dim_counts[dim] = 0
         | 
| 279 | 
            +
                    dim_counts[dim] += 1
         | 
| 280 | 
            +
             | 
| 281 | 
             
                    # Save the results
         | 
| 282 | 
             
                    battles.append(
         | 
| 283 | 
             
                        dict(
         | 
| 284 | 
             
                            question_id=question_id,
         | 
| 285 | 
            +
                            dim=dim,
         | 
| 286 | 
             
                            model_a=models[0],
         | 
| 287 | 
             
                            model_b=models[1],
         | 
| 288 | 
             
                            winner=convert_type[row["type"]],
         | 
| 289 | 
             
                            judge=f"arena_user_{user_id}",
         | 
| 290 | 
             
                            # conversation_a=conversation_a,
         | 
| 291 | 
             
                            # conversation_b=conversation_b,
         | 
| 292 | 
            +
                            idx=row['states'][0]['offline_idx'],
         | 
| 293 | 
             
                            anony=anony,
         | 
| 294 | 
             
                            # language=lang_code,
         | 
| 295 | 
             
                            tstamp=row["tstamp"],
         | 
| 296 | 
             
                        )
         | 
| 297 | 
             
                    )
         | 
| 298 |  | 
| 299 | 
            +
                    all_models.update(models)
         | 
| 300 | 
             
                battles.sort(key=lambda x: x["tstamp"])
         | 
| 301 | 
             
                last_updated_tstamp = battles[-1]["tstamp"]
         | 
| 302 |  | 
|  | |
| 311 | 
             
                )
         | 
| 312 | 
             
                print(f"#battles: {len(battles)}, #anony: {ct_anony}")
         | 
| 313 | 
             
                print(f"#models: {len(all_models)}, {all_models}")
         | 
| 314 | 
            +
                for dim, count in dim_counts.items():
         | 
| 315 | 
            +
                    print(dim, ": ", count)
         | 
| 316 | 
             
                print(f"last-updated: {last_updated_datetime}")
         | 
| 317 |  | 
| 318 | 
             
                if ban_ip_list is not None:
         | 
|  | |
| 328 | 
             
                parser = argparse.ArgumentParser()
         | 
| 329 | 
             
                parser.add_argument("--max-num-files", type=int)
         | 
| 330 | 
             
                parser.add_argument(
         | 
| 331 | 
            +
                    "--mode", type=str, choices=["simple", "conv_release"], default="conv_release"
         | 
| 332 | 
             
                )
         | 
| 333 | 
            +
                parser.add_argument("--task_name", type=str, choices=["text2shape", "image2shape"])
         | 
| 334 | 
             
                parser.add_argument("--exclude-model-names", type=str, nargs="+")
         | 
| 335 | 
             
                parser.add_argument("--ban-ip-file", type=str)
         | 
| 336 | 
             
                parser.add_argument("--sanitize-ip", action="store_true", default=False)
         | 
    	
        arena_elo/elo_rating/elo_analysis.py
    CHANGED
    
    | @@ -350,29 +350,47 @@ if __name__ == "__main__": | |
| 350 | 
             
                    log_files = get_log_files(args.max_num_files)
         | 
| 351 | 
             
                    battles = clean_battle_data(log_files)
         | 
| 352 |  | 
| 353 | 
            -
                 | 
| 354 | 
            -
             | 
| 355 | 
            -
                )
         | 
| 356 | 
            -
                 | 
| 357 | 
            -
             | 
| 358 | 
            -
                )
         | 
| 359 | 
            -
                
         | 
| 360 | 
            -
             | 
| 361 | 
            -
                 | 
| 362 | 
            -
             | 
| 363 | 
            -
                 | 
| 364 | 
            -
                 | 
| 365 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 366 |  | 
| 367 | 
            -
             | 
|  | |
| 368 | 
             
                cutoff_date = datetime.datetime.fromtimestamp(
         | 
| 369 | 
             
                    last_updated_tstamp, tz=timezone("US/Pacific")
         | 
| 370 | 
             
                ).strftime("%Y%m%d")
         | 
| 371 |  | 
| 372 | 
            -
             | 
| 373 | 
            -
                results = {
         | 
| 374 | 
            -
                    "anony": anony_results,
         | 
| 375 | 
            -
                    "full": full_results,
         | 
| 376 | 
            -
                }
         | 
| 377 | 
             
                with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout:
         | 
| 378 | 
             
                    pickle.dump(results, fout)
         | 
|  | |
| 350 | 
             
                    log_files = get_log_files(args.max_num_files)
         | 
| 351 | 
             
                    battles = clean_battle_data(log_files)
         | 
| 352 |  | 
| 353 | 
            +
                ## split battles by evaluated dimensions
         | 
| 354 | 
            +
                battles = pd.DataFrame(battles)
         | 
| 355 | 
            +
                dims = list(battles['dim'].unique())
         | 
| 356 | 
            +
                # dim_battles = {}
         | 
| 357 | 
            +
                # for battle in battles:
         | 
| 358 | 
            +
                #     print(battle)
         | 
| 359 | 
            +
                #     if battle["dim"] not in dim_battles.keys():
         | 
| 360 | 
            +
                #         dim_battles[battle.dim] = []
         | 
| 361 | 
            +
                #     dim_battles[battle.dim].append(battle)
         | 
| 362 | 
            +
             | 
| 363 | 
            +
                results = {}
         | 
| 364 | 
            +
                last_updated_tstamp = None
         | 
| 365 | 
            +
                for dim in dims:
         | 
| 366 | 
            +
                    print(dim)
         | 
| 367 | 
            +
                    dim_battles = battles[battles['dim']==dim].reset_index(drop=True)
         | 
| 368 | 
            +
                    print(dim_battles.shape)
         | 
| 369 | 
            +
                    anony_results = report_elo_analysis_results(
         | 
| 370 | 
            +
                        dim_battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=True
         | 
| 371 | 
            +
                    )
         | 
| 372 | 
            +
                    full_results = report_elo_analysis_results(
         | 
| 373 | 
            +
                        dim_battles, rating_system=args.rating_system, num_bootstrap=args.num_bootstrap, anony_only=False
         | 
| 374 | 
            +
                    )
         | 
| 375 | 
            +
                    
