--- library_name: peft license: apache-2.0 base_model: EleutherAI/pythia-2.8b tags: - base_model:adapter:EleutherAI/pythia-2.8b - lora - transformers pipeline_tag: text-generation model-index: - name: pythia-2.8b-sft results: [] --- # pythia-2.8b-sft This model is a fine-tuned version of [EleutherAI/pythia-2.8b](https://huggingface.co/EleutherAI/pythia-2.8b) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.6671 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 64 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 100 - num_epochs: 1.0 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.8621 | 0.0442 | 100 | 1.7438 | | 1.7909 | 0.0884 | 200 | 1.7135 | | 1.7775 | 0.1327 | 300 | 1.7020 | | 1.7587 | 0.1769 | 400 | 1.6937 | | 1.7683 | 0.2211 | 500 | 1.6876 | | 1.7488 | 0.2653 | 600 | 1.6824 | | 1.7646 | 0.3096 | 700 | 1.6799 | | 1.7557 | 0.3538 | 800 | 1.6776 | | 1.7485 | 0.3980 | 900 | 1.6743 | | 1.7368 | 0.4422 | 1000 | 1.6729 | | 1.7298 | 0.4865 | 1100 | 1.6705 | | 1.7525 | 0.5307 | 1200 | 1.6724 | | 1.7386 | 0.5749 | 1300 | 1.6703 | | 1.7325 | 0.6191 | 1400 | 1.6684 | | 1.7306 | 0.6633 | 1500 | 1.6682 | | 1.7262 | 0.7076 | 1600 | 1.6669 | | 1.7333 | 0.7518 | 1700 | 1.6675 | | 1.7318 | 0.7960 | 1800 | 1.6673 | | 1.7293 | 0.8402 | 1900 | 1.6668 | | 1.7326 | 0.8845 | 2000 | 1.6671 | | 1.7378 | 0.9287 | 2100 | 1.6668 | | 1.7259 | 0.9729 | 2200 | 1.6671 | ### Framework versions - PEFT 0.17.0 - Transformers 4.55.0 - Pytorch 2.7.1+cu126 - Datasets 4.0.0 - Tokenizers 0.21.4