RAM_plus_plus / restormerRFR_arch.py
Zilong-Zhang003
demo
3bfd811
raw
history blame
16.4 kB
# RAM++: Robust Representation Learning via Adaptive Mask for All-in-One Image Restoration
# Zilong Zhang, Chujie Qin, Chunle Guo, Yong Zhang, Chao Xue, Ming-Ming Cheng and Chongyi Li
# https://arxiv.org/abs/2509.12039
import torch
import torch.nn as nn
import torch.nn.functional as F
import numbers
from einops import rearrange
def to_3d(x):
return rearrange(x, 'b c h w -> b (h w) c')
def to_4d(x,h,w):
return rearrange(x, 'b (h w) c -> b c h w',h=h,w=w)
class BiasFree_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(BiasFree_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
sigma = x.var(-1, keepdim=True, unbiased=False)
return x / torch.sqrt(sigma+1e-5) * self.weight
class WithBias_LayerNorm(nn.Module):
def __init__(self, normalized_shape):
super(WithBias_LayerNorm, self).__init__()
if isinstance(normalized_shape, numbers.Integral):
normalized_shape = (normalized_shape,)
normalized_shape = torch.Size(normalized_shape)
assert len(normalized_shape) == 1
self.weight = nn.Parameter(torch.ones(normalized_shape))
self.bias = nn.Parameter(torch.zeros(normalized_shape))
self.normalized_shape = normalized_shape
def forward(self, x):
mu = x.mean(-1, keepdim=True)
sigma = x.var(-1, keepdim=True, unbiased=False)
return (x - mu) / torch.sqrt(sigma+1e-5) * self.weight + self.bias
class LayerNorm(nn.Module):
def __init__(self, dim, LayerNorm_type):
super(LayerNorm, self).__init__()
if LayerNorm_type =='BiasFree':
self.body = BiasFree_LayerNorm(dim)
else:
self.body = WithBias_LayerNorm(dim)
def forward(self, x):
h, w = x.shape[-2:]
return to_4d(self.body(to_3d(x)), h, w)
##########################################################################
## Gated-Dconv Feed-Forward Network (GDFN)
class FeedForward(nn.Module):
def __init__(self, dim, ffn_expansion_factor, bias,finetune_type=None):
super(FeedForward, self).__init__()
hidden_features = int(dim*ffn_expansion_factor)
self.project_in = nn.Conv2d(dim, hidden_features*2, kernel_size=1, bias=bias)
self.dwconv = nn.Conv2d(hidden_features*2, hidden_features*2, kernel_size=3, stride=1, padding=1, groups=hidden_features*2, bias=bias)
self.project_out = nn.Conv2d(hidden_features, dim, kernel_size=1, bias=bias)
def forward(self, x):
x = self.project_in(x)
x1, x2 = self.dwconv(x).chunk(2, dim=1)
x = F.gelu(x1) * x2
x = self.project_out(x)
return x
##########################################################################
## Multi-DConv Head Transposed Self-Attention (MDTA)
class Attention(nn.Module):
def __init__(self, dim, num_heads, bias):
super(Attention, self).__init__()
self.num_heads = num_heads
self.temperature = nn.Parameter(torch.ones(num_heads, 1, 1))
self.qkv = nn.Conv2d(dim, dim*3, kernel_size=1, bias=bias)
self.qkv_dwconv = nn.Conv2d(dim*3, dim*3, kernel_size=3, stride=1, padding=1, groups=dim*3, bias=bias)
self.project_out = nn.Conv2d(dim, dim, kernel_size=1, bias=bias)
def forward(self, x):
b,c,h,w = x.shape
qkv = self.qkv_dwconv(self.qkv(x))
q,k,v = qkv.chunk(3, dim=1)
q = rearrange(q, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
k = rearrange(k, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
v = rearrange(v, 'b (head c) h w -> b head c (h w)', head=self.num_heads)
