Spaces:
Running
on
Zero
Running
on
Zero
| import spaces | |
| import os | |
| import imageio | |
| import numpy as np | |
| import torch | |
| import rembg | |
| from PIL import Image | |
| from torchvision.transforms import v2 | |
| from pytorch_lightning import seed_everything | |
| from omegaconf import OmegaConf | |
| from einops import rearrange, repeat | |
| from tqdm import tqdm | |
| import threading | |
| from queue import SimpleQueue | |
| from typing import Any | |
| from diffusers import DiffusionPipeline, EulerAncestralDiscreteScheduler | |
| import rerun as rr | |
| import rerun.blueprint as rrb | |
| from gradio_rerun import Rerun | |
| import src | |
| from src.utils.train_util import instantiate_from_config | |
| from src.utils.camera_util import ( | |
| FOV_to_intrinsics, | |
| get_zero123plus_input_cameras, | |
| get_circular_camera_poses, | |
| ) | |
| from src.utils.mesh_util import save_obj, save_glb | |
| from src.utils.infer_util import remove_background, resize_foreground, images_to_video | |
| from src.models.lrm_mesh import InstantMesh | |
| import tempfile | |
| from functools import partial | |
| from huggingface_hub import hf_hub_download | |
| import gradio as gr | |
| def get_render_cameras(batch_size=1, M=120, radius=2.5, elevation=10.0, is_flexicubes=False): | |
| """ | |
| Get the rendering camera parameters. | |
| """ | |
| c2ws = get_circular_camera_poses(M=M, radius=radius, elevation=elevation) | |
| if is_flexicubes: | |
| cameras = torch.linalg.inv(c2ws) | |
| cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1, 1) | |
| else: | |
| extrinsics = c2ws.flatten(-2) | |
| intrinsics = FOV_to_intrinsics(50.0).unsqueeze(0).repeat(M, 1, 1).float().flatten(-2) | |
| cameras = torch.cat([extrinsics, intrinsics], dim=-1) | |
| cameras = cameras.unsqueeze(0).repeat(batch_size, 1, 1) | |
| return cameras | |
| def images_to_video(images, output_path, fps=30): | |
| # images: (N, C, H, W) | |
| os.makedirs(os.path.dirname(output_path), exist_ok=True) | |
| frames = [] | |
| for i in range(images.shape[0]): | |
| frame = (images[i].permute(1, 2, 0).cpu().numpy() * 255).astype(np.uint8).clip(0, 255) | |
| assert frame.shape[0] == images.shape[2] and frame.shape[1] == images.shape[3], \ | |
| f"Frame shape mismatch: {frame.shape} vs {images.shape}" | |
| assert frame.min() >= 0 and frame.max() <= 255, \ | |
| f"Frame value out of range: {frame.min()} ~ {frame.max()}" | |
| frames.append(frame) | |
| imageio.mimwrite(output_path, np.stack(frames), fps=fps, codec='h264') | |
| ############################################################################### | |
| # Configuration. | |
| ############################################################################### | |
| import shutil | |
| def find_cuda(): | |
| # Check if CUDA_HOME or CUDA_PATH environment variables are set | |
| cuda_home = os.environ.get('CUDA_HOME') or os.environ.get('CUDA_PATH') | |
| if cuda_home and os.path.exists(cuda_home): | |
| return cuda_home | |
| # Search for the nvcc executable in the system's PATH | |
| nvcc_path = shutil.which('nvcc') | |
| if nvcc_path: | |
| # Remove the 'bin/nvcc' part to get the CUDA installation path | |
| cuda_path = os.path.dirname(os.path.dirname(nvcc_path)) | |
| return cuda_path | |
| return None | |
| cuda_path = find_cuda() | |
| if cuda_path: | |
| print(f"CUDA installation found at: {cuda_path}") | |
| else: | |
| print("CUDA installation not found") | |
| config_path = 'configs/instant-mesh-large.yaml' | |
| config = OmegaConf.load(config_path) | |
| config_name = os.path.basename(config_path).replace('.yaml', '') | |
| model_config = config.model_config | |
| infer_config = config.infer_config | |
| IS_FLEXICUBES = True if config_name.startswith('instant-mesh') else False | |
| device = torch.device('cuda') | |
| # load diffusion model | |
| print('Loading diffusion model ...') | |
| pipeline = DiffusionPipeline.from_pretrained( | |
| "sudo-ai/zero123plus-v1.2", | |
| custom_pipeline="zero123plus", | |
| torch_dtype=torch.float16, | |
| ) | |
| pipeline.scheduler = EulerAncestralDiscreteScheduler.from_config( | |
| pipeline.scheduler.config, timestep_spacing='trailing' | |
