root
commited on
Commit
Β·
9d3cda7
1
Parent(s):
a5f1898
compare
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import gradio as gr
|
|
|
|
| 2 |
from transformers import pipeline
|
| 3 |
|
| 4 |
# Preload both models
|
|
@@ -7,33 +8,58 @@ models = {
|
|
| 7 |
"moulsot_v0.2_1000": pipeline("automatic-speech-recognition", model="01Yassine/moulsot_v0.2_1000")
|
| 8 |
}
|
| 9 |
|
| 10 |
-
# Adjust generation
|
| 11 |
for m in models.values():
|
| 12 |
m.model.generation_config.input_ids = m.model.generation_config.forced_decoder_ids
|
| 13 |
m.model.generation_config.forced_decoder_ids = None
|
| 14 |
|
| 15 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
def transcribe(audio, selected_model):
|
| 17 |
if audio is None:
|
| 18 |
return "Please record or upload an audio file.", "Please record or upload an audio file."
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
-
|
|
|
|
| 21 |
other_model = [k for k in models if k != selected_model][0]
|
|
|
|
| 22 |
|
| 23 |
# Run inference
|
| 24 |
-
result_selected =
|
| 25 |
-
result_other =
|
| 26 |
-
|
| 27 |
return result_selected, result_other
|
| 28 |
|
| 29 |
|
| 30 |
title = "ποΈ Moulsot Whisper ASR Comparison"
|
| 31 |
description = """
|
| 32 |
-
Compare two fine-tuned Whisper models for **
|
| 33 |
- π© **moulsot_v0.1_2500**
|
| 34 |
- π¦ **moulsot_v0.2_1000**
|
| 35 |
|
| 36 |
-
You can **record** or **upload** an audio sample
|
|
|
|
| 37 |
"""
|
| 38 |
|
| 39 |
with gr.Blocks(title=title) as demo:
|
|
@@ -41,9 +67,9 @@ with gr.Blocks(title=title) as demo:
|
|
| 41 |
|
| 42 |
with gr.Row():
|
| 43 |
audio_input = gr.Audio(
|
| 44 |
-
sources=["microphone", "upload"],
|
| 45 |
-
type="filepath",
|
| 46 |
-
label="π€ Record or Upload Audio"
|
| 47 |
)
|
| 48 |
model_choice = gr.Radio(
|
| 49 |
["moulsot_v0.1_2500", "moulsot_v0.2_1000"],
|
|
@@ -54,8 +80,8 @@ with gr.Blocks(title=title) as demo:
|
|
| 54 |
transcribe_btn = gr.Button("π Transcribe")
|
| 55 |
|
| 56 |
with gr.Row():
|
| 57 |
-
output_selected = gr.Textbox(label="π© Model
|
| 58 |
-
output_other = gr.Textbox(label="π¦ Model
|
| 59 |
|
| 60 |
transcribe_btn.click(
|
| 61 |
fn=transcribe,
|
|
@@ -63,6 +89,6 @@ with gr.Blocks(title=title) as demo:
|
|
| 63 |
outputs=[output_selected, output_other]
|
| 64 |
)
|
| 65 |
|
| 66 |
-
#
|
| 67 |
if __name__ == "__main__":
|
| 68 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
import torchaudio
|
| 3 |
from transformers import pipeline
|
| 4 |
|
| 5 |
# Preload both models
|
|
|
|
| 8 |
"moulsot_v0.2_1000": pipeline("automatic-speech-recognition", model="01Yassine/moulsot_v0.2_1000")
|
| 9 |
}
|
| 10 |
|
| 11 |
+
# Adjust generation configs for both
|
| 12 |
for m in models.values():
|
| 13 |
m.model.generation_config.input_ids = m.model.generation_config.forced_decoder_ids
|
| 14 |
m.model.generation_config.forced_decoder_ids = None
|
| 15 |
|
| 16 |
|
| 17 |
+
def ensure_mono_16k(audio_path):
|
| 18 |
+
"""Load audio, convert to mono + 16kHz, and save a temp version"""
|
| 19 |
+
waveform, sr = torchaudio.load(audio_path)
|
| 20 |
+
|
| 21 |
+
# Convert to mono if necessary
|
| 22 |
+
if waveform.shape[0] > 1:
|
| 23 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
| 24 |
+
|
| 25 |
+
# Resample to 16kHz if necessary
|
| 26 |
+
if sr != 16000:
|
| 27 |
+
resampler = torchaudio.transforms.Resample(sr, 16000)
|
| 28 |
+
waveform = resampler(waveform)
|
| 29 |
+
sr = 16000
|
| 30 |
+
|
| 31 |
+
tmp_path = "/tmp/processed_16k.wav"
|
| 32 |
+
torchaudio.save(tmp_path, waveform, sr)
|
| 33 |
+
return tmp_path
|
| 34 |
+
|
| 35 |
+
|
| 36 |
def transcribe(audio, selected_model):
|
| 37 |
if audio is None:
|
| 38 |
return "Please record or upload an audio file.", "Please record or upload an audio file."
|
| 39 |
+
|
| 40 |
+
# Convert uploaded/recorded audio to mono 16kHz
|
| 41 |
+
processed_audio = ensure_mono_16k(audio)
|
| 42 |
|
| 43 |
+
# Selected + other model
|
| 44 |
+
pipe_selected = models[selected_model]
|
| 45 |
other_model = [k for k in models if k != selected_model][0]
|
| 46 |
+
pipe_other = models[other_model]
|
| 47 |
|
| 48 |
# Run inference
|
| 49 |
+
result_selected = pipe_selected(processed_audio)["text"]
|
| 50 |
+
result_other = pipe_other(processed_audio)["text"]
|
| 51 |
+
|
| 52 |
return result_selected, result_other
|
| 53 |
|
| 54 |
|
| 55 |
title = "ποΈ Moulsot Whisper ASR Comparison"
|
| 56 |
description = """
|
| 57 |
+
Compare two fine-tuned Whisper models for **Arabic ASR**:
|
| 58 |
- π© **moulsot_v0.1_2500**
|
| 59 |
- π¦ **moulsot_v0.2_1000**
|
| 60 |
|
| 61 |
+
You can **record** or **upload** an audio sample (automatically resampled to 16 kHz mono),
|
| 62 |
+
then view transcriptions from both models side by side.
|
| 63 |
"""
|
| 64 |
|
| 65 |
with gr.Blocks(title=title) as demo:
|
|
|
|
| 67 |
|
| 68 |
with gr.Row():
|
| 69 |
audio_input = gr.Audio(
|
| 70 |
+
sources=["microphone", "upload"],
|
| 71 |
+
type="filepath",
|
| 72 |
+
label="π€ Record or Upload Audio (auto 16 kHz mono)"
|
| 73 |
)
|
| 74 |
model_choice = gr.Radio(
|
| 75 |
["moulsot_v0.1_2500", "moulsot_v0.2_1000"],
|
|
|
|
| 80 |
transcribe_btn = gr.Button("π Transcribe")
|
| 81 |
|
| 82 |
with gr.Row():
|
| 83 |
+
output_selected = gr.Textbox(label="π© Selected Model Output")
|
| 84 |
+
output_other = gr.Textbox(label="π¦ Other Model Output")
|
| 85 |
|
| 86 |
transcribe_btn.click(
|
| 87 |
fn=transcribe,
|
|
|
|
| 89 |
outputs=[output_selected, output_other]
|
| 90 |
)
|
| 91 |
|
| 92 |
+
# Local launch
|
| 93 |
if __name__ == "__main__":
|
| 94 |
demo.launch()
|