Upload . with huggingface_hub
Browse files- README.md +123 -0
- config.json +57 -0
- pipeline.skops +0 -0
README.md
ADDED
|
@@ -0,0 +1,123 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
library_name: sklearn
|
| 3 |
+
tags:
|
| 4 |
+
- sklearn
|
| 5 |
+
- skops
|
| 6 |
+
- tabular-regression
|
| 7 |
+
model_file: pipeline.skops
|
| 8 |
+
widget:
|
| 9 |
+
structuredData:
|
| 10 |
+
acceleration:
|
| 11 |
+
- 20.7
|
| 12 |
+
- 17.0
|
| 13 |
+
- 18.6
|
| 14 |
+
cylinders:
|
| 15 |
+
- 4
|
| 16 |
+
- 4
|
| 17 |
+
- 4
|
| 18 |
+
displacement:
|
| 19 |
+
- 98.0
|
| 20 |
+
- 120.0
|
| 21 |
+
- 120.0
|
| 22 |
+
horsepower:
|
| 23 |
+
- '65'
|
| 24 |
+
- '88'
|
| 25 |
+
- '79'
|
| 26 |
+
model year:
|
| 27 |
+
- 81
|
| 28 |
+
- 75
|
| 29 |
+
- 82
|
| 30 |
+
origin:
|
| 31 |
+
- 1
|
| 32 |
+
- 2
|
| 33 |
+
- 1
|
| 34 |
+
weight:
|
| 35 |
+
- 2380
|
| 36 |
+
- 2957
|
| 37 |
+
- 2625
|
| 38 |
+
---
|
| 39 |
+
|
| 40 |
+
# Model description
|
| 41 |
+
|
| 42 |
+
This is a regression model on MPG dataset trained for this [kaggle tutorial](https://www.kaggle.com/unofficialmerve/persisting-your-scikit-learn-model-using-skops/).
|
| 43 |
+
|
| 44 |
+
## Intended uses & limitations
|
| 45 |
+
|
| 46 |
+
This model is not ready to be used in production.
|
| 47 |
+
|
| 48 |
+
## Training Procedure
|
| 49 |
+
|
| 50 |
+
### Hyperparameters
|
| 51 |
+
|
| 52 |
+
The model is trained with below hyperparameters.
|
| 53 |
+
|
| 54 |
+
<details>
|
| 55 |
+
<summary> Click to expand </summary>
|
| 56 |
+
|
| 57 |
+
| Hyperparameter | Value |
|
| 58 |
+
|--------------------------|---------------|
|
| 59 |
+
| ccp_alpha | 0.0 |
|
| 60 |
+
| criterion | squared_error |
|
| 61 |
+
| max_depth | |
|
| 62 |
+
| max_features | |
|
| 63 |
+
| max_leaf_nodes | |
|
| 64 |
+
| min_impurity_decrease | 0.0 |
|
| 65 |
+
| min_samples_leaf | 1 |
|
| 66 |
+
| min_samples_split | 2 |
|
| 67 |
+
| min_weight_fraction_leaf | 0.0 |
|
| 68 |
+
| random_state | |
|
| 69 |
+
| splitter | best |
|
| 70 |
+
|
| 71 |
+
</details>
|
| 72 |
+
|
| 73 |
+
### Model Plot
|
| 74 |
+
|
| 75 |
+
The model plot is below.
|
| 76 |
+
|
| 77 |
+
<style>#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 {color: black;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 pre{padding: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable {background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-estimator:hover {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-item {z-index: 1;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 2em;bottom: 0;left: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item {display: flex;flex-direction: column;position: relative;background-color: white;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-parallel-item:only-child::after {width: 0;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label label {font-family: monospace;font-weight: bold;background-color: white;display: inline-block;line-height: 1.2em;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-label-container {position: relative;z-index: 2;text-align: center;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3 div.sk-text-repr-fallback {display: none;}</style><div id="sk-3ea712fc-223a-4e18-9d66-e9fdc5d944b3" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>DecisionTreeRegressor()</pre><b>Please rerun this cell to show the HTML repr or trust the notebook.</b></div><div class="sk-container" hidden><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="37ade0f5-01f0-4181-acab-e7150c3b5fa2" type="checkbox" checked><label for="37ade0f5-01f0-4181-acab-e7150c3b5fa2" class="sk-toggleable__label sk-toggleable__label-arrow">DecisionTreeRegressor</label><div class="sk-toggleable__content"><pre>DecisionTreeRegressor()</pre></div></div></div></div></div>
|
| 78 |
+
|
| 79 |
+
## Evaluation Results
|
| 80 |
+
|
| 81 |
+
You can find the details about evaluation process and the evaluation results.