         | 
| 376 | 
            +
                    print(f"## {dim}")
         | 
| 377 | 
            +
                    print("# Online Elo")
         | 
| 378 | 
            +
                    pretty_print_elo_rating(anony_results["elo_rating_online"])
         | 
| 379 | 
            +
                    print("# Median")
         | 
| 380 | 
            +
                    pretty_print_elo_rating(anony_results["elo_rating_final"])
         | 
| 381 | 
            +
                    print(f"last update : {anony_results['last_updated_datetime']}")
         | 
| 382 | 
            +
             | 
| 383 | 
            +
                    results[dim] = {
         | 
| 384 | 
            +
                        "anony": anony_results,
         | 
| 385 | 
            +
                        "full": full_results,
         | 
| 386 | 
            +
                    }
         | 
| 387 |  | 
| 388 | 
            +
                    if last_updated_tstamp is None or last_updated_tstamp < full_results["last_updated_tstamp"]:
         | 
| 389 | 
            +
                        last_updated_tstamp = full_results["last_updated_tstamp"]
         | 
| 390 | 
             
                cutoff_date = datetime.datetime.fromtimestamp(
         | 
| 391 | 
             
                    last_updated_tstamp, tz=timezone("US/Pacific")
         | 
| 392 | 
             
                ).strftime("%Y%m%d")
         | 
| 393 |  | 
| 394 | 
            +
                print(cutoff_date)
         | 
|  | |
|  | |
|  | |
|  | |
| 395 | 
             
                with open(f"elo_results_{cutoff_date}.pkl", "wb") as fout:
         | 
| 396 | 
             
                    pickle.dump(results, fout)
         | 
    	
        arena_elo/elo_rating/generate_leaderboard.py
    CHANGED
    
    | @@ -14,43 +14,63 @@ def main( | |
| 14 | 
             
                with open(elo_rating_pkl, "rb") as fin:
         | 
| 15 | 
             
                    elo_rating_results = pickle.load(fin)
         | 
| 16 |  | 
| 17 | 
            -
                 | 
| 18 | 
            -
                 | 
| 19 | 
            -
                 | 
| 20 | 
            -
                 | 
|  | |
|  | |
|  | |
|  | |
| 21 |  | 
| 22 | 
            -
             | 
| 23 | 
            -
             | 
| 24 | 
            -
             | 
| 25 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 26 |  | 
| 27 | 
            -
             | 
| 28 | 
            -
             | 
| 29 | 
            -
                         | 
| 30 | 
            -
             | 
| 31 | 
            -
                         | 
| 32 | 
            -
             | 
| 33 | 
            -
             | 
| 34 | 
            -
                    model_info[model]["key"] = model
         | 
| 35 |  | 
| 36 | 
            -
             | 
| 37 | 
            -
                         | 
| 38 | 
            -
             | 
| 39 | 
            -
                         | 
|  | |
|  | |
|  | |
|  | |
| 40 |  | 
| 41 | 
            -
             | 
| 42 | 
            -
                         | 
| 43 | 
            -
             | 
| 44 | 
            -
                         | 
| 45 | 
            -
             | 
| 46 | 
            -
             | 
| 47 | 
            -
             | 
| 48 | 
            -
             | 
|  | |
|  | |
|  | |
| 49 |  | 
| 50 | 
             
                final_model_info = {}
         | 
| 51 | 
            -
                 | 
| 52 | 
            -
             | 
| 53 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
| 54 | 
             
                model_info = final_model_info
         | 
| 55 |  | 
| 56 | 
             
                exclude_keys = ['starting_from']
         | 
| @@ -61,7 +81,7 @@ def main( | |
| 61 | 
             
                df = pd.DataFrame(model_info).T
         | 
| 62 | 
             
                df = df[fields]
         | 
| 63 | 
             
                # sort by anony rating
         | 
| 64 | 
            -
                df = df.sort_values(by=["Arena Elo rating | 
| 65 | 
             
