File size: 17,438 Bytes
5d42065 c5a2570 7fe55cc c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 fb9616b 5d42065 7b8d1f3 5d42065 7b8d1f3 5d42065 7b8d1f3 5d42065 d50b42f 5d42065 7b8d1f3 5d42065 d50b42f 5d42065 fb9616b d50b42f fb9616b d50b42f fb9616b 5d42065 c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 c5a2570 5d42065 7fe55cc 7b8d1f3 50fd581 7b8d1f3 d50b42f 50fd581 5d42065 c5a2570 7fe55cc 5d42065 7fe55cc c5a2570 5d42065 8d522c4 c5a2570 8d522c4 7fe55cc 5d42065 7fe55cc 5d42065 c5a2570 7fe55cc 5d42065 7fe55cc c5a2570 5d42065 8d522c4 c5a2570 8d522c4 7fe55cc 5d42065 7fe55cc 5d42065 c5a2570 50fd581 5d42065 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 |
---
language:
- en
license: apache-2.0
tags:
- biencoder
- sentence-transformers
- text-classification
- sentence-pair-classification
- semantic-similarity
- semantic-search
- retrieval
- reranking
- generated_from_trainer
- dataset_size:13667
- loss:ArcFaceInBatchLoss
base_model: sentence-transformers/all-MiniLM-L6-v2
widget:
- source_sentence: It was mobilized in December 2014 from elements of the dissolved
51st Mechanized Brigade and newly formed units .
sentences:
- This North-South route falls entirely in the Belgian territory and runs together
with the Belgian roads N31 and A17 .
- It was mobilized in December 2014 from elements of the disbanded 51st Mechanized
Brigade and newly formed units .
- All windows are double wood , hung up with a single light .
- source_sentence: It is located at Ellison Bay , in the town of Liberty Grove , Wisconsin
.
sentences:
- It is located in Ellison Bay , in the town of Liberty Grove , Wisconsin .
- It is located in Liberty Grove , Wisconsin , in the town of Ellison Bay .
- 'The Hadejia River ( Hausa : `` kogin Haɗeja `` ) is a river in northern Nigeria
and is a tributary of the Yobe River ( Komadugu Yobe ) .'
- source_sentence: Both long and short vowels can be nasalized ( differentiation between
`` acces `` and `` Ä cces `` below ) , but long nasal vowels are more common .
sentences:
- Both long and short vowels can be nasalized ( the distinction between `` acces
`` and `` ącces `` below ) , but long nasal vowels are more common .
- Wilson was a member of the Senate from 1844 to 1846 and 1850 to 1852 . From 1851
to 1852 he was the Massachusetts State Senate 's President .
- Both long vowels can be nasalized ( the distinction between `` acces `` and ``
ącces `` below ) , but long and short nasal vowels are more common .
- source_sentence: At that time , on June 22 , 1754 , Edward Bentham married Bentham
Elizabeth Bates ( d . 1790 ) from Hampshire in the nearby county of Alton .
sentences:
- The Department of Criminal Justice developed the first certificate program in
forensic science in North Carolina and sponsors a summer comparative studies program
based in Europe .
- At that time , on June 22 , 1754 , Edward Bentham married Bentham Elizabeth Bates
( d . 1790 ) from Hampshire in the nearby county of Alton .
- It was at this time , on 22 June 1754 , that Edward Bentham married Elizabeth
Bates ( d 1790 ) from Alton in the nearby county of Hampshire .
- source_sentence: In 1973 Michels ' apos broke ; Barcelona the world transfer record
to bring Cruyff to Catalonia .
sentences:
- In 1973 , Cruyff 'Barcelona broke the world transfer record to bring Michels to
Catalonia .
- Amalric then marched to Cairo , where Shawar offered Amalric two million pieces
of gold .
- In 1973 Michels ' apos broke ; Barcelona the world transfer record to bring Cruyff
to Catalonia .
