File size: 17,438 Bytes
5d42065
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2570
7fe55cc
c5a2570
5d42065
c5a2570
 
5d42065
c5a2570
 
 
 
 
 
 
5d42065
c5a2570
 
 
 
 
 
5d42065
c5a2570
 
 
 
 
 
 
 
5d42065
c5a2570
 
 
 
 
 
 
 
 
5d42065
c5a2570
 
 
 
 
 
5d42065
 
 
 
 
 
 
 
 
 
 
fb9616b
 
5d42065
 
 
 
 
 
 
 
 
 
 
7b8d1f3
5d42065
 
7b8d1f3
5d42065
 
7b8d1f3
5d42065
 
d50b42f
5d42065
 
7b8d1f3
5d42065
 
d50b42f
5d42065
fb9616b
d50b42f
fb9616b
 
d50b42f
fb9616b
5d42065
 
 
 
c5a2570
5d42065
 
 
 
 
c5a2570
5d42065
c5a2570
5d42065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2570
 
 
5d42065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2570
 
 
5d42065
 
 
c5a2570
5d42065
 
 
 
c5a2570
 
 
5d42065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7fe55cc
 
7b8d1f3
 
50fd581
 
7b8d1f3
 
d50b42f
50fd581
5d42065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5a2570
7fe55cc
5d42065
7fe55cc
 
 
c5a2570
5d42065
8d522c4
 
c5a2570
 
8d522c4
7fe55cc
5d42065
 
7fe55cc
 
 
5d42065
 
 
 
 
 
 
 
c5a2570
7fe55cc
5d42065
7fe55cc
 
 
c5a2570
5d42065
8d522c4
 
c5a2570
 
8d522c4
7fe55cc
5d42065
 
7fe55cc
 
 
5d42065
 
 
 
c5a2570
 
50fd581
5d42065
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:13667
- loss:ArcFaceInBatchLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: It was mobilized in December 2014 from elements of the dissolved
    51st Mechanized Brigade and newly formed units .
  sentences:
  - This North-South route falls entirely in the Belgian territory and runs together
    with the Belgian roads N31 and A17 .
  - It was mobilized in December 2014 from elements of the disbanded 51st Mechanized
    Brigade and newly formed units .
  - All windows are double wood , hung up with a single light .
- source_sentence: It is located at Ellison Bay , in the town of Liberty Grove , Wisconsin
    .
  sentences:
  - It is located in Ellison Bay , in the town of Liberty Grove , Wisconsin .
  - It is located in Liberty Grove , Wisconsin , in the town of Ellison Bay .
  - 'The Hadejia River ( Hausa : `` kogin Haɗeja `` ) is a river in northern Nigeria
    and is a tributary of the Yobe River ( Komadugu Yobe ) .'
- source_sentence: Both long and short vowels can be nasalized ( differentiation between
    `` acces `` and `` Ä cces `` below ) , but long nasal vowels are more common .
  sentences:
  - Both long and short vowels can be nasalized ( the distinction between `` acces
    `` and `` ącces `` below ) , but long nasal vowels are more common .
  - Wilson was a member of the Senate from 1844 to 1846 and 1850 to 1852 . From 1851
    to 1852 he was the Massachusetts State Senate 's President .
  - Both long vowels can be nasalized ( the distinction between `` acces `` and ``
    ącces `` below ) , but long and short nasal vowels are more common .
- source_sentence: At that time , on June 22 , 1754 , Edward Bentham married Bentham
    Elizabeth Bates ( d . 1790 ) from Hampshire in the nearby county of Alton .
  sentences:
  - The Department of Criminal Justice developed the first certificate program in
    forensic science in North Carolina and sponsors a summer comparative studies program
    based in Europe .
  - At that time , on June 22 , 1754 , Edward Bentham married Bentham Elizabeth Bates
    ( d . 1790 ) from Hampshire in the nearby county of Alton .
  - It was at this time , on 22 June 1754 , that Edward Bentham married Elizabeth
    Bates ( d 1790 ) from Alton in the nearby county of Hampshire .
- source_sentence: In 1973 Michels ' apos broke ; Barcelona the world transfer record
    to bring Cruyff to Catalonia .
  sentences:
  - In 1973 , Cruyff 'Barcelona broke the world transfer record to bring Michels to
    Catalonia .
  - Amalric then marched to Cairo , where Shawar offered Amalric two million pieces
    of gold .
  - In 1973 Michels ' apos broke ; Barcelona the world transfer record to bring Cruyff
    to Catalonia .
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
- cosine_auc_precision_cache_hit_ratio
- cosine_auc_similarity_distribution
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
  results:
  - task:
      type: custom-information-retrieval
      name: Custom Information Retrieval
    dataset:
      name: test
      type: test
    metrics:
    - type: cosine_accuracy@1
      value: 0.5767756724811061
      name: Cosine Accuracy@1
    - type: cosine_precision@1
      value: 0.5767756724811061
      name: Cosine Precision@1
    - type: cosine_recall@1
      value: 0.5587801563902068
      name: Cosine Recall@1
    - type: cosine_ndcg@10
      value: 0.765320607860921
      name: Cosine Ndcg@10
    - type: cosine_mrr@1
      value: 0.5767756724811061
      name: Cosine Mrr@1
    - type: cosine_map@100
      value: 0.7130569949974509
      name: Cosine Map@100
    - type: cosine_auc_precision_cache_hit_ratio
      value: 0.33372951540341317
      name: Cosine Auc Precision Cache Hit Ratio
    - type: cosine_auc_similarity_distribution
      value: 0.1529248551010913
      name: Cosine Auc Similarity Distribution
---

