|  | import torch | 
					
						
						|  | from typing import  Dict, List, Any | 
					
						
						|  | from transformers import AutoTokenizer, AutoModelForSeq2SeqLM, pipeline | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | device = 0 if torch.cuda.is_available() else -1 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | multi_model_list = [ | 
					
						
						|  | {"model_id": "distilbert-base-uncased-finetuned-sst-2-english", "task": "text-classification"}, | 
					
						
						|  | {"model_id": "Helsinki-NLP/opus-mt-en-de", "task": "translation"}, | 
					
						
						|  | {"model_id": "facebook/bart-large-cnn", "task": "summarization"}, | 
					
						
						|  | {"model_id": "dslim/bert-base-NER", "task": "token-classification"}, | 
					
						
						|  | {"model_id": "textattack/bert-base-uncased-ag-news", "task": "text-classification"}, | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class EndpointHandler(): | 
					
						
						|  | def __init__(self, path=""): | 
					
						
						|  | self.multi_model={} | 
					
						
						|  |  | 
					
						
						|  | for model in multi_model_list: | 
					
						
						|  | self.multi_model[model["model_id"]] = pipeline(model["task"], model=model["model_id"], device=device) | 
					
						
						|  |  | 
					
						
						|  | def __call__(self, data: Any) -> List[List[Dict[str, float]]]: | 
					
						
						|  |  | 
					
						
						|  | inputs = data.pop("inputs", data) | 
					
						
						|  | parameters = data.pop("parameters", None) | 
					
						
						|  | model_id = data.pop("model_id", None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if model_id is None or model_id not in self.multi_model: | 
					
						
						|  | raise ValueError(f"model_id: {model_id} is not valid. Available models are: {list(self.multi_model.keys())}") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if parameters is not None: | 
					
						
						|  | prediction = self.multi_model[model_id](inputs, **parameters) | 
					
						
						|  | else: | 
					
						
						|  | prediction = self.multi_model[model_id](inputs) | 
					
						
						|  |  | 
					
						
						|  | return prediction |