andrewor14 commited on
Commit
25a85b3
·
verified ·
1 Parent(s): b85c650

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +358 -164
README.md CHANGED
@@ -1,199 +1,393 @@
1
  ---
2
  library_name: transformers
3
- tags: []
 
 
 
 
 
 
 
 
 
 
 
 
4
  ---
5
 
6
- # Model Card for Model ID
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7
 
8
- <!-- Provide a quick summary of what the model is/does. -->
 
 
9
 
 
 
 
 
10
 
 
11
 
12
- ## Model Details
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13
 
14
- ### Model Description
 
 
15
 
16
- <!-- Provide a longer summary of what this model is. -->
17
 
18
- This is the model card of a 🤗 transformers model that has been pushed on the Hub. This model card has been automatically generated.
19
 
20
- - **Developed by:** [More Information Needed]
21
- - **Funded by [optional]:** [More Information Needed]
22
- - **Shared by [optional]:** [More Information Needed]
23
- - **Model type:** [More Information Needed]
24
- - **Language(s) (NLP):** [More Information Needed]
25
- - **License:** [More Information Needed]
26
- - **Finetuned from model [optional]:** [More Information Needed]
27
 
28
- ### Model Sources [optional]
29
 
30
- <!-- Provide the basic links for the model. -->
31
 
32
- - **Repository:** [More Information Needed]
33
- - **Paper [optional]:** [More Information Needed]
34
- - **Demo [optional]:** [More Information Needed]
35
 
36
- ## Uses
 
 
 
37
 
38
- <!-- Address questions around how the model is intended to be used, including the foreseeable users of the model and those affected by the model. -->
39
 
40
- ### Direct Use
41
 
42
- <!-- This section is for the model use without fine-tuning or plugging into a larger ecosystem/app. -->
43
 
44
- [More Information Needed]
45
 
46
- ### Downstream Use [optional]
 
47
 
48
- <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
49
 
50
- [More Information Needed]
 
 
 
51
 
52
- ### Out-of-Scope Use
 
 
 
53
 
54
- <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
55
 
56
- [More Information Needed]
57
 
58
- ## Bias, Risks, and Limitations
 
 
 
59
 
60
- <!-- This section is meant to convey both technical and sociotechnical limitations. -->
 
 
 
61
 
62
- [More Information Needed]
63
 
64
- ### Recommendations
 
65
 
66
- <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
67
 
68
- Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
 
 
69
 
70
- ## How to Get Started with the Model
71
 
72
- Use the code below to get started with the model.
 
73
 
74
- [More Information Needed]
75
-
76
- ## Training Details
77
-
78
- ### Training Data
79
-
80
- <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
81
-
82
- [More Information Needed]
83
-
84
- ### Training Procedure
85
-
86
- <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
87
-
88
- #### Preprocessing [optional]
89
-
90
- [More Information Needed]
91
-
92
-
93
- #### Training Hyperparameters
94
-
95
- - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
96
-
97
- #### Speeds, Sizes, Times [optional]
98
-
99
- <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
100
-
101
- [More Information Needed]
102
-
103
- ## Evaluation
104
-
105
- <!-- This section describes the evaluation protocols and provides the results. -->
106
-
107
- ### Testing Data, Factors & Metrics
108
-
109
- #### Testing Data
110
-
111
- <!-- This should link to a Dataset Card if possible. -->
112
-
113
- [More Information Needed]
114
-
115
- #### Factors
116
-
117
- <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
118
-
119
- [More Information Needed]
120
-
121
- #### Metrics
122
-
123
- <!-- These are the evaluation metrics being used, ideally with a description of why. -->
124
-
125
- [More Information Needed]
126
-
127
- ### Results
128
-
129
- [More Information Needed]
130
-
131
- #### Summary
132
-
133
-
134
-
135
- ## Model Examination [optional]
136
-
137
- <!-- Relevant interpretability work for the model goes here -->
138
-
139
- [More Information Needed]
140
-
141
- ## Environmental Impact
142
-
143
- <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
144
-
145
- Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
146
-
147
- - **Hardware Type:** [More Information Needed]
148
- - **Hours used:** [More Information Needed]
149
- - **Cloud Provider:** [More Information Needed]
150
- - **Compute Region:** [More Information Needed]
151
- - **Carbon Emitted:** [More Information Needed]
152
-
153
- ## Technical Specifications [optional]
154
-
155
- ### Model Architecture and Objective
156
-
157
- [More Information Needed]
158
-
159
- ### Compute Infrastructure
160
-
161
- [More Information Needed]
162
-
163
- #### Hardware
164
-
165
- [More Information Needed]
166
-
167
- #### Software
168
-
169
- [More Information Needed]
170
-
171
- ## Citation [optional]
172
-
173
- <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
174
-
175
- **BibTeX:**
176
-
177
- [More Information Needed]
178
-
179
- **APA:**
180
-
181
- [More Information Needed]
182
-
183
- ## Glossary [optional]
184
-
185
- <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
186
-
187
- [More Information Needed]
188
-
189
- ## More Information [optional]
190
-
191
- [More Information Needed]
192
-
193
- ## Model Card Authors [optional]
194
-
195
- [More Information Needed]
196
-
197
- ## Model Card Contact
198
-
199
- [More Information Needed]
 