                df.to_csv(output_csv, index=False)
         | 
| 66 | 
             
                print("Leaderboard data saved to", output_csv)
         | 
| 67 | 
             
                print(df)
         | 
|  | |
| 14 | 
             
                with open(elo_rating_pkl, "rb") as fin:
         | 
| 15 | 
             
                    elo_rating_results = pickle.load(fin)
         | 
| 16 |  | 
| 17 | 
            +
                # Model, Dim Elo rating (anony), Arena Elo rating (anony), Link, Orgnization
         | 
| 18 | 
            +
                model_ratings = model_info
         | 
| 19 | 
            +
                fields = ["key", "Model"]
         | 
| 20 | 
            +
                for dim, dim_results in elo_rating_results.items():
         | 
| 21 | 
            +
                    anony_elo_rating_results = dim_results["anony"]
         | 
| 22 | 
            +
                    full_elo_rating_results = dim_results["full"]
         | 
| 23 | 
            +
                    anony_leaderboard_data = anony_elo_rating_results["leaderboard_table_df"]
         | 
| 24 | 
            +
                    full_leaderboard_data = full_elo_rating_results["leaderboard_table_df"]
         | 
| 25 |  | 
| 26 | 
            +
                    fields += [f"{dim} Elo rating"]
         | 
| 27 | 
            +
                    all_models = anony_leaderboard_data.index.tolist()
         | 
| 28 | 
            +
                    for model in all_models:
         | 
| 29 | 
            +
                        if not model in model_ratings:
         | 
| 30 | 
            +
                            # set Organization and license to empty
         | 
| 31 | 
            +
                            model_ratings[model] = {}
         | 
| 32 | 
            +
                            model_ratings[model]["Organization"] = "N/A"
         | 
| 33 | 
            +
                            model_ratings[model]["Link"] = "N/A"
         | 
| 34 | 
            +
                        model_ratings[model]["Model"] = model
         | 
| 35 | 
            +
                        model_ratings[model]["key"] = model
         | 
| 36 |  | 
| 37 | 
            +
                        if model in anony_leaderboard_data.index:
         | 
| 38 | 
            +
                            model_ratings[model][f"{dim} Elo rating"] = anony_leaderboard_data.loc[model, "rating"]
         | 
| 39 | 
            +
                        else:
         | 
| 40 | 
            +
                            model_ratings[model][f"{dim} Elo rating"] = 0
         | 
| 41 | 
            +
                        if "Arena Elo rating" not in model_ratings[model].keys():
         | 
| 42 | 
            +
                            model_ratings[model]["Arena Elo rating"] = 0
         | 
| 43 | 
            +
                        model_ratings[model]["Arena Elo rating"] += model_ratings[model][f"{dim} Elo rating"]
         | 
|  | |
| 44 |  | 
| 45 | 
            +
                        ## Anony
         | 
| 46 | 
            +
                        # if model in anony_leaderboard_data.index:
         | 
| 47 | 
            +
                        #     model_ratings[model][f"{dim} Elo rating (anony)"] = anony_leaderboard_data.loc[model, "rating"]
         | 
| 48 | 
            +
                        # else:
         | 
| 49 | 
            +
                        #     model_ratings[model][f"{dim} Elo rating (anony)"] = 0
         | 
| 50 | 
            +
                        # if "Arena Elo rating (anony)" not in model_ratings[model].keys():
         | 
| 51 | 
            +
                        #     model_ratings[model]["Arena Elo rating (anony)"] = 0
         | 
| 52 | 
            +
                        # model_ratings[model]["Arena Elo rating (anony)"] += model_ratings[model][f"{dim} Elo rating (anony)"]
         | 
| 53 |  | 
| 54 | 
            +
                        ## Anony + Named
         | 
| 55 | 
            +
                        # if model in full_elo_rating_results["leaderboard_table_df"].index:
         | 
| 56 | 
            +
                        #     model_ratings[model][f"{dim} Elo rating (full)"] = full_leaderboard_data.loc[model, "rating"]
         | 
| 57 | 
            +
                        # else:
         | 
| 58 | 
            +
                        #     model_ratings[model][f"{dim} Elo rating (full)"] = 0
         | 
| 59 | 
            +
                        # if "Arena Elo rating (full)" not in model_ratings[model].keys():
         | 
| 60 | 
            +
                        #     model_ratings[model]["Arena Elo rating (full)"] = 0
         | 
| 61 | 
            +
                        # model_ratings[model]["Arena Elo rating (full)"] += model_ratings[model][f"{dim} Elo rating (full)"]
         | 
| 62 | 
            +
                        
         | 
| 63 | 
            +
                fields += ["Arena Elo rating", "Link", "Organization"]
         | 
| 64 | 
            +
                # fields += ["Arena Elo rating (anony)", "Arena Elo rating (full)", "Link", "Organization"]
         | 
| 65 |  | 
| 66 | 
             
                final_model_info = {}
         | 
| 67 | 
            +
                print(model_ratings)
         | 
| 68 | 
            +
                for model in model_ratings:
         | 
| 69 | 
            +
                    if "Model" in model_ratings[model]:
         | 
| 70 | 
            +
                        # model_ratings[model]["Arena Elo rating (anony)"] /= 5
         | 
| 71 | 
            +
                        # model_ratings[model]["Arena Elo rating (full)"] /= 5
         | 
| 72 | 
            +
                        model_ratings[model]["Arena Elo rating"] /= 5
         | 
| 73 | 
            +
                        final_model_info[model] = model_ratings[model]
         | 
| 74 | 
             
                model_info = final_model_info
         | 
| 75 |  | 
| 76 | 
             
                exclude_keys = ['starting_from']
         | 
|  | |
| 81 | 
             
                df = pd.DataFrame(model_info).T
         | 
| 82 | 
             
                df = df[fields]
         | 
| 83 | 
             
                # sort by anony rating
         | 
| 84 | 
            +
                df = df.sort_values(by=["Arena Elo rating"], ascending=False)
         | 
| 85 | 
             
                df.to_csv(output_csv, index=False)
         | 
| 86 | 
             
                print("Leaderboard data saved to", output_csv)
         | 
| 87 | 
             
                print(df)
         | 
    	
        arena_elo/results/latest/elo_results_image2shape.pkl
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:763a67ed5648fc18f5143494c5df040e15d36239afcad12b560bd3bd7f3b15f2
         | 
| 3 | 
            +
            size 356525
         | 
    	
        arena_elo/results/latest/elo_results_text2shape.pkl
    ADDED
    
    | @@ -0,0 +1,3 @@ | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            version https://git-lfs.github.com/spec/v1
         | 
| 2 | 
            +
            oid sha256:3b0d5c169127ff56f994f911cdc9a291418082f998f8cc227bb8bc93fcac60e6
         | 
| 3 | 
            +
            size 303063
         | 
    	
        arena_elo/results/latest/image2shape_leaderboard.csv
    ADDED
    
    | @@ -0,0 +1,14 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            key,Model,Geometry Plausibility Elo rating,Geometry Details Elo rating,Texture Quality Elo rating,Geometry-Texture Coherency Elo rating,Visual Alignment Elo rating,Arena Elo rating,Link,Organization
         | 
| 2 | 
            +
            wonder3d,wonder3d,1243.284839499005,1248.2975105106993,1167.837985855818,1320.3888541585839,1350.506240958834,1266.063086196588,N/A,N/A
         | 
| 3 | 
            +
            zero123-xl,zero123-xl,1194.649412893989,1101.0347850835524,1312.087224585339,1207.9352273497925,1144.1779276854743,1191.9769155196295,N/A,N/A
         | 
| 4 | 
            +
            openlrm,openlrm,1091.8760192981938,1222.0774978360885,1357.186686625133,1172.2322808524807,1113.8647248753261,1191.4474418974444,N/A,N/A
         | 
| 5 | 
            +
            magic123,magic123,1178.7199391336158,1029.8103015949425,1134.7674602557545,1301.8417174024141,1248.4622906482673,1178.720341806999,N/A,N/A
         | 
| 6 | 
            +
            grm-i,grm-i,1083.459465213645,1043.62495738426,1182.665735601177,1148.2931891751466,1434.9259362777323,1178.5938567303922,N/A,N/A
         | 
| 7 | 
            +
            stable-zero123,stable-zero123,1242.5508388592934,1196.2292237209613,1148.3376690300986,1180.2722658970024,1114.9239043945179,1176.4627803803746,N/A,N/A
         | 
| 8 | 
            +
            lgm,lgm,1057.916276030041,1106.0181413778544,1159.3104060792818,1106.1000119897903,1082.1591938968284,1102.3008058747594,N/A,N/A
         | 
| 9 | 
            +
            syncdreamer,syncdreamer,994.3065008728838,1090.5371113220137,876.5482674184123,889.0423446249837,849.5440886590599,939.9956625794706,N/A,N/A
         | 
| 10 | 
            +
            shap-e,shap-e,863.755371488366,865.6017926257314,891.563972695212,972.4063159954788,739.4720652007818,866.5599036011139,N/A,N/A
         | 
| 11 | 
            +
            triplane-gaussian,triplane-gaussian,850.8528602346569,889.7268326768269,800.0847617841707,725.8402704343466,1007.4240505628655,854.7857551385734,N/A,N/A
         | 
| 12 | 
            +
            point-e,point-e,816.3259708197892,777.9698792947121,834.9771690582178,859.8364726200334,740.3201250121207,805.8859233609746,N/A,N/A
         | 
| 13 | 
            +
            free3d,free3d,694.5518065271474,683.8285617090779,617.6756798090618,531.0802012842535,784.2006999191588,662.26738984974,N/A,N/A
         | 
| 14 | 
            +
            escher-net,escher-net,687.7506991293735,745.2434048632799,516.9569812023235,584.7308482156934,390.0187519090333,584.9401370639407,N/A,N/A
         | 
    	
