Upload 9 files
Browse files- .gitattributes +6 -0
- dataset.csv +7 -0
- dataset/lisp/sample_01.wav +3 -0
- dataset/lisp/sample_02.wav +3 -0
- dataset/lisp/sample_03.wav +3 -0
- dataset/normal/sample_01.wav +3 -0
- dataset/normal/sample_02.wav +3 -0
- dataset/normal/sample_03.wav +3 -0
- detect.py +47 -0
- train.py +154 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,9 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
dataset/lisp/sample_01.wav filter=lfs diff=lfs merge=lfs -text
|
| 37 |
+
dataset/lisp/sample_02.wav filter=lfs diff=lfs merge=lfs -text
|
| 38 |
+
dataset/lisp/sample_03.wav filter=lfs diff=lfs merge=lfs -text
|
| 39 |
+
dataset/normal/sample_01.wav filter=lfs diff=lfs merge=lfs -text
|
| 40 |
+
dataset/normal/sample_02.wav filter=lfs diff=lfs merge=lfs -text
|
| 41 |
+
dataset/normal/sample_03.wav filter=lfs diff=lfs merge=lfs -text
|
dataset.csv
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
file_path,label
|
| 2 |
+
dataset/lisp/sample_01.wav,1
|
| 3 |
+
dataset/normal/sample_01.wav,0
|
| 4 |
+
dataset/lisp/sample_02.wav,1
|
| 5 |
+
dataset/normal/sample_02.wav,0
|
| 6 |
+
dataset/lisp/sample_03.wav,1
|
| 7 |
+
dataset/normal/sample_03.wav,0
|
dataset/lisp/sample_01.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:e8f40dae49c7b3edd939d4f240465b35bb43c08953f5d2e28dc3642809d99f2c
|
| 3 |
+
size 1153196
|
dataset/lisp/sample_02.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:6c54fb29e02a3083375eb172a6444733cb5b44706892a29809ac586659f45928
|
| 3 |
+
size 1491060
|
dataset/lisp/sample_03.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:5ef7f6af78d81a3368791d209847cae8b449f98c8530d52c2ada1ce138785ba8
|
| 3 |
+
size 2064500
|
dataset/normal/sample_01.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:60bdcad2a236b4a94f230c9013e0c28315d4cc27536f0f41d5ebadeb777b1fb6
|
| 3 |
+
size 1065132
|
dataset/normal/sample_02.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:b35ef83c6885777c03897f28fe73f46c7a4749d1df42cdc33908406c6e2c9608
|
| 3 |
+
size 2625652
|
dataset/normal/sample_03.wav
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d29c4c050a60620896c3812151daacbd076e5f45e6b0bd385d322e63ec8bf986
|
| 3 |
+
size 2400372
|
detect.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import librosa
|
| 2 |
+
from transformers import WhisperForAudioClassification
|
| 3 |
+
|
| 4 |
+
# Load the trained model
|
| 5 |
+
model = WhisperForAudioClassification.from_pretrained("results/checkpoint-30")
|
| 6 |
+
|
| 7 |
+
# Load audio file
|
| 8 |
+
audio_path = "dataset/lisp/sample_01.wav"
|
| 9 |
+
audio, original_sr = librosa.load(audio_path, sr=44100)
|
| 10 |
+
|
| 11 |
+
# Resample to target sample rate (if needed)
|
| 12 |
+
target_sr = 16000
|
| 13 |
+
if original_sr != target_sr:
|
| 14 |
+
audio = librosa.resample(audio, orig_sr=original_sr, target_sr=target_sr)
|
| 15 |
+
|
| 16 |
+
# Extract features
|
| 17 |
+
mel_spectrogram = librosa.feature.melspectrogram(y=audio, sr=target_sr, n_mels=80, hop_length=512)
|
| 18 |
+
mel_spectrogram_db = librosa.power_to_db(mel_spectrogram)
|
| 19 |
+
|
| 20 |
+
import torch
|
| 21 |
+
|
| 22 |
+
# Pad mel spectrogram to fixed length (assuming max_len is pre-defined)
|
| 23 |
+
max_len = 3000
|
| 24 |
+
pad_width = (0, max_len - mel_spectrogram_db.shape[1]) # Calculate padding width
|
| 25 |
+
mel_spectrogram_db_padded = torch.nn.functional.pad(torch.from_numpy(mel_spectrogram_db).float().unsqueeze(1),
|
| 26 |
+
pad_width, mode='constant', value=0)
|
| 27 |
+
|
| 28 |
+
# print(mel_spectrogram_db_padded.shape)
|
| 29 |
+
|
| 30 |
+