| ) | |
| # load custom white-background UNet | |
| unet_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="diffusion_pytorch_model.bin", repo_type="model") | |
| state_dict = torch.load(unet_ckpt_path, map_location='cpu') | |
| pipeline.unet.load_state_dict(state_dict, strict=True) | |
| pipeline = pipeline.to(device) | |
| print(f'type(pipeline)={type(pipeline)}') | |
| # load reconstruction model | |
| print('Loading reconstruction model ...') | |
| model_ckpt_path = hf_hub_download(repo_id="TencentARC/InstantMesh", filename="instant_mesh_large.ckpt", repo_type="model") | |
| model: InstantMesh = instantiate_from_config(model_config) | |
| state_dict = torch.load(model_ckpt_path, map_location='cpu')['state_dict'] | |
| state_dict = {k[14:]: v for k, v in state_dict.items() if k.startswith('lrm_generator.') and 'source_camera' not in k} | |
| model.load_state_dict(state_dict, strict=True) | |
| model = model.to(device) | |
| print('Loading Finished!') | |
| def check_input_image(input_image): | |
| if input_image is None: | |
| raise gr.Error("No image uploaded!") | |
| def preprocess(input_image, do_remove_background): | |
| rembg_session = rembg.new_session() if do_remove_background else None | |
| if do_remove_background: | |
| input_image = remove_background(input_image, rembg_session) | |
| input_image = resize_foreground(input_image, 0.85) | |
| return input_image | |
| def pipeline_callback(log_queue: SimpleQueue, pipe: Any, step_index: int, timestep: float, callback_kwargs: dict[str, Any]) -> dict[str, Any]: | |
| latents = callback_kwargs["latents"] | |
| image = pipe.vae.decode(latents / pipe.vae.config.scaling_factor, return_dict=False)[0] # type: ignore[attr-defined] | |
| image = pipe.image_processor.postprocess(image, output_type="np").squeeze() # type: ignore[attr-defined] | |
| log_queue.put(("mvs", rr.Image(image))) | |
| log_queue.put(("latents", rr.Tensor(latents.squeeze()))) | |
| return callback_kwargs | |
| def generate_mvs(log_queue, input_image, sample_steps, sample_seed): | |
| seed_everything(sample_seed) | |
| return pipeline( | |
| input_image, | |
| num_inference_steps=sample_steps, | |
| callback_on_step_end=lambda *args, **kwargs: pipeline_callback(log_queue, *args, **kwargs), | |
| ).images[0] | |
| # def thread_target(output_queue, input_image, sample_steps): | |
| # z123_image = pipeline( | |
| # input_image, | |
| # num_inference_steps=sample_steps, | |
| # callback_on_step_end=lambda *args, **kwargs: pipeline_callback(output_queue, *args, **kwargs), | |
| # ).images[0] | |
| # log_queue.put(("z123_image", z123_image)) | |
| # output_queue = SimpleQueue() | |
| # z123_thread = threading.Thread( | |
| # target=thread_target, | |
| # args= | |
| # [ | |
| # output_queue, | |
| # input_image, | |
| # sample_steps, | |
| # ] | |
| # ) | |
| # z123_thread.start() | |
| # while True: | |
| # msg = output_queue.get() | |
| # yield msg | |
| # if msg[0] == "z123_image": | |
| # break | |
| # z123_thread.join() | |
| # def make3d(images: Image.Image): | |
| # output_queue = SimpleQueue() | |
| # handle = threading.Thread(target=_make3d, args=[output_queue, images]) | |
| # handle.start() | |
| # while True: | |
| # msg = output_queue.get() | |
| # yield msg | |
| # if msg[0] == "mesh": | |
| # break | |
| # handle.join() | |
| def make3d(log_queue, images: Image.Image): | |
| global model | |
| if IS_FLEXICUBES: | |
| model.init_flexicubes_geometry(device, use_renderer=False) | |
| model = model.eval() | |
| images = np.asarray(images, dtype=np.float32) / 255.0 | |
| images = torch.from_numpy(images).permute(2, 0, 1).contiguous().float() # (3, 960, 640) | |
| images = rearrange(images, 'c (n h) (m w) -> (n m) c h w', n=3, m=2) # (6, 3, 320, 320) | |
| input_cameras = get_zero123plus_input_cameras(batch_size=1, radius=4.0).to(device) | |
| images = images.unsqueeze(0).to(device) | |
| images = v2.functional.resize(images, (320, 320), interpolation=3, antialias=True).clamp(0, 1) | |
| mesh_fpath = tempfile.NamedTemporaryFile(suffix=f".obj", delete=False).name | |
| with torch.no_grad(): | |
| # get triplane | |
| planes = model.forward_planes(images, input_cameras) | |