1
  ---
2
  library_name: transformers
3
+ tags:
4
+ - torchao
5
+ - code
6
+ - math
7
+ - chat
8
+ - conversational
9
+ language:
10
+ - multilingual
11
+ license: apache-2.0
12
+ license_link: https://huggingface.co/Qwen/Qwen3-8B/blob/main/LICENSE
13
+ pipeline_tag: text-generation
14
+ base_model:
15
+ - Qwen/Qwen3-8B
16
  ---
17
 
18
+ [Qwen3-8B](https://huggingface.co/Qwen/Qwen3-8B) fine-tuned with [unsloth](https://github.com/unslothai/unsloth) using quantization-aware training (QAT) from [torchao](https://huggingface.co/docs/transformers/main/en/quantization/torchao), and quantized with int4 weight only quantization, by PyTorch team.
19
+ Use it directly or serve using [vLLM](https://docs.vllm.ai/en/latest/) for 62% VRAM reduction (6.24 GB needed) and 1.45x speedup on H100 GPUs.
20
+
21
+ # Inference with vLLM
22
+ Install vllm nightly and torchao nightly to get some recent changes:
23
+ ```
24
+ pip install --pre vllm --extra-index-url https://wheels.vllm.ai/nightly
25
+ pip install --pre torchao torch --index-url https://download.pytorch.org/whl/nightly/cu128
26
+ ```
27
+
28
+ ## Serving
29
+ Then we can serve with the following command:
30
+ ```Shell
31
+ # Server
32
+ export MODEL=pytorch/Qwen3-8B-QAT-INT4
33
+ VLLM_DISABLE_COMPILE_CACHE=1 vllm serve $MODEL --tokenizer $MODEL -O3
34
+ ```
35
+
36
+ ```Shell
37
+ # Client
38
+ curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
39
+ "model": "pytorch/Qwen3-8B-QAT-INT4",
40
+ "messages": [
41
+ {"role": "user", "content": "Give me a short introduction to large language models."}
42
+ ],
43
+ "temperature": 0.6,
44
+ "top_p": 0.95,
45
+ "top_k": 20,
46
+ "max_tokens": 32768
47
+ }'
48
+ ```
49
+
50
+ Note: please use `VLLM_DISABLE_COMPILE_CACHE=1` to disable compile cache when running this code, e.g. `VLLM_DISABLE_COMPILE_CACHE=1 python example.py`, since there are some issues with the composability of compile in vLLM and torchao,
51
+ this is expected be resolved in pytorch 2.8.
52
+
53
+ # Inference with Transformers
54
+
55
+ Install the required packages:
56
+ ```Shell
57
+ pip install git+https://github.com/huggingface/transformers@main
58
+ pip install --pre torchao torch --index-url https://download.pytorch.org/whl/nightly/cu128
59
+ pip install accelerate
60
+ ```
61
+
62
+ Example:
63
+ ```Py
64
+ import torch
65
+ from transformers import AutoModelForCausalLM, AutoTokenizer
66
+
67
+ model_name = "pytorch/Qwen3-8B-QAT-INT4"
68
+
69
+ # load the tokenizer and the model
70
+ tokenizer = AutoTokenizer.from_pretrained(model_name)
71
+ model = AutoModelForCausalLM.from_pretrained(
72
+ model_name,
73
+ torch_dtype="auto",
74
+ device_map="auto"
75
+ )
76
+
77
+ # prepare the model input
78
+ prompt = "Give me a short introduction to large language model."
79
+ messages = [
80
+ {"role": "user", "content": prompt}
81
+ ]
82
+ text = tokenizer.apply_chat_template(
83
+ messages,
84
+ tokenize=False,
85
+ add_generation_prompt=True,
86
+ enable_thinking=True # Switches between thinking and non-thinking modes. Default is True.
87
+ )
88
+ model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
89
+
90
+ # conduct text completion
91
+ generated_ids = model.generate(
92
+ **model_inputs,
93
+ max_new_tokens=32768
94
+ )
95
+ output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
96
+
97
+ # parsing thinking content
98
+ try:
99
+ # rindex finding 151668 (</think>)
100
+ index = len(output_ids) - output_ids[::-1].index(151668)
101
+ except ValueError:
102
+ index = 0
103
+
104
+ thinking_content = tokenizer.decode(output_ids[:index], skip_special_tokens=True).strip("\n")
105
+ content = tokenizer.decode(output_ids[index:], skip_special_tokens=True).strip("\n")
106
+
107
+ print("thinking content:", thinking_content)
108
+ print("content:", content)
109
+ ```
110
+
111
+ # Quantization Recipe
112
+
113
+ Install the required packages:
114
+ ```Shell
115
+ pip install git+https://github.com/huggingface/transformers@main
116
+ pip install --pre torchao torch --index-url https://download.pytorch.org/whl/nightly/cu128
117
+ pip install unsloth
118
+ pip install accelerate
119
+ ```
120
+
121
+ Use the following code to fine-tune the model:
122
+
123
+ ```Py
124
+ # Modeled after https://colab.research.google.com/github/unslothai/notebooks/blob/main/nb/Qwen3_(14B)-Reasoning-Conversational.ipynb
125
+
126
+ from unsloth import FastLanguageModel
127
+ from unsloth.chat_templates import (
128
+ get_chat_template,
129
+ standardize_data_formats,
130
+ standardize_sharegpt,
131
+ train_on_responses_only,
132
+ )
133
+ from datasets import load_dataset
134
+ from trl import SFTConfig, SFTTrainer
135
+ import torch
136
+
137
+
138
+ max_seq_length = 2048
139
+ dtype = torch.bfloat16
140
