Update README.md
Browse files
README.md
CHANGED
|
@@ -18,6 +18,9 @@ tags:
|
|
| 18 |
- Female
|
| 19 |
- SigLIP2
|
| 20 |
---
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
```py
|
| 23 |
Classification Report:
|
|
@@ -32,3 +35,77 @@ female portrait 0.9754 0.9656 0.9705 1600
|
|
| 32 |
```
|
| 33 |
|
| 34 |

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
- Female
|
| 19 |
- SigLIP2
|
| 20 |
---
|
| 21 |
+
# **Realistic-Gender-Classification**
|
| 22 |
+
|
| 23 |
+
> **Realistic-Gender-Classification** is a binary image classification model based on `google/siglip2-base-patch16-224`, designed to classify **gender** from realistic human portrait images. It can be used in **demographic analysis**, **personalization systems**, and **automated tagging** in large-scale image datasets.
|
| 24 |
|
| 25 |
```py
|
| 26 |
Classification Report:
|
|
|
|
| 35 |
```
|
| 36 |
|
| 37 |

|
| 38 |
+
|
| 39 |
+
---
|
| 40 |
+
|
| 41 |
+
## **Label Classes**
|
| 42 |
+
|
| 43 |
+
The model distinguishes between the following portrait gender categories:
|
| 44 |
+
|
| 45 |
+
```
|
| 46 |
+
0: female portrait
|
| 47 |
+
1: male portrait
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
---
|
| 51 |
+
|
| 52 |
+
## **Installation**
|
| 53 |
+
|
| 54 |
+
```bash
|
| 55 |
+
pip install transformers torch pillow gradio
|
| 56 |
+
```
|
| 57 |
+
|
| 58 |
+
---
|
| 59 |
+
|
| 60 |
+
## **Example Inference Code**
|
| 61 |
+
|
| 62 |
+
```python
|
| 63 |
+
import gradio as gr
|
| 64 |
+
from transformers import AutoImageProcessor, SiglipForImageClassification
|
| 65 |
+
from PIL import Image
|
| 66 |
+
import torch
|
| 67 |
+
|
| 68 |
+
# Load model and processor
|
| 69 |
+
model_name = "prithivMLmods/Realistic-Gender-Classification"
|
| 70 |
+
model = SiglipForImageClassification.from_pretrained(model_name)
|
| 71 |
+
processor = AutoImageProcessor.from_pretrained(model_name)
|
| 72 |
+
|
| 73 |
+
# ID to label mapping
|
| 74 |
+
id2label = {
|
| 75 |
+
"0": "female portrait",
|
| 76 |
+
"1": "male portrait"
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
def classify_gender(image):
|
| 80 |
+
image = Image.fromarray(image).convert("RGB")
|
| 81 |
+
inputs = processor(images=image, return_tensors="pt")
|
| 82 |
+
|
| 83 |
+
with torch.no_grad():
|
| 84 |
+
outputs = model(**inputs)
|
| 85 |
+
logits = outputs.logits
|
| 86 |
+
probs = torch.nn.functional.softmax(logits, dim=1).squeeze().tolist()
|
| 87 |
+
|
| 88 |
+
prediction = {id2label[str(i)]: round(probs[i], 3) for i in range(len(probs))}
|
| 89 |
+
return prediction
|
| 90 |
+
|
| 91 |
+
# Gradio Interface
|
| 92 |
+
iface = gr.Interface(
|
| 93 |
+
fn=classify_gender,
|
| 94 |
+
inputs=gr.Image(type="numpy"),
|
| 95 |
+
outputs=gr.Label(num_top_classes=2, label="Gender Classification"),
|
| 96 |
+
title="Realistic-Gender-Classification",
|
| 97 |
+
description="Upload a realistic portrait image to classify it as 'female portrait' or 'male portrait'."
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
if __name__ == "__main__":
|
| 101 |
+
iface.launch()
|
| 102 |
+
```
|
| 103 |
+
|
| 104 |
+
---
|
| 105 |
+
|
| 106 |
+
## **Applications**
|
| 107 |
+
|
| 108 |
+
* **Demographic Insights in Visual Data**
|
| 109 |
+
* **Dataset Curation & Tagging**
|
| 110 |
+
* **Media Analytics**
|
| 111 |
+
* **Audience Profiling for Marketing**
|