        arena_elo/results/latest/text2shape_leaderboard.csv
    ADDED
    
    | @@ -0,0 +1,11 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            key,Model,Geometry Plausibility Elo rating,Texture Quality Elo rating,Geometry Details Elo rating,Geometry-Texture Coherency Elo rating,Semantic Alignment Elo rating,Arena Elo rating,Link,Organization
         | 
| 2 | 
            +
            mvdream,mvdream,1246.0482236749672,1388.7547518674971,1284.500188530191,1311.3665264514373,1328.133497111749,1311.7606375271685,N/A,N/A
         | 
| 3 | 
            +
            lucid-dreamer,lucid-dreamer,1089.4897652983511,1262.0324465310641,1173.4213901828666,1182.4132799557342,1140.2117496688475,1169.5137263273725,N/A,N/A
         | 
| 4 | 
            +
            grm-t,grm-t,1065.2957236973393,938.5454826862575,1115.6433344459817,1019.5242102399678,1020.2764909535268,1031.8570484046147,N/A,N/A
         | 
| 5 | 
            +
            magic3d,magic3d,1012.6077627602834,1036.984799628633,1028.7772442112278,1063.4857834325169,999.9807438670646,1028.367266779945,N/A,N/A
         | 
| 6 | 
            +
            latent-nerf,latent-nerf,937.1268113750971,910.8947491420889,938.4922547668017,874.1294115476043,1021.3685731479346,936.4023599959053,N/A,N/A
         | 
| 7 | 
            +
            dreamfusion,dreamfusion,970.7944600712297,922.0644331004878,951.5799643764489,911.605820758788,843.9671829685316,920.0023722550972,N/A,N/A
         | 
| 8 | 
            +
            sjc,sjc,870.9792588602744,901.2344860951221,812.8106728066198,982.9416879375193,1004.6125410259175,914.5157293450906,N/A,N/A
         | 
| 9 | 
            +
            shap-e,shap-e,988.0167259180473,917.1927616589292,911.4422051186916,881.2592471160182,871.9730114545998,913.9767902532573,N/A,N/A
         | 
| 10 | 
            +
            point-e,point-e,819.6412683444105,722.29608928992,783.3327455611708,773.274032560414,769.4762098018289,773.6040691115488,N/A,N/A
         | 
| 11 | 
            +
            ,,1000.0,,,,,200.0,N/A,N/A
         | 
    	
        model/model_registry.py
    CHANGED
    
    | @@ -184,7 +184,7 @@ register_model_info( | |
| 184 | 
             
            )
         | 
| 185 |  | 
| 186 | 
             
            register_model_info(
         | 
| 187 | 
            -
                ["stable-zero123" | 
| 188 | 
             
                "Stable Zero123",
         | 
| 189 | 
             
                "https://stability.ai/news/stable-zero123-3d-generation",
         | 
| 190 | 
             
                "Quality 3D Object Generation from Single Images",
         | 
|  | |
| 184 | 
             
            )
         | 
| 185 |  | 
| 186 | 
             
            register_model_info(
         | 
| 187 | 
            +
                ["stable-zero123"],
         | 
| 188 | 
             
                "Stable Zero123",
         | 
| 189 | 
             
                "https://stability.ai/news/stable-zero123-3d-generation",
         | 
| 190 | 
             
                "Quality 3D Object Generation from Single Images",
         | 
    	
        serve/leaderboard.py
    CHANGED
    
    | @@ -21,6 +21,39 @@ import pandas as pd | |
| 21 | 
             
            basic_component_values = [None] * 6
         | 
| 22 | 
             
            leader_component_values = [None] * 5
         | 
| 23 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 24 |  | 
| 25 | 
             
            # def make_leaderboard_md(elo_results):
         | 
| 26 | 
             
            #     leaderboard_md = f"""
         | 
| @@ -38,7 +71,7 @@ leader_component_values = [None] * 5 | |
| 38 |  | 
| 39 | 
             
            def make_leaderboard_md(elo_results):
         | 
| 40 | 
             
                leaderboard_md = f"""
         | 
| 41 | 
            -
            # ๐  | 
| 42 | 
             
            """
         | 
| 43 | 
             
                return leaderboard_md
         | 
| 44 |  | 
| @@ -58,15 +91,11 @@ def model_hyperlink(model_name, link): | |
| 58 |  | 
| 59 | 
             
            def load_leaderboard_table_csv(filename, add_hyperlink=True):
         | 
| 60 | 
             
                df = pd.read_csv(filename)
         | 
|  | |
| 61 | 
             
                for col in df.columns:
         | 
| 62 | 
            -
                    if " | 
| 63 | 
            -
                        df[col] | 
| 64 | 
            -
             | 
| 65 | 
            -
                        df[col] = df[col].apply(lambda x: round(x * 100, 1) if x != "-" else np.nan)
         | 
| 66 | 
            -
                    elif col == "MT-bench (win rate %)":
         | 
| 67 | 
            -
                        df[col] = df[col].apply(lambda x: round(x, 1) if x != "-" else np.nan)
         | 
| 68 | 
            -
                    elif col == "MT-bench (score)":
         | 
| 69 | 
            -
                        df[col] = df[col].apply(lambda x: round(x, 2) if x != "-" else np.nan)
         | 
| 70 |  | 
| 71 | 
             
                    if add_hyperlink and col == "Model":
         | 
| 72 | 
             
                        df[col] = df.apply(lambda row: model_hyperlink(row[col], row["Link"]), axis=1)
         | 
| @@ -125,45 +154,62 @@ def get_full_table(anony_arena_df, full_arena_df, model_table_df): | |
| 125 | 
             
                return values
         | 
| 126 |  | 
| 127 |  | 
| 128 | 
            -
            def get_arena_table( | 
| 129 | 
             