| # get mesh | |
| mesh_out = model.extract_mesh( | |
| planes, | |
| use_texture_map=False, | |
| **infer_config, | |
| ) | |
| vertices, faces, vertex_colors = mesh_out | |
| log_queue.put( | |
| ( | |
| "mesh", | |
| rr.Mesh3D( | |
| vertex_positions=vertices, | |
| vertex_colors=vertex_colors, | |
| triangle_indices=faces | |
| ), | |
| ) | |
| ) | |
| return mesh_out | |
| def generate_blueprint() -> rrb.Blueprint: | |
| return rrb.Blueprint( | |
| rrb.Horizontal( | |
| rrb.Spatial3DView(origin="mesh"), | |
| rrb.Grid( | |
| rrb.Spatial2DView(origin="z123image"), | |
| rrb.Spatial2DView(origin="preprocessed_image"), | |
| rrb.Spatial2DView(origin="mvs"), | |
| rrb.TensorView(origin="latents", ), | |
| ), | |
| column_shares=[1, 1], | |
| ), | |
| collapse_panels=True, | |
| ) | |
| def compute(log_queue, input_image, do_remove_background, sample_steps, sample_seed): | |
| preprocessed_image = preprocess(input_image, do_remove_background) | |
| log_queue.put(("preprocessed_image", rr.Image(preprocessed_image))) | |
| # rr.log("preprocessed_image", rr.Image(preprocessed_image)) | |
| z123_image = generate_mvs(log_queue, preprocessed_image, sample_steps, sample_seed) | |
| log_queue.put(("z123image", rr.Image(z123_image))) | |
| # rr.log("z123image", rr.Image(z123_image)) | |
| mesh_out = make3d(log_queue, z123_image) | |
| log_queue.put("done") | |
| def log_to_rr(input_image, do_remove_background, sample_steps, sample_seed): | |
| log_queue = SimpleQueue() | |
| stream = rr.binary_stream() | |
| blueprint = generate_blueprint() | |
| rr.send_blueprint(blueprint) | |
| yield stream.read() | |
| handle = threading.Thread(target=compute, args=[log_queue, input_image, do_remove_background, sample_steps, sample_seed]) | |
| handle.start() | |
| while True: | |
| msg = log_queue.get() | |
| if msg == "done": | |
| break | |
| else: | |
| entity_path, entity = msg | |
| rr.log(entity_path, entity) | |
| yield stream.read() | |
| handle.join() | |
| # return mesh | |
| _HEADER_ = ''' | |
| <h2><b>Duplicate of the <a href=https://huggingface.co/spaces/TencentARC/InstantMesh>InstantMesh space</a> that uses <a href=https://rerun.io/>Rerun</a> for visualization.</b></h2> | |
| <h2><a href='https://github.com/TencentARC/InstantMesh' target='_blank'><b>InstantMesh: Efficient 3D Mesh Generation from a Single Image with Sparse-view Large Reconstruction Models</b></a></h2> | |
| **InstantMesh** is a feed-forward framework for efficient 3D mesh generation from a single image based on the LRM/Instant3D architecture. | |
| Technical report: <a href='https://arxiv.org/abs/2404.07191' target='_blank'>ArXiv</a>. | |
| ''' | |
| with gr.Blocks() as demo: | |
| gr.Markdown(_HEADER_) | |
| with gr.Row(variant="panel"): | |
| with gr.Column(scale=1): | |
| with gr.Row(): | |
| input_image = gr.Image( | |
| label="Input Image", | |
| image_mode="RGBA", | |
| sources="upload", | |
| #width=256, | |
| #height=256, | |
| type="pil", | |
| elem_id="content_image", | |
| ) | |
| with gr.Row(): | |
| with gr.Group(): | |
| do_remove_background = gr.Checkbox( | |
| label="Remove Background", value=True | |
| ) | |
| sample_seed = gr.Number(value=42, label="Seed Value", precision=0) | |
| sample_steps = gr.Slider( | |
| label="Sample Steps", | |
| minimum=30, | |
| maximum=75, | |
| value=75, | |
| step=5 | |
| ) | |
| with gr.Row(): | |
| submit = gr.Button("Generate", elem_id="generate", variant="primary") | |
| with gr.Row(variant="panel"): | |
| gr.Examples( | |
| examples=[ | |
| os.path.join("examples", img_name) for img_name in sorted(os.listdir("examples")) | |
| ], | |
| inputs=[input_image], | |
| label="Examples", | |
| cache_examples=False, | |
| examples_per_page=16 | |
| ) | |
| with gr.Column(scale=2): | |
| viewer = Rerun(streaming=True, height=800) | |
| with gr.Row(): | |
| gr.Markdown('''Try a different <b>seed value</b> if the result is unsatisfying (Default: 42).''') | |
| mv_images = gr.State() | |
| submit.click(fn=check_input_image, inputs=[input_image]).success( | |
| fn=log_to_rr, | |
| inputs=[input_image, do_remove_background, sample_steps, sample_seed], | |
| outputs=[viewer] | |
| ) | |
| demo.launch() |