q = torch.nn.functional.normalize(q, dim=-1)
k = torch.nn.functional.normalize(k, dim=-1)
attn = (q @ k.transpose(-2, -1)) * self.temperature
attn = attn.softmax(dim=-1)
out = (attn @ v)
out = rearrange(out, 'b head c (h w) -> b (head c) h w', head=self.num_heads, h=h, w=w)
out = self.project_out(out)
return out
class resblock(nn.Module):
def __init__(self, dim):
super(resblock, self).__init__()
# self.norm = LayerNorm(dim, LayerNorm_type='BiasFree')
self.body = nn.Sequential(nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False),
nn.PReLU(dim),
nn.Conv2d(dim, dim, kernel_size=3, stride=1, padding=1, bias=False))
def forward(self, x):
res = self.body((x))
res += x
return res
##########################################################################
## Resizing modules
class Downsample(nn.Module):
def __init__(self, n_feat):
super(Downsample, self).__init__()
self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat//2, kernel_size=3, stride=1, padding=1, bias=False),
nn.PixelUnshuffle(2))
def forward(self, x):
return self.body(x)
class Upsample(nn.Module):
def __init__(self, n_feat):
super(Upsample, self).__init__()
self.body = nn.Sequential(nn.Conv2d(n_feat, n_feat*2, kernel_size=3, stride=1, padding=1, bias=False),
nn.PixelShuffle(2))
def forward(self, x):
return self.body(x)
##########################################################################
## Transformer Block
class TransformerBlock(nn.Module):
def __init__(self, dim, num_heads, ffn_expansion_factor, bias, LayerNorm_type,finetune_type=None):
super(TransformerBlock, self).__init__()
self.norm1 = LayerNorm(dim, LayerNorm_type)
self.attn = Attention(dim, num_heads, bias)
self.norm2 = LayerNorm(dim, LayerNorm_type)
self.ffn = FeedForward(dim, ffn_expansion_factor, bias,finetune_type)
def forward(self, x):
x = x + self.attn(self.norm1(x))
x = x + self.ffn(self.norm2(x))
return x
##########################################################################
## Overlapped image patch embedding with 3x3 Conv
class OverlapPatchEmbed(nn.Module):
def __init__(self, in_c=3, embed_dim=48, bias=False):
super(OverlapPatchEmbed, self).__init__()
self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=3, stride=1, padding=1, bias=bias)
def forward(self, x):
x = self.proj(x)
return x
class TemperatureSoftmax(nn.Module):
def __init__(self, temperature):
super().__init__()
self.temperature = temperature
def forward(self, x):
return F.softmax(x / torch.clamp(self.temperature, min=1e-8), dim=1)
class DinoFeatureFusion(nn.Module):
def __init__(self, dino_dim=1536):
super(DinoFeatureFusion, self).__init__()
self.global_pool = nn.AdaptiveAvgPool2d(1)
self.temperature = nn.Parameter(torch.ones(1) * 1.0)
self.gate_network = nn.Sequential(
nn.Linear(dino_dim * 2, dino_dim),
nn.PReLU(dino_dim),
nn.Linear(dino_dim, 512),
nn.PReLU(512),
nn.Linear(512, 2),
TemperatureSoftmax(self.temperature)
)
def forward(self, dino_feat1, dino_feat2):
pooled_feat1 = self.global_pool(dino_feat1).squeeze(-1).squeeze(-1)
pooled_feat2 = self.global_pool(dino_feat2).squeeze(-1).squeeze(-1)
pooled_features = torch.cat([pooled_feat1, pooled_feat2], dim=1)
weights = self.gate_network(pooled_features)
weighted_feat1 = dino_feat1 * weights[:, 0:1].view(-1, 1, 1, 1)
weighted_feat2 = dino_feat2 * weights[:, 1:2].view(-1, 1, 1, 1)