                # sort by rating
         | 
| 130 | 
            -
                arena_df = arena_df.sort_values(by=["rating"], ascending=False)
         | 
| 131 | 
             
                values = []
         | 
| 132 | 
            -
                for i in range(len( | 
| 133 | 
             
                    row = []
         | 
| 134 | 
            -
                    model_key = arena_df.index[i]
         | 
| 135 | 
            -
                    model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
         | 
| 136 | 
            -
             | 
| 137 | 
            -
                    ]
         | 
|  | |
| 138 |  | 
| 139 | 
             
                    # rank
         | 
| 140 | 
             
                    row.append(i + 1)
         | 
| 141 | 
             
                    # model display name
         | 
| 142 | 
            -
                    row.append(model_name)
         | 
| 143 | 
             
                    # elo rating
         | 
| 144 | 
            -
                     | 
| 145 | 
            -
                     | 
| 146 | 
            -
             | 
| 147 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 148 | 
             
                    # num battles
         | 
| 149 | 
            -
                    row.append(round(arena_df.iloc[i]["num_battles"]))
         | 
|  | |
| 150 | 
             
                    # Organization
         | 
| 151 | 
            -
                    row.append(
         | 
| 152 | 
            -
             | 
| 153 | 
            -
                    )
         | 
| 154 | 
            -
                    # license
         | 
| 155 | 
            -
                    row.append(
         | 
| 156 | 
            -
             | 
| 157 | 
            -
                    )
         | 
| 158 |  | 
| 159 | 
             
                    values.append(row)
         | 
| 160 | 
             
                return values
         | 
| 161 |  | 
| 162 | 
             
            def make_arena_leaderboard_md(elo_results):
         | 
| 163 | 
            -
                 | 
| 164 | 
            -
                 | 
| 165 | 
            -
             | 
| 166 | 
            -
             | 
|  | |
|  | |
| 167 |  | 
| 168 | 
             
                leaderboard_md = f"""
         | 
| 169 |  | 
| @@ -171,9 +217,8 @@ def make_arena_leaderboard_md(elo_results): | |
| 171 | 
             
            Total #models: **{total_models}**(anonymous). Total #votes: **{total_votes}**. Last updated: {last_updated}.
         | 
| 172 | 
             
            (Note: Only anonymous votes are considered here. Check the full leaderboard for all votes.)
         | 
| 173 |  | 
| 174 | 
            -
            Contribute the votes ๐ณ๏ธ at [ | 
| 175 |  | 
| 176 | 
            -
            If you want to see more models, please help us [add them](https://github.com/TIGER-AI-Lab/ImagenHub?tab=readme-ov-file#-contributing-).
         | 
| 177 | 
             
            """
         | 
| 178 | 
             
                return leaderboard_md
         | 
| 179 |  | 
| @@ -205,14 +250,20 @@ def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=Fa | |
| 205 | 
             
                    with open(elo_results_file, "rb") as fin:
         | 
| 206 | 
             
                        elo_results = pickle.load(fin)
         | 
| 207 |  | 
| 208 | 
            -
                     | 
| 209 | 
            -
                     | 
| 210 | 
            -
                     | 
| 211 | 
            -
                     | 
| 212 | 
            -
                    p1 =  | 
| 213 | 
            -
                     | 
| 214 | 
            -
             | 
| 215 | 
            -
             | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 216 |  | 
| 217 | 
             
                    md = make_leaderboard_md(anony_elo_results)
         | 
| 218 |  | 
| @@ -222,54 +273,58 @@ def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=Fa | |
| 222 | 
             
                    model_table_df = load_leaderboard_table_csv(leaderboard_table_file)
         | 
| 223 | 
             
                    with gr.Tabs() as tabs:
         | 
| 224 | 
             
                        # arena table
         | 
| 225 | 
            -
                        arena_table_vals = get_arena_table( | 
| 226 | 
             
                        with gr.Tab("Arena Elo", id=0):
         | 
| 227 | 
             
                            md = make_arena_leaderboard_md(anony_elo_results)
         | 
| 228 | 
             
                            gr.Markdown(md, elem_id="leaderboard_markdown")
         | 
| 229 | 
             
                            gr.Dataframe(
         | 
| 230 | 
            -
                                headers=[
         | 
| 231 | 
            -
             | 
| 232 | 
            -
             | 
| 233 | 
            -
             | 
| 234 | 
            -
             | 
| 235 | 
            -
             | 
| 236 | 
            -
             | 
| 237 | 
            -
             | 
| 238 | 
            -
                                ],
         | 
|  | |
| 239 | 
             
                                datatype=[
         | 
| 240 | 
             
                                    "str",
         | 
| 241 | 
             
                                    "markdown",
         | 
| 242 | 
             
                                    "number",
         | 
| 243 | 
            -
                                    "str",
         | 
| 244 | 
             
                                    "number",
         | 
| 245 | 
            -
                                    " | 
| 246 | 
            -
                                    " | 
|  | |
|  | |
|  | |
| 247 | 
             
