Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| from llama_cpp import Llama | |
| # Load the Mistral model | |
| llm = Llama.from_pretrained( | |
| repo_id="bartowski/Mistral-Small-Instruct-2409-GGUF", | |
| filename="Mistral-Small-Instruct-2409-Q5_K_L.gguf", | |
| ) | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| ): | |
| messages = [{"role": "system", "content": system_message or "You are a friendly Chatbot."}] | |
| # Add history to messages, ensuring no None values | |
| for val in history: | |
| user_message = val[0] if val[0] is not None else "" | |
| assistant_message = val[1] if val[1] is not None else "" | |
| if user_message: | |
| messages.append({"role": "user", "content": user_message}) | |
| if assistant_message: | |
| messages.append({"role": "assistant", "content": assistant_message}) | |
| # Add the current user message, ensure it's not None | |
| if message: | |
| messages.append({"role": "user", "content": message}) | |
| # Generate the response using the Mistral model | |
| response = llm.create_chat_completion(messages=messages) | |
| print("response:", response) | |
| return response["choices"][0]["message"]["content"] # Adjust based on your model's output format | |
| # Set up Gradio Chat Interface | |
| demo = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| demo.launch() | |