+
141
+
142
+ # ==============
143
+ # Model setup |
144
+ # ==============
145
+
146
+ model, tokenizer = FastLanguageModel.from_pretrained(
147
+ model_name = "unsloth/Qwen3-8B",
148
+ max_seq_length = max_seq_length,
149
+ dtype = dtype,
150
+ load_in_4bit = False,
151
+ full_finetuning = False,
152
+ )
153
+
154
+ model = FastLanguageModel.get_peft_model(
155
+ model,
156
+ r = 16,
157
+ target_modules = ["q_proj", "k_proj", "v_proj", "o_proj",
158
+ "gate_proj", "up_proj", "down_proj",],
159
+ lora_alpha = 16,
160
+ lora_dropout = 0,
161
+ qat_scheme = "int4",
162
+ )
163
+ tokenizer = get_chat_template(tokenizer, chat_template="qwen3")
164
+
165
+
166
+ # =============
167
+ # Data setup |
168
+ # =============
169
+
170
+ def format_into_conversation(example):
171
+ choices = ["A", "B", "C", "D"]
172
+ correct_choice = choices[example["answer"]]
173
+ question = "Choose the correct answer for the following question: "
174
+ question += f"{example['question']}\n\n"
175
+ question += "Choices:\n"
176
+ question += f"A. {example['choices'][0]}\n"
177
+ question += f"B. {example['choices'][1]}\n"
178
+ question += f"C. {example['choices'][2]}\n"
179
+ question += f"D. {example['choices'][3]}"
180
+ answer = f"The correct answer is {correct_choice}."
181
+ return {"conversations": [
182
+ {"from": "human", "value": question},
183
+ {"from": "gpt", "value": answer},
184
+ ]}
185
+
186
+ def formatting_prompts_func(examples):
187
+ convos = examples["conversations"]
188
+ texts = [tokenizer.apply_chat_template(convo, tokenize = False, add_generation_prompt = False) for convo in convos]
189
+ return { "text" : texts, }
190
+
191
+ dataset = load_dataset("cais/mmlu", "all", split="auxiliary_train")
192
+ dataset = dataset.map(format_into_conversation)
193
+ dataset = dataset.remove_columns(["question", "subject", "choices", "answer"])
194
+ dataset = standardize_data_formats(dataset)
195
+ dataset = dataset.map(formatting_prompts_func, batched = True,)
196
+
197
+
198
+ # ========
199
+ # Train |
200
+ # ========
201
+
202
+ trainer = SFTTrainer(
203
+ model = model,
204
+ tokenizer = tokenizer,
205
+ train_dataset = dataset,
206
+ dataset_text_field = "text",
207
+ max_seq_length = max_seq_length,
208
+ packing = False,
209
+ args = SFTConfig(
210
+ per_device_train_batch_size = 32,
211
+ gradient_accumulation_steps = 1,
212
+ warmup_steps = 5,
213
+ num_train_epochs = 1,
214
+ max_steps = 300,
215
+ learning_rate = 2e-5,
216
+ logging_steps = 1,
217
+ optim = "adamw_8bit",
218
+ weight_decay = 0.01,
219
+ lr_scheduler_type = "linear",
220
+ seed = 3407,
221
+ output_dir = "outputs",
222
+ report_to = "none",
223
+ ),
224
+ )
225
+
226
+ trainer = train_on_responses_only(
227
+ trainer,
228
+ instruction_part = "<|im_start|>user\n",
229
+ response_part = "<|im_start|>assistant\n",
230
+ )
231
+ trainer_stats = trainer.train()
232
+
233
+ model.save_pretrained_torchao("/tmp/finetuned_qat_model")
234
+ ```
235
+
236
+ # Model Quality
237
+ We rely on [lm-evaluation-harness](https://github.com/EleutherAI/lm-evaluation-harness) to evaluate the quality of the quantized model.
238
+
239
+ | Benchmark | | |
240
+ |----------------------------------|----------------|---------------------------------|
241
+ | | mmlu accuracy | Normalized accuracy degradation |
242
+ | **Qwen3/Qwen3-8B** | | |
243
+ | bf16 | 73.02 | -0% |
244
+ | int4 | 69.91 | -100% |
245
+ | **Fine-tuned without QAT** | | |
246
+ | bf16 | 74.16 | +137% |
247
+ | int4 | 69.50 | -113% |
248
+ | **Fine-tuned with QAT** | | |
249
+ | int4 | 71.12 | -61.1% |
250
+
251
+ <details>
252
+ <summary> Reproduce Model Quality Results </summary>
253
+
254
+ Need to install lm-eval from source:
255
+ https://github.com/EleutherAI/lm-evaluation-harness#install
256
+
257
+ ## baseline
258
+ ```Shell
259
+ lm_eval --model hf --model_args pretrained=Qwen/Qwen3-8B --tasks mmlu --device cuda:0 --batch_size auto
260
+ ```
261
+
262
+ ## int4 weight only quantization with quantization-aware training (QAT-INT4)
263
+ ```Shell
264
+ export MODEL=pytorch/Qwen3-8B-QAT-INT4
265
+ # or
266
+ # export MODEL=Qwen/Qwen3-8B
267
+ lm_eval --model hf --model_args pretrained=$MODEL --tasks mmlu --device cuda:0 --batch_size auto
268
+ ```
269
+ </details>
270
+
271
+
272
+
273
+ # Peak Memory Usage
274
+
275
+ ## Results
276
+
277
+ | Benchmark | | |
278
+ |------------------|----------------|--------------------------------|
279
+ | | Qwen3-8B | Qwen3-8B-QAT-INT4 |
280
+ | Peak Memory (GB) | 16.47 | 6.24 (62% reduction) |
281
+
282
+
283
+
284
+ <details>
285
+ <summary> Reproduce Peak Memory Usage Results </summary>
286
+
287
+ We can use the following code to get a sense of peak memory usage during inference:
288
 
