Commit
·
2f812a3
1
Parent(s):
12d2162
Upload config
Browse files- config.json +3 -0
- configuration_codify.py +152 -0
config.json
CHANGED
|
@@ -23,6 +23,9 @@
|
|
| 23 |
"d"
|
| 24 |
],
|
| 25 |
"attn_sparse_layout_seq": null,
|
|
|
|
|
|
|
|
|
|
| 26 |
"backcheck_pw": "none",
|
| 27 |
"backcheck_sa": "none",
|
| 28 |
"bos_token_id": 1,
|
|
|
|
| 23 |
"d"
|
| 24 |
],
|
| 25 |
"attn_sparse_layout_seq": null,
|
| 26 |
+
"auto_map": {
|
| 27 |
+
"AutoConfig": "configuration_codify.CodifyConfig"
|
| 28 |
+
},
|
| 29 |
"backcheck_pw": "none",
|
| 30 |
"backcheck_sa": "none",
|
| 31 |
"bos_token_id": 1,
|
configuration_codify.py
ADDED
|
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import OrderedDict
|
| 2 |
+
from typing import TYPE_CHECKING, Any, List, Mapping, Optional
|
| 3 |
+
|
| 4 |
+
from packaging import version
|
| 5 |
+
|
| 6 |
+
from transformers import is_torch_available
|
| 7 |
+
|
| 8 |
+
if TYPE_CHECKING:
|
| 9 |
+
from transformers import PreTrainedTokenizer, TensorType
|
| 10 |
+
|
| 11 |
+
from transformers.configuration_utils import PretrainedConfig
|
| 12 |
+
from transformers.onnx import OnnxConfigWithPast, PatchingSpec
|
| 13 |
+
from transformers.utils import logging
|
| 14 |
+
|
| 15 |
+
logger = logging.get_logger(__name__)
|
| 16 |
+
|
| 17 |
+
CODIFY_PRETRAINED_CONFIG_ARCHIVE_MAP = {
|
| 18 |
+
"smallcloudai/codify_medium_multi": "https://huggingface.co/smallcloudai/codify_medium_multi/blob/main/config.json",
|
| 19 |
+
"smallcloudai/codify_3b_multi": "https://huggingface.co/smallcloudai/codify_3b_multi/blob/main/config.json",
|
| 20 |
+
}
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
class CodifyConfig(PretrainedConfig):
|
| 24 |
+
model_type = "codify"
|
| 25 |
+
keys_to_ignore_at_inference = ["past_key_values"]
|
| 26 |
+
attribute_map = {
|
| 27 |
+
"num_hidden_layers": "L",
|
| 28 |
+
"num_attention_heads": "attn_heads",
|
| 29 |
+
"hidden_size": "E",
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
def __init__(
|
| 33 |
+
self,
|
| 34 |
+
vocab_size=51305,
|
| 35 |
+
layer_norm_epsilon=1e-5,
|
| 36 |
+
initializer_range=0.02,
|
| 37 |
+
use_cache=True,
|
| 38 |
+
bos_token_id=1,
|
| 39 |
+
eos_token_id=2,
|
| 40 |
+
mlp_mult=4,
|
| 41 |
+
tie_word_embeddings=False,
|
| 42 |
+
**kwargs,
|
| 43 |
+
):
|
| 44 |
+
self.vocab_size = vocab_size
|
| 45 |
+
self.mlp_mult = mlp_mult
|
| 46 |
+
self.layer_norm_epsilon = layer_norm_epsilon
|
| 47 |
+
self.initializer_range = initializer_range
|
| 48 |
+
self.use_cache = use_cache
|
| 49 |
+
|
| 50 |
+
self.bos_token_id = bos_token_id
|
| 51 |
+
self.eos_token_id = eos_token_id
|
| 52 |
+
|
| 53 |
+
super().__init__(bos_token_id=bos_token_id, eos_token_id=eos_token_id,
|
| 54 |
+
tie_word_embeddings=tie_word_embeddings, **kwargs)
|
| 55 |
+
|
| 56 |
+
|
| 57 |
+
class CodifyOnnxConfig(OnnxConfigWithPast):
|
| 58 |
+
torch_onnx_minimum_version = version.parse("1.12")
|
| 59 |
+
|
| 60 |
+
def __init__(
|
| 61 |
+
self,
|
| 62 |
+
config: PretrainedConfig,
|
| 63 |
+
task: str = "default",
|
| 64 |
+
patching_specs: List[PatchingSpec] = None,
|
| 65 |
+
use_past: bool = False,
|
| 66 |
+
):
|
| 67 |
+
super().__init__(config, task=task, patching_specs=patching_specs, use_past=use_past)
|
| 68 |
+
if not getattr(self._config, "pad_token_id", None):