input_features = mel_spectrogram_db_padded
|
| 31 |
+
|
| 32 |
+
# Permute dimensions to match expected format
|
| 33 |
+
input_features = input_features.permute(1, 0, 2) # Permute dimensions to (batch_size, feature_dimension, sequence_length)
|
| 34 |
+
|
| 35 |
+
# print(input_features.shape)
|
| 36 |
+
|
| 37 |
+
# Create input dictionary with expected key
|
| 38 |
+
inputs = {'input_features': input_features}
|
| 39 |
+
|
| 40 |
+
# Make prediction
|
| 41 |
+
with torch.no_grad():
|
| 42 |
+
outputs = model(**inputs)
|
| 43 |
+
logits = outputs.logits
|
| 44 |
+
predicted_class_ids = torch.argmax(logits).item()
|
| 45 |
+
predicted_label = model.config.id2label[predicted_class_ids]
|
| 46 |
+
|
| 47 |
+
print("Predicted label:", predicted_label)
|
train.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import WhisperForAudioClassification
|
| 2 |
+
|
| 3 |
+
# Load pre-trained Whisper model
|
| 4 |
+
model = WhisperForAudioClassification.from_pretrained("openai/whisper-medium")
|
| 5 |
+
|
| 6 |
+
import pandas as pd
|
| 7 |
+
|
| 8 |
+
# Load the CSV file
|
| 9 |
+
df = pd.read_csv('dataset.csv')
|
| 10 |
+
|
| 11 |
+
from transformers import WhisperProcessor
|
| 12 |
+
|
| 13 |
+
# Initialize the Whisper processor
|
| 14 |
+
processor = WhisperProcessor.from_pretrained("openai/whisper-medium")
|
| 15 |
+
|
| 16 |
+
import librosa
|
| 17 |
+
import torch
|
| 18 |
+
|
| 19 |
+
# Create a custom dataset class
|
| 20 |
+
class LispDataset(torch.utils.data.Dataset):
|
| 21 |
+
def __init__(self, df):
|
| 22 |
+
self.df = df
|
| 23 |
+
|
| 24 |
+
def __len__(self):
|
| 25 |
+
return len(self.df)
|
| 26 |
+
|
| 27 |
+
def __getitem__(self, idx):
|
| 28 |
+
row = self.df.iloc[idx]
|
| 29 |
+
audio_path = row['file_path']
|
| 30 |
+
label = row['label']
|
| 31 |
+
|
| 32 |
+
audio, original_sr = librosa.load(audio_path, sr=44100)
|
| 33 |
+
|
| 34 |
+
# Resample to target sample rate (if needed)
|
| 35 |
+
target_sr = 16000
|
| 36 |
+
if original_sr != target_sr:
|
| 37 |
+
audio = librosa.resample(audio, orig_sr=original_sr, target_sr=target_sr)
|
| 38 |
+
|
| 39 |
+
# Extract mel features
|
| 40 |
+
mel_spectrogram = librosa.feature.melspectrogram(y=audio, sr=target_sr, n_mels=80, hop_length=512)
|
| 41 |
+
mel_spectrogram_db = librosa.power_to_db(mel_spectrogram) # Convert to decibels
|
| 42 |
+
|
| 43 |
+
# Pad mel spectrogram to fixed length (assuming max_len is pre-defined)
|
| 44 |
+
max_len = 3000 # Replace with your desired maximum length
|
| 45 |
+
pad_width = (0, max_len - mel_spectrogram_db.shape[1]) # Calculate padding width
|
| 46 |
+
mel_spectrogram_db_padded = torch.nn.functional.pad(torch.from_numpy(mel_spectrogram_db).float(),
|
| 47 |
+
pad_width, mode='constant', value=0)
|
| 48 |
+
|
| 49 |
+
# Convert to tensor
|
| 50 |
+
input_features = mel_spectrogram_db_padded
|
| 51 |
+
|
| 52 |
+
# # Convert to tensor
|
| 53 |
+
# input_features = torch.from_numpy(mel_spectrogram_db_padded).float()
|
| 54 |
+
|
| 55 |
+
# Create dictionary with expected key
|
| 56 |
+
return {'input_features': input_features, 'labels': label}
|
| 57 |
+
|
| 58 |
+
# Create a DataLoader
|
| 59 |
+
train_dataset = LispDataset(df)
|
| 60 |
+
|
| 61 |
+
from transformers import TrainingArguments
|
| 62 |
+
|
| 63 |
+
# Training arguments (adjust learning rate as needed)
|
| 64 |
+
training_args = TrainingArguments(
|
| 65 |
+
output_dir="./results",
|
| 66 |
+
num_train_epochs=10,
|
| 67 |
+
per_device_train_batch_size=2,
|
| 68 |
+
learning_rate=5e-5,
|
| 69 |
+
fp16=True,
|
| 70 |
+
use_cpu=True,
|
| 71 |
+
warmup_ratio=0.1,
|
| 72 |
+