289
+ ```Py
290
+ import torch
291
+ from transformers import AutoModelForCausalLM, AutoTokenizer, TorchAoConfig
292
 
293
+ # use "Qwen/Qwen3-8B" or "pytorch/Qwen3-8B-QAT-INT4"
294
+ model_id = "pytorch/Qwen3-8B-QAT-INT4"
295
+ quantized_model = AutoModelForCausalLM.from_pretrained(model_id, device_map="cuda:0", torch_dtype=torch.bfloat16)
296
+ tokenizer = AutoTokenizer.from_pretrained(model_id)
297
 
298
+ torch.cuda.reset_peak_memory_stats()
299
 
300
+ prompt = "Hey, are you conscious? Can you talk to me?"
301
+ messages = [
302
+ {
303
+ "role": "system",
304
+ "content": "",
305
+ },
306
+ {"role": "user", "content": prompt},
307
+ ]
308
+ templated_prompt = tokenizer.apply_chat_template(
309
+ messages,
310
+ tokenize=False,
311
+ add_generation_prompt=True,
312
+ )
313
+ print("Prompt:", prompt)
314
+ print("Templated prompt:", templated_prompt)
315
+ inputs = tokenizer(
316
+ templated_prompt,
317
+ return_tensors="pt",
318
+ ).to("cuda")
319
+ generated_ids = quantized_model.generate(**inputs, max_new_tokens=128)
320
+ output_text = tokenizer.batch_decode(
321
+ generated_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False
322
+ )
323
+ print("Response:", output_text[0][len(prompt):])
324
 
325
+ mem = torch.cuda.max_memory_reserved() / 1e9
326
+ print(f"Peak Memory Usage: {mem:.02f} GB")
327
+ ```
328
 