                                ],
         | 
| 248 | 
             
                                value=arena_table_vals,
         | 
|  | |
| 249 | 
             
                                elem_id="arena_leaderboard_dataframe",
         | 
| 250 | 
             
                                height=700,
         | 
| 251 | 
            -
                                column_widths=[50, 200, 100, 100, 100,  | 
| 252 | 
            -
                                wrap=True,
         | 
| 253 | 
            -
                            )
         | 
| 254 | 
            -
                        with gr.Tab("Full Leaderboard", id=1):
         | 
| 255 | 
            -
                            md = make_full_leaderboard_md(full_elo_results)
         | 
| 256 | 
            -
                            gr.Markdown(md, elem_id="leaderboard_markdown")
         | 
| 257 | 
            -
                            full_table_vals = get_full_table(anony_arena_df, full_arena_df, model_table_df)
         | 
| 258 | 
            -
                            gr.Dataframe(
         | 
| 259 | 
            -
                                headers=[
         | 
| 260 | 
            -
                                    "๐ค Model",
         | 
| 261 | 
            -
                                    "โญ Arena Elo (anony)",
         | 
| 262 | 
            -
                                    "โญ Arena Elo (full)",
         | 
| 263 | 
            -
                                    "Organization",
         | 
| 264 | 
            -
                                    "License",
         | 
| 265 | 
            -
                                ],
         | 
| 266 | 
            -
                                datatype=["markdown", "number", "number", "str", "str"],
         | 
| 267 | 
            -
                                value=full_table_vals,
         | 
| 268 | 
            -
                                elem_id="full_leaderboard_dataframe",
         | 
| 269 | 
            -
                                column_widths=[200, 100, 100, 100, 150, 150],
         | 
| 270 | 
            -
                                height=700,
         | 
| 271 | 
             
                                wrap=True,
         | 
| 272 | 
             
                            )
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 273 | 
             
                    if not show_plot:
         | 
| 274 | 
             
                        gr.Markdown(
         | 
| 275 | 
             
                            """ ## We are still collecting more votes on more models. The ranking will be updated very fruquently. Please stay tuned! 
         | 
| @@ -279,7 +334,7 @@ def build_leaderboard_tab(elo_results_file, leaderboard_table_file, show_plot=Fa | |
| 279 | 
             
                else:
         | 
| 280 | 
             
                    pass
         | 
| 281 |  | 
| 282 | 
            -
                leader_component_values[:] = [md, p1, p2, p3, p4]
         | 
| 283 |  | 
| 284 | 
             
                """
         | 
| 285 | 
             
                with gr.Row():
         | 
|  | |
| 21 | 
             
            basic_component_values = [None] * 6
         | 
| 22 | 
             
            leader_component_values = [None] * 5
         | 
| 23 |  | 
| 24 | 
            +
            nam_dict = {
         | 
| 25 | 
            +
                "dreamfusion": "DreamFusion",
         | 
| 26 | 
            +
                "mvdream": "MVDream",
         | 
| 27 | 
            +
                "lucid-dreamer": "LucidDreamer",
         | 
| 28 | 
            +
                "magic3d": "Magic3D",
         | 
| 29 | 
            +
                "grm-t": "GRM", "grm-i": "GRM", "grm": "GRM",
         | 
| 30 | 
            +
                "latent-nerf": "Latent-NeRF",
         | 
| 31 | 
            +
                "shap-e-t": "Shap-E", "shap-e-i": "Shap-E", "shap-e": "Shap-E",
         | 
| 32 | 
            +
                "point-e-t": "Point-E", "point-e-i": "Point-E", "point-e": "Point-E",
         | 
| 33 | 
            +
                "sjc": "SJC",
         | 
| 34 | 
            +
                "wonder3d": "Wonder3D",
         | 
| 35 | 
            +
                "openlrm": "OpenLRM",
         | 
| 36 | 
            +
                "sz123": "Stable Zero123", "stable-zero123": "Stable Zero123",
         | 
| 37 | 
            +
                "z123": "Zero123-XL", "zero123-xl": "Zero123-XL",
         | 
| 38 | 
            +
                "magic123": "Magic123",
         | 
| 39 | 
            +
                "lgm": "LGM",
         | 
| 40 | 
            +
                "syncdreamer": "SyncDreamer",
         | 
| 41 | 
            +
                "triplane-gaussian": "TriplaneGaussian",
         | 
| 42 | 
            +
                "escher-net": "EscherNet",
         | 
| 43 | 
            +
                "free3d": "Free3D"
         | 
| 44 | 
            +
            }
         | 
| 45 | 
            +
             | 
| 46 | 
            +
            def replace_model_name(name, rank):
         | 
| 47 | 
            +
                name = nam_dict[name]
         | 
| 48 | 
            +
             | 
| 49 | 
            +
                if rank==0:
         | 
| 50 | 
            +
                    return "๐ฅ "+name
         | 
| 51 | 
            +
                elif rank==1:
         | 
| 52 | 
            +
                    return "๐ฅ "+name
         | 
| 53 | 
            +
                elif rank==2:
         | 
| 54 | 
            +
                    return '๐ฅ '+name
         | 
| 55 | 
            +
                else:
         | 
| 56 | 
            +
                    return name
         | 
| 57 |  | 
| 58 | 
             
            # def make_leaderboard_md(elo_results):
         | 
| 59 | 
             
            #     leaderboard_md = f"""
         | 
|  | |
| 71 |  | 
| 72 | 
             
            def make_leaderboard_md(elo_results):
         | 
| 73 | 
             
                leaderboard_md = f"""
         | 
| 74 | 
            +
            # ๐ 3DGen-Arena Leaderboard
         | 
| 75 | 
             
            """
         | 
| 76 | 
             
                return leaderboard_md
         | 
| 77 |  | 
|  | |
| 91 |  | 
| 92 | 
             
            def load_leaderboard_table_csv(filename, add_hyperlink=True):
         | 
| 93 | 
             
                df = pd.read_csv(filename)
         | 
| 94 | 
            +
                df = df.drop(df[df["key"].isnull()].index)
         | 
| 95 | 
             
                for col in df.columns:
         | 
| 96 | 
            +
                    if "Elo rating" in col:
         | 
| 97 | 
            +
                        print(df[col])
         | 
| 98 | 
            +
                        df[col] = df[col].apply(lambda x: int(x) if (x != "-" and x != np.nan) else np.nan)
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 99 |  | 
| 100 | 
             
                    if add_hyperlink and col == "Model":
         | 
| 101 | 
             
                        df[col] = df.apply(lambda row: model_hyperlink(row[col], row["Link"]), axis=1)
         | 
|  | |
| 154 | 
             
                return values
         | 
| 155 |  | 
| 156 |  | 
| 157 | 
            +
            def get_arena_table(arena_dfs, model_table_df):
         | 
| 158 | 
             