|
| 69 |
+
# TODO: how to do that better?
|
| 70 |
+
self._config.pad_token_id = 0
|
| 71 |
+
|
| 72 |
+
@property
|
| 73 |
+
def inputs(self) -> Mapping[str, Mapping[int, str]]:
|
| 74 |
+
common_inputs = OrderedDict({"input_ids": {0: "batch", 1: "sequence"}})
|
| 75 |
+
if self.use_past:
|
| 76 |
+
# BLOOM stores values on dynamic axis 2. For more details see: https://github.com/huggingface/transformers/pull/18344
|
| 77 |
+
self.fill_with_past_key_values_(common_inputs, direction="inputs", inverted_values_shape=True)
|
| 78 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "past_sequence + sequence"}
|
| 79 |
+
else:
|
| 80 |
+
common_inputs["attention_mask"] = {0: "batch", 1: "sequence"}
|
| 81 |
+
|
| 82 |
+
return common_inputs
|
| 83 |
+
|
| 84 |
+
@property
|
| 85 |
+
def num_layers(self) -> int:
|
| 86 |
+
return self._config.num_hidden_layers
|
| 87 |
+
|
| 88 |
+
@property
|
| 89 |
+
def num_attention_heads(self) -> int:
|
| 90 |
+
return self._config.n_head
|
| 91 |
+
|
| 92 |
+
@property
|
| 93 |
+
def atol_for_validation(self) -> float:
|
| 94 |
+
return 1e-3
|
| 95 |
+
|
| 96 |
+
def generate_dummy_inputs(
|
| 97 |
+
self,
|
| 98 |
+
tokenizer: "PreTrainedTokenizer",
|
| 99 |
+
batch_size: int = -1,
|
| 100 |
+
seq_length: int = -1,
|
| 101 |
+
is_pair: bool = False,
|
| 102 |
+
framework: Optional["TensorType"] = None,
|
| 103 |
+
) -> Mapping[str, Any]:
|
| 104 |
+
common_inputs = super(OnnxConfigWithPast, self).generate_dummy_inputs(
|
| 105 |
+
tokenizer, batch_size=batch_size, seq_length=seq_length, is_pair=is_pair, framework=framework
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
# We need to order the input in the way they appears in the forward()
|
| 109 |
+
ordered_inputs = OrderedDict({"input_ids": common_inputs["input_ids"]})
|
| 110 |
+
|
| 111 |
+
# Need to add the past_keys
|
| 112 |
+
if self.use_past:
|
| 113 |
+
if not is_torch_available():
|
| 114 |
+
raise ValueError("Cannot generate dummy past_keys inputs without PyTorch installed.")
|
| 115 |
+
else:
|
| 116 |
+
import torch
|
| 117 |
+
|
| 118 |
+
batch, seqlen = common_inputs["input_ids"].shape
|
| 119 |
+
# Not using the same length for past_key_values
|
| 120 |
+
past_key_values_length = seqlen + 2
|
| 121 |
+
head_dim = self._config.hidden_size // self.num_attention_heads
|
| 122 |
+
past_key_shape = (
|
| 123 |
+
batch * self.num_attention_heads,
|
| 124 |
+
head_dim,
|
| 125 |
+
past_key_values_length,
|
| 126 |
+
)
|
| 127 |
+
past_value_shape = (
|
| 128 |
+
batch * self.num_attention_heads,
|
| 129 |
+
past_key_values_length,
|
| 130 |
+
head_dim,
|
| 131 |
+
)
|
| 132 |
+
ordered_inputs["past_key_values"] = [
|
| 133 |
+
(torch.zeros(past_key_shape), torch.zeros(past_value_shape)) for _ in range(self.num_layers)
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
ordered_inputs["attention_mask"] = common_inputs["attention_mask"]
|
| 137 |
+
if self.use_past:
|
| 138 |
+
mask_dtype = ordered_inputs["attention_mask"].dtype
|
| 139 |
+
ordered_inputs["attention_mask"] = torch.cat(
|
| 140 |
+
[ordered_inputs["attention_mask"], torch.ones(batch, past_key_values_length, dtype=mask_dtype)], dim=1
|
| 141 |
+
)
|
| 142 |
+
|
| 143 |
+
return ordered_inputs
|
| 144 |
+
|
| 145 |
+
@property
|
| 146 |
+
def default_onnx_opset(self) -> int:
|
| 147 |
+
return 13
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
from transformers import AutoConfig
|
| 151 |
+
|
| 152 |
+
AutoConfig.register(CodifyConfig.model_type, CodifyConfig)
|