329
+ </details>
330
 
 
331
 
 
 
 
 
 
 
 
332
 
333
+ # Model Performance
334
 
335
+ Our INT4 model is only optimized for batch size 1, so expect some slowdown with larger batch sizes, we expect this to be used in local server deployment for single or a few users where the decode tokens per second will matters more than the time to first token.
336
 
337
+ ## Results
 
 
338
 
339
+ | Benchmark (Latency) | | |
340
+ |----------------------------------|----------------|--------------------------|
341
+ | | Qwen3-8B | Qwen3-8B-QAT-INT4 |
342
+ | latency (batch_size=1) | 2.50s | 1.72s (1.45x speedup) |
343
 
 
344
 
345
+ Int4 weight only is optimized for batch size 1 and short input and output token length, please stay tuned for models optimized for larger batch sizes or longer token length.
346
 
 
347
 
 
348
 
349
+ <details>
350
+ <summary> Reproduce Model Performance Results </summary>
351
 
352
+ ## Setup
353
 
354
+ Get vllm source code:
355
+ ```Shell
356
+ git clone [email protected]:vllm-project/vllm.git
357
+ ```
358
 
359
+ Install vllm
360
+ ```
361
+ VLLM_USE_PRECOMPILED=1 pip install --editable .
362
+ ```
363
 
364
+ Run the benchmarks under `vllm` root folder:
365
 
366
+ ## benchmark_latency
367
 
368
+ ### baseline
369
+ ```Shell
370
+ vllm bench latency --input-len 256 --output-len 256 --model Qwen/Qwen3-8B --batch-size 1
371
+ ```
372
 
373
+ ### QAT INT4
374
+ ```Shell
375
+ VLLM_DISABLE_COMPILE_CACHE=1 vllm bench latency --input-len 256 --output-len 256 --model pytorch/Qwen3-8B-QAT-INT4 --batch-size 1
376
+ ```
377
 
378
+ </details>
379
 
380
+ # Paper: TorchAO: PyTorch-Native Training-to-Serving Model Optimization
381
+ The model's quantization is powered by **TorchAO**, a framework presented in the paper [TorchAO: PyTorch-Native Training-to-Serving Model Optimization](https://huggingface.co/papers/2507.16099).
382
 
383
+ **Abstract:** We present TorchAO, a PyTorch-native model optimization framework leveraging quantization and sparsity to provide an end-to-end, training-to-serving workflow for AI models. TorchAO supports a variety of popular model optimization techniques, including FP8 quantized training, quantization-aware training (QAT), post-training quantization (PTQ), and 2:4 sparsity, and leverages a novel tensor subclass abstraction to represent a variety of widely-used, backend agnostic low precision data types, including INT4, INT8, FP8, MXFP4, MXFP6, and MXFP8. TorchAO integrates closely with the broader ecosystem at each step of the model optimization pipeline, from pre-training (TorchTitan) to fine-tuning (TorchTune, Axolotl) to serving (HuggingFace, vLLM, SGLang, ExecuTorch), connecting an otherwise fragmented space in a single, unified workflow. TorchAO has enabled recent launches of the quantized Llama 3.2 1B/3B and LlamaGuard3-8B models and is open-source at this https URL .
384
 
385
+ # Resources
386
+ * **Official TorchAO GitHub Repository:** [https://github.com/pytorch/ao](https://github.com/pytorch/ao)
387
+ * **TorchAO Documentation:** [https://docs.pytorch.org/ao/stable/index.html](https://docs.pytorch.org/ao/stable/index.html)
388
 
 
389
 
390
+ # Disclaimer
391
+ PyTorch has not performed safety evaluations or red teamed the quantized models. Performance characteristics, outputs, and behaviors may differ from the original models. Users are solely responsible for selecting appropriate use cases, evaluating and mitigating for accuracy, safety, and fairness, ensuring security, and complying with all applicable laws and regulations.
392
 
393
+ Nothing contained in this Model Card should be interpreted as or deemed a restriction or modification to the licenses the models are released under, including any limitations of liability or disclaimers of warranties provided therein.