datasets:
- redis/langcache-sentencepairs-v2
pipeline_tag: sentence-similarity
library_name: sentence-transformers
metrics:
- cosine_accuracy@1
- cosine_precision@1
- cosine_recall@1
- cosine_ndcg@10
- cosine_mrr@1
- cosine_map@100
- cosine_auc_precision_cache_hit_ratio
- cosine_auc_similarity_distribution
model-index:
- name: Redis fine-tuned BiEncoder model for semantic caching on LangCache
results:
- task:
type: custom-information-retrieval
name: Custom Information Retrieval
dataset:
name: test
type: test
metrics:
- type: cosine_accuracy@1
value: 0.5767756724811061
name: Cosine Accuracy@1
- type: cosine_precision@1
value: 0.5767756724811061
name: Cosine Precision@1
- type: cosine_recall@1
value: 0.5587801563902068
name: Cosine Recall@1
- type: cosine_ndcg@10
value: 0.765320607860921
name: Cosine Ndcg@10
- type: cosine_mrr@1
value: 0.5767756724811061
name: Cosine Mrr@1
- type: cosine_map@100
value: 0.7130569949974509
name: Cosine Map@100
- type: cosine_auc_precision_cache_hit_ratio
value: 0.33372951540341317
name: Cosine Auc Precision Cache Hit Ratio
- type: cosine_auc_similarity_distribution
value: 0.1529248551010913
name: Cosine Auc Similarity Distribution
---
# Redis fine-tuned BiEncoder model for semantic caching on LangCache
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) on the [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2) dataset. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for sentence pair similarity.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [sentence-transformers/all-MiniLM-L6-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L6-v2) <!-- at revision c9745ed1d9f207416be6d2e6f8de32d1f16199bf -->
- **Maximum Sequence Length:** 100 tokens
- **Output Dimensionality:** 384 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
- **Language:** en
- **License:** apache-2.0
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 100, 'do_lower_case': False, 'architecture': 'BertModel'})
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("redis/langcache-embed-experimental")
# Run inference
sentences = [
"In 1973 Michels ' apos broke ; Barcelona the world transfer record to bring Cruyff to Catalonia .",
"In 1973 Michels ' apos broke ; Barcelona the world transfer record to bring Cruyff to Catalonia .",
"In 1973 , Cruyff 'Barcelona broke the world transfer record to bring Michels to Catalonia .",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities)
# tensor([[1.0000, 1.0000, 0.9219],
# [1.0000, 1.0000, 0.9219],
# [0.9219, 0.9219, 1.0078]], dtype=torch.bfloat16)
```
<!--
### Direct Usage (Transformers)
<details><summary>Click to see the direct usage in Transformers</summary>
</details>
-->
<!--
### Downstream Usage (Sentence Transformers)
You can finetune this model on your own dataset.
<details><summary>Click to expand</summary>
</details>
-->
<!--
### Out-of-Scope Use
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
-->
## Evaluation
### Metrics
#### Custom Information Retrieval
* Dataset: `test`
* Evaluated with <code>ir_evaluator.CustomInformationRetrievalEvaluator</code>
| Metric | Value |
|:-------------------------------------|:-----------|
| cosine_accuracy@1 | 0.5768 |
| cosine_precision@1 | 0.5768 |
| cosine_recall@1 | 0.5588 |
| **cosine_ndcg@10** | **0.7653** |
| cosine_mrr@1 | 0.5768 |
| cosine_map@100 | 0.7131 |
| cosine_auc_precision_cache_hit_ratio | 0.3337 |
| cosine_auc_similarity_distribution | 0.1529 |
<!--
## Bias, Risks and Limitations
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
-->
<!--
### Recommendations
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
-->
## Training Details
### Training Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 6,780 training samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 26.28 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 26.27 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 26.25 tokens</li><li>max: 47 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>This marine species occurs in the eastern Indian Ocean and before the Maldives and New Caledonia .</code> |
| <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>Both young people burn with love really , for both , but without being able to say it to himself , admitting him always .</code> |
| <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Evaluation Dataset
#### LangCache Sentence Pairs (all)
* Dataset: [LangCache Sentence Pairs (all)](https://huggingface.co/datasets/redis/langcache-sentencepairs-v2)
* Size: 6,780 evaluation samples
* Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details | <ul><li>min: 8 tokens</li><li>mean: 26.28 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 26.27 tokens</li><li>max: 47 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 26.25 tokens</li><li>max: 47 tokens</li></ul> |
* Samples:
| anchor | positive | negative |
|:--------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------------------------------------------------------------------|
| <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>This marine species occurs in the eastern Indian Ocean and before the Maldives and New Caledonia .</code> |
| <code>The newer punts are still very much in existence today and run in the same fleets as the older boats .</code> | <code>The newer Punts are still very much in existence today and race in the same fleets as the older boats .</code> | <code>Both young people burn with love really , for both , but without being able to say it to himself , admitting him always .</code> |
| <code>Turner Valley , was at the Turner Valley Bar N Ranch Airport , southwest of the Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley , , was located at Turner Valley Bar N Ranch Airport , southwest of Turner Valley Bar N Ranch , Alberta , Canada .</code> | <code>Turner Valley Bar N Ranch Airport , , was located at Turner Valley Bar N Ranch , southwest of Turner Valley , Alberta , Canada .</code> |
* Loss: <code>losses.ArcFaceInBatchLoss</code> with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"gather_across_devices": false
}
```
### Training Logs
| Epoch | Step | test_cosine_ndcg@10 |
|:-----:|:----:|:-------------------:|
| -1 | -1 | 0.7653 |
### Framework Versions
- Python: 3.12.3
- Sentence Transformers: 5.1.0
- Transformers: 4.56.0
- PyTorch: 2.8.0+cu128
- Accelerate: 1.10.1
- Datasets: 4.0.0
- Tokenizers: 0.22.0
## Citation
### BibTeX
#### Sentence Transformers
```bibtex
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
```
<!--
## Glossary
*Clearly define terms in order to be accessible across audiences.*
-->
<!--
## Model Card Authors
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
-->
<!--
## Model Card Contact
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
--> |