fused_feat = weighted_feat1 + weighted_feat2
return fused_feat
class DRAdaptation(nn.Module):
def __init__(self, dino_dim=1536, restore_dim=48, scale_factor=14, size=128):
super(DRAdaptation, self).__init__()
self.size = size
self.restore_dim = restore_dim
self.adaptation = nn.Sequential(
nn.Conv2d(dino_dim, restore_dim*16, kernel_size=3, padding=1), #768
nn.PReLU(restore_dim*16),
nn.Conv2d(restore_dim*16, restore_dim*8, kernel_size=1),#384
)
def forward(self, dino_feat, restore_feat):
B, C, H, W = restore_feat.shape
adapted_dino = self.adaptation(dino_feat)
return adapted_dino
##########################################################################
##---------- D-R Fusion -----------------------
class DinoRestoreFeatureFusion(nn.Module):
def __init__(self, dim, num_heads, bias):
super(DinoRestoreFeatureFusion, self).__init__()
self.reduce_chan = nn.Conv2d(dim*2, dim, kernel_size=1, bias=bias)
def forward(self, dino_feat, restore_feat):
x_fusion = self.reduce_chan(torch.cat([dino_feat, restore_feat], dim=1))
res = x_fusion + restore_feat
return res
##---------- restormerRFR -----------------------
class RestormerRFR(nn.Module):
def __init__(self,
inp_channels=3,
out_channels=3,
dim = 48,
num_blocks = [4,6,6,8],
num_refinement_blocks = 4,
heads = [1,2,4,8],
ffn_expansion_factor = 2.66,
bias = False,
LayerNorm_type = 'WithBias',
finetune_type = None,
img_size = 128
):
super(RestormerRFR, self).__init__()
self.patch_embed = OverlapPatchEmbed(inp_channels, dim)
self.mask_token = torch.zeros(1, 3, img_size, img_size)
self.dr_adaptation1 = DRAdaptation(dino_dim=1536, restore_dim=48, scale_factor=14, size=128)
self.dr_adaptation2 = DRAdaptation(dino_dim=1536, restore_dim=48, scale_factor=14, size=128)
self.dr_adaptation3 = DRAdaptation(dino_dim=1536, restore_dim=48, scale_factor=14, size=128)
self.dr_fusion1 = DinoRestoreFeatureFusion(dim=int(dim*2**3), num_heads=heads[3], bias=bias)
self.dr_fusion2 = DinoRestoreFeatureFusion(dim=int(dim*2**2), num_heads=heads[2], bias=bias)
self.dr_fusion3 = DinoRestoreFeatureFusion(dim=int(dim*2**1), num_heads=heads[1], bias=bias)
self.up_4_3_dino1 = Upsample(int(dim*2**3))
self.up_4_3_dino2 = Upsample(int(dim*2**3))
self.up_3_2_dino = Upsample(int(dim*2**2))
self.dino_fusion_shallow = DinoFeatureFusion(dino_dim=1536)
self.dino_fusion_mid = DinoFeatureFusion(dino_dim=1536)
self.dino_fusion_deep = DinoFeatureFusion(dino_dim=1536)
self.encoder_level1 = nn.Sequential(*[TransformerBlock(dim=dim, num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[0]-1 else None) for i in range(num_blocks[0])])
self.down1_2 = Downsample(dim)
self.encoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[1]-1 else None) for i in range(num_blocks[1])])
self.down2_3 = Downsample(int(dim*2**1))
self.encoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[2]-1 else None) for i in range(num_blocks[2])])
self.down3_4 = Downsample(int(dim*2**2))
self.latent = nn.Sequential(*[TransformerBlock(dim=int(dim*2**3), num_heads=heads[3], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[3]-1 else None) for i in range(num_blocks[3])])
self.up4_3 = Upsample(int(dim*2**3))
self.reduce_chan_level3 = nn.Conv2d(int(dim*2**3), int(dim*2**2), kernel_size=1, bias=bias)