metric_for_best_model="accuracy",
|
| 73 |
+
gradient_accumulation_steps=1 # No gradient accumulation (equivalent to no_auto_optimize=True)
|
| 74 |
+
)
|
| 75 |
+
|
| 76 |
+
from torch.optim import AdamW # Import AdamW from PyTorch
|
| 77 |
+
|
| 78 |
+
# Create the optimizer (adjust other hyperparameters as needed)
|
| 79 |
+
optimizer = AdamW(model.parameters(), lr=training_args.learning_rate)
|
| 80 |
+
|
| 81 |
+
from torch.optim.lr_scheduler import LambdaLR
|
| 82 |
+
|
| 83 |
+
lambda1 = lambda epoch: epoch // 30
|
| 84 |
+
scheduler = LambdaLR(optimizer, lr_lambda=[lambda1,])
|
| 85 |
+
|
| 86 |
+
optimizertuple = (optimizer,scheduler)
|
| 87 |
+
|
| 88 |
+
from transformers import Trainer
|
| 89 |
+
|
| 90 |
+
# Trainer instance
|
| 91 |
+
trainer = Trainer(
|
| 92 |
+
model=model,
|
| 93 |
+
args=training_args,
|
| 94 |
+
train_dataset=train_dataset,
|
| 95 |
+
optimizers=optimizertuple, # Wrap optimizer in a tuple
|
| 96 |
+
)
|
| 97 |
+
|
| 98 |
+
# Start training
|
| 99 |
+
trainer.train()
|
| 100 |
+
|
| 101 |
+
# import soundfile as sf
|
| 102 |
+
|
| 103 |
+
""" # Define a custom collate function to handle variable-length audio samples
|
| 104 |
+
def collate_fn(batch):
|
| 105 |
+
# Pad audio samples to the same length
|
| 106 |
+
input_lengths = [len(sample[0]) for sample in batch]
|
| 107 |
+
max_length = max(input_lengths)
|
| 108 |
+
padded_inputs = torch.nn.utils.rnn.pad_sequence([torch.tensor(sample[0]) for sample in batch], batch_first=True, padding_value=0)
|
| 109 |
+
attention_mask = torch.tensor([[1] * length + [0] * (max_length - length) for length in input_lengths])
|
| 110 |
+
|
| 111 |
+
return {
|
| 112 |
+
"inputs": padded_inputs,
|
| 113 |
+
"attention_mask": attention_mask,
|
| 114 |
+
"labels": torch.tensor([sample[1] for sample in batch])
|
| 115 |
+
}
|
| 116 |
+
"""
|
| 117 |
+
"""
|
| 118 |
+
def collate_fn(batch):
|
| 119 |
+
# Pad audio samples to the same length
|
| 120 |
+
input_lengths = [len(sample[0]) for sample in batch]
|
| 121 |
+
max_length = max(input_lengths)
|
| 122 |
+
padded_inputs = torch.nn.utils.rnn.pad_sequence([torch.tensor(sample[0]) for sample in batch], batch_first=True, padding_value=0)
|
| 123 |
+
attention_mask = torch.tensor([[1] * length + [0] * (max_length - length) for length in input_lengths])
|
| 124 |
+
|
| 125 |
+
# Convert each element in batch to a dictionary
|
| 126 |
+
batch = [{'inputs': padded_inputs, 'attention_mask': attention_mask, 'labels': label} for inp, mask, label in zip(padded_inputs, attention_mask, batch)]
|
| 127 |
+
print (batch)
|
| 128 |
+
|
| 129 |
+
return batch """
|
| 130 |
+
|
| 131 |
+
"""
|
| 132 |
+
# train_dataloader = torch.utils.data.DataLoader(train_dataset, batch_size=4, shuffle=True, collate_fn=collate_fn)
|
| 133 |
+
|
| 134 |
+
# lambda2 = lambda epoch: 0.95 ** epoch
|
| 135 |
+
|
| 136 |
+
# Load the audio file
|
| 137 |
+
audio, original_sr = librosa.load("dataset/lisp/sample_01.wav", sr=44100)
|
| 138 |
+
|
| 139 |
+
# Target sample rate
|
| 140 |
+
target_sr = 16000
|
| 141 |
+
|
| 142 |
+
# Resample the audio
|
| 143 |
+
audio_resampled = librosa.resample(audio, orig_sr=original_sr, target_sr=target_sr) """
|
| 144 |
+
|
| 145 |
+
""" inputs = processor(
|
| 146 |
+
audio_resampled, sampling_rate=target_sr, return_tensors="pt"
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
# Forward pass
|
| 150 |
+
with torch.no_grad():
|
| 151 |
+
logits = model(**inputs).logits
|
| 152 |
+
|
| 153 |
+
# Predict the class (0 for normal, 1 for lisp)
|
| 154 |
+
predicted_class = torch.argmax(logits, dim=1).item() """
|