                # sort by rating
         | 
| 159 | 
            +
                # arena_df = arena_df.sort_values(by=["rating"], ascending=False)
         | 
| 160 | 
             
                values = []
         | 
| 161 | 
            +
                for i in range(len(model_table_df)):
         | 
| 162 | 
             
                    row = []
         | 
| 163 | 
            +
                    # model_key = arena_df.index[i]
         | 
| 164 | 
            +
                    # model_name = model_table_df[model_table_df["key"] == model_key]["Model"].values[
         | 
| 165 | 
            +
                    #     0
         | 
| 166 | 
            +
                    # ]
         | 
| 167 | 
            +
                    model_name = model_table_df.iloc[i]["key"]
         | 
| 168 |  | 
| 169 | 
             
                    # rank
         | 
| 170 | 
             
                    row.append(i + 1)
         | 
| 171 | 
             
                    # model display name
         | 
| 172 | 
            +
                    row.append(replace_model_name(model_name, i))
         | 
| 173 | 
             
                    # elo rating
         | 
| 174 | 
            +
                    num_battles = 0
         | 
| 175 | 
            +
                    for dim in arena_dfs.keys():
         | 
| 176 | 
            +
                        print(arena_dfs[dim].loc[model_name])
         | 
| 177 | 
            +
             | 
| 178 | 
            +
                        row.append(round(arena_dfs[dim].loc[model_name]["rating"], 2))
         | 
| 179 | 
            +
                        upper_diff = round(arena_dfs[dim].loc[model_name]["rating_q975"] - arena_dfs[dim].loc[model_name]["rating"])
         | 
| 180 | 
            +
                        lower_diff = round(arena_dfs[dim].loc[model_name]["rating"] - arena_dfs[dim].loc[model_name]["rating_q025"])
         | 
| 181 | 
            +
                        # row.append(f"+{upper_diff}/-{lower_diff}")
         | 
| 182 | 
            +
                        try:
         | 
| 183 | 
            +
                            num_battles += round(arena_dfs[dim].loc[model_name]["num_battles"])
         | 
| 184 | 
            +
                        except:
         | 
| 185 | 
            +
                            num_battles += 0
         | 
| 186 | 
            +
                    # row.append(round(arena_df.iloc[i]["rating"]))
         | 
| 187 | 
            +
                    # upper_diff = round(arena_df.iloc[i]["rating_q975"] - arena_df.iloc[i]["rating"])
         | 
| 188 | 
            +
                    # lower_diff = round(arena_df.iloc[i]["rating"] - arena_df.iloc[i]["rating_q025"])
         | 
| 189 | 
            +
                    # row.append(f"+{upper_diff}/-{lower_diff}")
         | 
| 190 | 
            +
                    row.append(round(model_table_df.iloc[i]["Arena Elo rating"], 2))
         | 
| 191 | 
             
                    # num battles
         | 
| 192 | 
            +
                    # row.append(round(arena_df.iloc[i]["num_battles"]))
         | 
| 193 | 
            +
                    row.append(num_battles)
         | 
| 194 | 
             
                    # Organization
         | 
| 195 | 
            +
                    # row.append(
         | 
| 196 | 
            +
                    #     model_table_df[model_table_df["key"] == model_key]["Organization"].values[0]
         | 
| 197 | 
            +
                    # )
         | 
| 198 | 
            +
                    # # license
         | 
| 199 | 
            +
                    # row.append(
         | 
| 200 | 
            +
                    #     model_table_df[model_table_df["key"] == model_key]["License"].values[0]
         | 
| 201 | 
            +
                    # )
         | 
| 202 |  | 
| 203 | 
             
                    values.append(row)
         | 
| 204 | 
             
                return values
         | 
| 205 |  | 
| 206 | 
             
            def make_arena_leaderboard_md(elo_results):
         | 
| 207 | 
            +
                total_votes = 0
         | 
| 208 | 
            +
                for dim in elo_results.keys():
         | 
| 209 | 
            +
                    arena_df = elo_results[dim]["leaderboard_table_df"]
         | 
| 210 | 
            +
                    last_updated = elo_results[dim]["last_updated_datetime"]
         | 
| 211 | 
            +
                    total_votes += sum(arena_df["num_battles"]) // 2
         | 
| 212 | 
            +
                    total_models = len(arena_df)
         | 
| 213 |  | 
| 214 | 
             
                leaderboard_md = f"""
         | 
| 215 |  | 
|  | |
| 217 | 
             
            Total #models: **{total_models}**(anonymous). Total #votes: **{total_votes}**. Last updated: {last_updated}.
         | 
| 218 | 
             
            (Note: Only anonymous votes are considered here. Check the full leaderboard for all votes.)
         | 
| 219 |  | 
| 220 | 
            +
            Contribute the votes ๐ณ๏ธ at [3DGen-Arena](https://huggingface.co/spaces/ZhangYuhan/3DGen-Arena)! 
         | 
| 221 |  | 
|  | |
| 222 | 
             
            """
         | 
| 223 | 
             
                return leaderboard_md
         | 
| 224 |  | 
|  | |
| 250 | 
             
                    with open(elo_results_file, "rb") as fin:
         | 
| 251 | 
             
                        elo_results = pickle.load(fin)
         | 
| 252 |  | 
| 253 | 
            +
                    # print(elo_results)
         | 
| 254 | 
            +
                    # print(elo_results.keys())
         | 
| 255 | 
            +
                    anony_elo_results, full_elo_results = {}, {}
         | 
| 256 | 
            +
                    anony_arena_dfs, full_arena_dfs = {}, {}
         | 
| 257 | 
            +
                    p1, p2, p3, p4 = {}, {}, {}, {}
         | 
| 258 | 
            +
                    for dim in elo_results.keys():
         | 
| 259 | 
            +
                        anony_elo_results[dim] = elo_results[dim]["anony"]
         | 
| 260 | 
            +
                        full_elo_results[dim] = elo_results[dim]["full"]
         | 
| 261 | 
            +
                        anony_arena_dfs[dim] = anony_elo_results[dim]["leaderboard_table_df"]
         | 
| 262 | 
            +
                        full_arena_dfs[dim] = full_elo_results[dim]["leaderboard_table_df"]
         | 
| 263 | 
            +
                        p1[dim] = anony_elo_results[dim]["win_fraction_heatmap"]
         | 
| 264 | 
            +
                        p2[dim] = anony_elo_results[dim]["battle_count_heatmap"]
         | 
| 265 | 
            +
                        p3[dim] = anony_elo_results[dim]["bootstrap_elo_rating"]
         | 
| 266 | 
            +
                        p4[dim] = anony_elo_results[dim]["average_win_rate_bar"]
         | 
| 267 |  | 
| 268 | 
             