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
| Metric | Value |
|
| 86 |
+
|--------------------|---------------------------------------|
|
| 87 |
+
| Mean Squared Error | 10.86399394359616 |
|
| 88 |
+
| R-Squared | <function r2_score at 0x7f743fc54b00> |
|
| 89 |
+
|
| 90 |
+
# How to Get Started with the Model
|
| 91 |
+
|
| 92 |
+
Use the code below to get started with the model.
|
| 93 |
+
|
| 94 |
+
```python
|
| 95 |
+
from skops.io import load
|
| 96 |
+
import json
|
| 97 |
+
import pandas as pd
|
| 98 |
+
clf = load("pipeline.skops")
|
| 99 |
+
with open("config.json") as f:
|
| 100 |
+
config = json.load(f)
|
| 101 |
+
clf.predict(pd.DataFrame.from_dict(config["sklearn"]["example_input"]))
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
|
| 105 |
+
# Model Card Authors
|
| 106 |
+
|
| 107 |
+
This model card is written by following authors:
|
| 108 |
+
|
| 109 |
+
[More Information Needed]
|
| 110 |
+
|
| 111 |
+
# Model Card Contact
|
| 112 |
+
|
| 113 |
+
You can contact the model card authors through following channels:
|
| 114 |
+
[More Information Needed]
|
| 115 |
+
|
| 116 |
+
# Citation
|
| 117 |
+
|
| 118 |
+
Below you can find information related to citation.
|
| 119 |
+
|
| 120 |
+
**BibTeX:**
|
| 121 |
+
```
|
| 122 |
+
[More Information Needed]
|
| 123 |
+
```
|
config.json
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"sklearn": {
|
| 3 |
+
"columns": [
|
| 4 |
+
"cylinders",
|
| 5 |
+
"displacement",
|
| 6 |
+
"horsepower",
|
| 7 |
+
"weight",
|
| 8 |
+
"acceleration",
|
| 9 |
+
"model year",
|
| 10 |
+
"origin"
|
| 11 |
+
],
|
| 12 |
+
"environment": [
|
| 13 |
+
"scikit-learn"
|
| 14 |
+
],
|
| 15 |
+
"example_input": {
|
| 16 |
+
"acceleration": [
|
| 17 |
+
20.7,
|
| 18 |
+
17.0,
|
| 19 |
+
18.6
|
| 20 |
+
],
|
| 21 |
+
"cylinders": [
|
| 22 |
+
4,
|
| 23 |
+
4,
|
| 24 |
+
4
|
| 25 |
+
],
|
| 26 |
+
"displacement": [
|
| 27 |
+
98.0,
|
| 28 |
+
120.0,
|
| 29 |
+
120.0
|
| 30 |
+
],
|
| 31 |
+
"horsepower": [
|
| 32 |
+
"65",
|
| 33 |
+
"88",
|
| 34 |
+
"79"
|
| 35 |
+
],
|
| 36 |
+
"model year": [
|
| 37 |
+
81,
|
| 38 |
+
75,
|
| 39 |
+
82
|
| 40 |
+
],
|
| 41 |
+
"origin": [
|
| 42 |
+
1,
|
| 43 |
+
2,
|
| 44 |
+
1
|
| 45 |
+
],
|
| 46 |
+
"weight": [
|
| 47 |
+
2380,
|
| 48 |
+
2957,
|
| 49 |
+
2625
|
| 50 |
+
]
|
| 51 |
+
},
|
| 52 |
+
"model": {
|
| 53 |
+
"file": "pipeline.skops"
|
| 54 |
+
},
|
| 55 |
+
"task": "tabular-regression"
|
| 56 |
+
}
|
| 57 |
+
}
|
pipeline.skops
ADDED
|
Binary file (13.7 kB). View file
|
|
|