self.decoder_level3 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**2), num_heads=heads[2], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[2]-1 else None) for i in range(num_blocks[2])])
self.up3_2 = Upsample(int(dim*2**2))
self.reduce_chan_level2 = nn.Conv2d(int(dim*2**2), int(dim*2**1), kernel_size=1, bias=bias)
self.decoder_level2 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[1], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[1]-1 else None) for i in range(num_blocks[1])])
self.up2_1 = Upsample(int(dim*2**1))
self.decoder_level1 = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_blocks[0]-1 else None) for i in range(num_blocks[0])])
self.refinement = nn.Sequential(*[TransformerBlock(dim=int(dim*2**1), num_heads=heads[0], ffn_expansion_factor=ffn_expansion_factor, bias=bias, LayerNorm_type=LayerNorm_type,finetune_type=finetune_type if i==num_refinement_blocks-1 else None) for i in range(num_refinement_blocks)])
self.output = nn.Conv2d(int(dim*2**1), out_channels, kernel_size=3, stride=1, padding=1, bias=bias)
def check_image_size(self, x):
_, _, h, w = x.size()
pad_size = 16
mod_pad_h = (pad_size - h % pad_size) % pad_size
mod_pad_w = (pad_size - w % pad_size) % pad_size
x = F.pad(x, (0, mod_pad_w, 0, mod_pad_h), 'reflect')
return x
def forward(self, inp_img, dino_features =None ):
b,c,h,w = inp_img.shape
shallow_feat1, mid_feat1, deep_feat1, shallow_feat2, mid_feat2, deep_feat2 = dino_features.values()
inp_img = self.check_image_size(inp_img)
inp_enc_level1 = self.patch_embed(inp_img)
out_enc_level1 = self.encoder_level1(inp_enc_level1)
inp_enc_level2 = self.down1_2(out_enc_level1)
out_enc_level2 = self.encoder_level2(inp_enc_level2)
inp_enc_level3 = self.down2_3(out_enc_level2)
out_enc_level3 = self.encoder_level3(inp_enc_level3)
inp_enc_level4 = self.down3_4(out_enc_level3)
latent = self.latent(inp_enc_level4)
shallow_feat = self.dino_fusion_shallow(shallow_feat1, shallow_feat2)
mid_feat = self.dino_fusion_mid(mid_feat1, mid_feat2)
deep_feat = self.dino_fusion_deep(deep_feat1, deep_feat2)
shallow_feat = self.dr_adaptation1(shallow_feat, latent)
mid_feat = self.dr_adaptation2(mid_feat, latent)
deep_feat = self.dr_adaptation3(deep_feat, latent)
latent = self.dr_fusion1(dino_feat=deep_feat, restore_feat=latent)
shallow_feat = self.up_4_3_dino1(shallow_feat)
mid_feat = self.up_4_3_dino2(mid_feat)
inp_dec_level3 = self.up4_3(latent)
inp_dec_level3 = torch.cat([inp_dec_level3, out_enc_level3], 1)
inp_dec_level3 = self.reduce_chan_level3(inp_dec_level3)
out_dec_level3 = self.decoder_level3(inp_dec_level3)
out_dec_level3 = self.dr_fusion2(dino_feat=mid_feat, restore_feat=out_dec_level3)
shallow_feat = self.up_3_2_dino(shallow_feat)
inp_dec_level2 = self.up3_2(out_dec_level3)
inp_dec_level2 = torch.cat([inp_dec_level2, out_enc_level2], 1)
inp_dec_level2 = self.reduce_chan_level2(inp_dec_level2)
out_dec_level2 = self.decoder_level2(inp_dec_level2)
out_dec_level2 = self.dr_fusion3(dino_feat=shallow_feat, restore_feat=out_dec_level2)
inp_dec_level1 = self.up2_1(out_dec_level2)
inp_dec_level1 = torch.cat([inp_dec_level1, out_enc_level1], 1)
out_dec_level1 = self.decoder_level1(inp_dec_level1)
out_dec_level1 = self.refinement(out_dec_level1)
out_dec_level1 = self.output(out_dec_level1)
return out_dec_level1[:,:,:h,:w]