Update README.md
Browse files
README.md
CHANGED
|
@@ -15,6 +15,12 @@ tags:
|
|
| 15 |
- experimental
|
| 16 |
---
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
```py
|
| 19 |
Classification Report:
|
| 20 |
precision recall f1-score support
|
|
@@ -29,4 +35,85 @@ Classification Report:
|
|
| 29 |
weighted avg 0.9609 0.9559 0.9557 10000
|
| 30 |
```
|
| 31 |
|
| 32 |
-

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
- experimental
|
| 16 |
---
|
| 17 |
|
| 18 |
+

|
| 19 |
+
|
| 20 |
+
# **x-bot-profile-detection**
|
| 21 |
+
|
| 22 |
+
> **x-bot-profile-detection** is a SigLIP2-based classification model designed to detect **profile authenticity types on social media platforms** (such as X/Twitter). It categorizes a profile image into four classes: **bot**, **cyborg**, **real**, or **verified**. Built on `google/siglip2-base-patch16-224`, the model leverages advanced vision-language pretraining for robust image classification.
|
| 23 |
+
|
| 24 |
```py
|
| 25 |
Classification Report:
|
| 26 |
precision recall f1-score support
|
|
|
|
| 35 |
weighted avg 0.9609 0.9559 0.9557 10000
|
| 36 |
```
|
| 37 |
|
| 38 |
+

|
| 39 |
+
|
| 40 |
+
---
|
| 41 |
+
|
| 42 |
+
## **Label Classes**
|
| 43 |
+
|
| 44 |
+
The model predicts one of the following profile types:
|
| 45 |
+
|
| 46 |
+
```
|
| 47 |
+
0: bot → Automated accounts
|
| 48 |
+
1: cyborg → Partially automated or suspiciously mixed behavior
|
| 49 |
+
2: real → Genuine human users
|
| 50 |
+
3: verified → Verified accounts or official profiles
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
---
|
| 54 |
+
|
| 55 |
+
## **Installation**
|
| 56 |
+
|
| 57 |
+
```bash
|
| 58 |
+
pip install transformers torch pillow gradio
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
---
|
| 62 |
+
|
| 63 |
+
## **Example Inference Code**
|
| 64 |
+
|
| 65 |
+
```python
|
| 66 |
+
import gradio as gr
|
| 67 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 68 |
+
from PIL import Image
|
| 69 |
+
import torch
|
| 70 |
+
|
| 71 |
+
# Load model and processor
|
| 72 |
+
model_name = "prithivMLmods/x-bot-profile-detection"
|
| 73 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 74 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 75 |
+
|
| 76 |
+
# Define class mapping
|
| 77 |
+
id2label = {
|
| 78 |
+
"0": "bot",
|
| 79 |
+
"1": "cyborg",
|
| 80 |
+
"2": "real",
|
| 81 |
+
"3": "verified"
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
def detect_profile_type(image):
|
| 85 |
+
image = Image.fromarray(image).convert("RGB")
|
| 86 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 87 |
+
|
| 88 |
+
with torch.no_grad():
|
| 89 |
+
outputs = model(**inputs)
|
| 90 |
+
logits = outputs.logits
|
| 91 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 92 |
+
|
| 93 |
+
prediction = {
|
| 94 |
+
id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))
|
| 95 |
+
}
|
| 96 |
+
|
| 97 |
+
return prediction
|
| 98 |
+
|
| 99 |
+
# Create Gradio UI
|
| 100 |
+
iface = gr.Interface(
|
| 101 |
+
fn=detect_profile_type,
|
| 102 |
+
inputs=gr.Image(type="numpy"),
|
| 103 |
+
outputs=gr.Label(num_top_classes=4, label="Predicted Profile Type"),
|
| 104 |
+
title="x-bot-profile-detection",
|
| 105 |
+
description="Upload a social media profile picture to classify it as Bot, Cyborg, Real, or Verified using a SigLIP2 model."
|
| 106 |
+
)
|
| 107 |
+
|
| 108 |
+
if __name__ == "__main__":
|
| 109 |
+
iface.launch()
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
---
|
| 113 |
+
|
| 114 |
+
## **Use Cases**
|
| 115 |
+
|
| 116 |
+
* Social media moderation and automation detection
|
| 117 |
+
* Anomaly detection in public discourse
|
| 118 |
+
* Botnet analysis and influence operation research
|
| 119 |
+
* Platform integrity and trust verification
|