                    md = make_leaderboard_md(anony_elo_results)
         | 
| 269 |  | 
|  | |
| 273 | 
             
                    model_table_df = load_leaderboard_table_csv(leaderboard_table_file)
         | 
| 274 | 
             
                    with gr.Tabs() as tabs:
         | 
| 275 | 
             
                        # arena table
         | 
| 276 | 
            +
                        arena_table_vals = get_arena_table(anony_arena_dfs, model_table_df)
         | 
| 277 | 
             
                        with gr.Tab("Arena Elo", id=0):
         | 
| 278 | 
             
                            md = make_arena_leaderboard_md(anony_elo_results)
         | 
| 279 | 
             
                            gr.Markdown(md, elem_id="leaderboard_markdown")
         | 
| 280 | 
             
                            gr.Dataframe(
         | 
| 281 | 
            +
                                # headers=[
         | 
| 282 | 
            +
                                #     "Rank",
         | 
| 283 | 
            +
                                #     "๐ค Model",
         | 
| 284 | 
            +
                                #     "โญ Arena Elo",
         | 
| 285 | 
            +
                                #     "๐ 95% CI",
         | 
| 286 | 
            +
                                #     "๐ณ๏ธ Votes",
         | 
| 287 | 
            +
                                #     "Organization",
         | 
| 288 | 
            +
                                #     "License",
         | 
| 289 | 
            +
                                # ],
         | 
| 290 | 
            +
                                headers=["Rank", "๐ค Model"] + [f"๐ {dim} Elo" for dim in anony_arena_dfs.keys()] + ["โญ Avg. Arena Elo Ranking", "๐ฎ Votes"],
         | 
| 291 | 
             
                                datatype=[
         | 
| 292 | 
             
                                    "str",
         | 
| 293 | 
             
                                    "markdown",
         | 
| 294 | 
             
                                    "number",
         | 
|  | |
| 295 | 
             
                                    "number",
         | 
| 296 | 
            +
                                    "number",
         | 
| 297 | 
            +
                                    "number",
         | 
| 298 | 
            +
                                    "number",
         | 
| 299 | 
            +
                                    "number",
         | 
| 300 | 
            +
                                    "number"
         | 
| 301 | 
             
                                ],
         | 
| 302 | 
             
                                value=arena_table_vals,
         | 
| 303 | 
            +
                                # value=model_table_df,
         | 
| 304 | 
             
                                elem_id="arena_leaderboard_dataframe",
         | 
| 305 | 
             
                                height=700,
         | 
| 306 | 
            +
                                column_widths=[50, 200, 100, 100, 100, 100, 100, 100, 100],
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 307 | 
             
                                wrap=True,
         | 
| 308 | 
             
                            )
         | 
| 309 | 
            +
                        # with gr.Tab("Full Leaderboard", id=1):
         | 
| 310 | 
            +
                        #     md = make_full_leaderboard_md(full_elo_results)
         | 
| 311 | 
            +
                        #     gr.Markdown(md, elem_id="leaderboard_markdown")
         | 
| 312 | 
            +
                        #     full_table_vals = get_full_table(anony_arena_df, full_arena_df, model_table_df)
         | 
| 313 | 
            +
                        #     gr.Dataframe(
         | 
| 314 | 
            +
                        #         headers=[
         | 
| 315 | 
            +
                        #             "๐ค Model",
         | 
| 316 | 
            +
                        #             "โญ Arena Elo (anony)",
         | 
| 317 | 
            +
                        #             "โญ Arena Elo (full)",
         | 
| 318 | 
            +
                        #             "Organization",
         | 
| 319 | 
            +
                        #             "License",
         | 
| 320 | 
            +
                        #         ],
         | 
| 321 | 
            +
                        #         datatype=["markdown", "number", "number", "str", "str"],
         | 
| 322 | 
            +
                        #         value=full_table_vals,
         | 
| 323 | 
            +
                        #         elem_id="full_leaderboard_dataframe",
         | 
| 324 | 
            +
                        #         column_widths=[200, 100, 100, 100, 150, 150],
         | 
| 325 | 
            +
                        #         height=700,
         | 
| 326 | 
            +
                        #         wrap=True,
         | 
| 327 | 
            +
                        #     )
         | 
| 328 | 
             
                    if not show_plot:
         | 
| 329 | 
             
                        gr.Markdown(
         | 
| 330 | 
             
                            """ ## We are still collecting more votes on more models. The ranking will be updated very fruquently. Please stay tuned! 
         | 
|  | |
| 334 | 
             
                else:
         | 
| 335 | 
             
                    pass
         | 
| 336 |  | 
| 337 | 
            +
                # leader_component_values[:] = [md, p1, p2, p3, p4]
         | 
| 338 |  | 
| 339 | 
             
                """
         | 
| 340 | 
             
                with gr.Row():
         | 
    	
        serve/utils.py
    CHANGED
    
    | @@ -66,6 +66,7 @@ block_css = """ | |
| 66 | 
             
            }
         | 
| 67 | 
             
            #leaderboard_dataframe td {
         | 
| 68 | 
             
                line-height: 0.1em;
         | 
|  | |
| 69 | 
             
            }
         | 
| 70 | 
             
            #about_markdown {
         | 
| 71 | 
             
                font-size: 110%
         | 
|  | |
| 66 | 
             
            }
         | 
| 67 | 
             
            #leaderboard_dataframe td {
         | 
| 68 | 
             
                line-height: 0.1em;
         | 
| 69 | 
            +
                font-weight: bold;
         | 
| 70 | 
             
            }
         | 
| 71 | 
             
            #about_markdown {
         | 
| 72 | 
             
                font-size: 110%
         | 