# Redis fine-tuned BiEncoder model for semantic caching on LangCache

This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for sentence pair similarity.

## Model Details

### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
    - [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
- **Language:** en
- **License:** apache-2.0

### Model Sources

- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)

### Full Model Architecture

```
SentenceTransformer(
  (0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'BertModel'})
  (1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Normalize()
)
```

## Usage

### Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

```bash
pip install -U sentence-transformers
```

Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-experimental")
# Run inference
sentences = [
    "In 1973 Michels ' apos broke ; Barcelona the world transfer record to bring Cruyff to Catalonia .",
    "In 1973 Michels ' apos broke ; Barcelona the world transfer record to bring Cruyff to Catalonia .",
    "In 1973 , Cruyff 'Barcelona broke the world transfer record to bring Michels to Catalonia .",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 1.0000, 0.9219],
#         [1.0000, 1.0000, 0.9219],
#         [0.9219, 0.9219, 1.0078]], dtype=torch.bfloat16)
```

<!--
### Direct Usage (Transformers)

<details><summary>Click to see the direct usage in Transformers</summary>

</details>
-->

<!--
### Downstream Usage (Sentence Transformers)

You can finetune this model on your own dataset.

<details><summary>Click to expand</summary>

</details>
-->

<!--
### Out-of-Scope Use

*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->

## Evaluation

### Metrics

#### Custom Information Retrieval

* Dataset: `test`
* Evaluated with <code>ir_evaluator.CustomInformationRetrievalEvaluator</code>

| Metric                               | Value      |
|:-------------------------------------|:-----------|
| cosine_accuracy@1                    | 0.5768     |
| cosine_precision@1                   | 0.5768     |
| cosine_recall@1                      | 0.5588     |
| **cosine_ndcg@10**                   | **0.7653** |
| cosine_mrr@1                         | 0.5768     |
| cosine_map@100                       | 0.7131     |
| cosine_auc_precision_cache_hit_ratio | 0.3337     |
| cosine_auc_similarity_distribution   | 0.1529     |

<!--
## Bias, Risks and Limitations

*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->

<!--
### Recommendations

*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->

## Training Details

### Training Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 6,780 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 26.28 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 26.27 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 26.25 tokens</li><li>max: 47 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                      | positive                                                                                                                                      | negative                                                                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>This marine species occurs in the eastern Indian Ocean and before the Maldives and New Caledonia .</code>                               |
  | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                         | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                          | <code>Both young people burn with love really , for both , but without being able to say it to himself , admitting him always .</code>        |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Evaluation Dataset

#### LangCache Sentence Pairs (all)

* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 6,780 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
  |         | anchor                                                                            | positive                                                                          | negative                                                                          |
  |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
  | type    | string                                                                            | string                                                                            | string                                                                            |
  | details | <ul><li>min: 8 tokens</li><li>mean: 26.28 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 26.27 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 26.25 tokens</li><li>max: 47 tokens</li></ul> |
* Samples:
  | anchor                                                                                                                                      | positive                                                                                                                                      | negative                                                                                                                                      |
  |:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
  | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                        | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                           | <code>This marine species occurs in the eastern Indian Ocean and before the Maldives and New Caledonia .</code>                               |
  | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code>                         | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code>                          | <code>Both young people burn with love really , for both , but without being able to say it to himself , admitting him always .</code>        |
  | <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
  ```json
  {
      "scale": 20.0,
      "similarity_fct": "cos_sim",
      "gather_across_devices": false
  }
  ```

### Training Logs
| Epoch | Step | test_cosine_ndcg@10 |
|:-----:|:----:|:-------------------:|
| -1    | -1   | 0.7653              |


### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0

## Citation

### BibTeX

#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}
```

<!--
## Glossary

*Clearly define terms in order to be accessible across audiences.*
-->

<!--
## Model Card Authors

*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->

<!--
## Model Card Contact

*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
-->