Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeRisk Bounds of Accelerated SGD for Overparameterized Linear Regression
Accelerated stochastic gradient descent (ASGD) is a workhorse in deep learning and often achieves better generalization performance than SGD. However, existing optimization theory can only explain the faster convergence of ASGD, but cannot explain its better generalization. In this paper, we study the generalization of ASGD for overparameterized linear regression, which is possibly the simplest setting of learning with overparameterization. We establish an instance-dependent excess risk bound for ASGD within each eigen-subspace of the data covariance matrix. Our analysis shows that (i) ASGD outperforms SGD in the subspace of small eigenvalues, exhibiting a faster rate of exponential decay for bias error, while in the subspace of large eigenvalues, its bias error decays slower than SGD; and (ii) the variance error of ASGD is always larger than that of SGD. Our result suggests that ASGD can outperform SGD when the difference between the initialization and the true weight vector is mostly confined to the subspace of small eigenvalues. Additionally, when our analysis is specialized to linear regression in the strongly convex setting, it yields a tighter bound for bias error than the best-known result.
Understanding Factual Errors in Summarization: Errors, Summarizers, Datasets, Error Detectors
The propensity of abstractive summarization models to make factual errors has been studied extensively, including design of metrics to detect factual errors and annotation of errors in current systems' outputs. However, the ever-evolving nature of summarization systems, metrics, and annotated benchmarks makes factuality evaluation a moving target, and drawing clear comparisons among metrics has become increasingly difficult. In this work, we aggregate factuality error annotations from nine existing datasets and stratify them according to the underlying summarization model. We compare performance of state-of-the-art factuality metrics, including recent ChatGPT-based metrics, on this stratified benchmark and show that their performance varies significantly across different types of summarization models. Critically, our analysis shows that much of the recent improvement in the factuality detection space has been on summaries from older (pre-Transformer) models instead of more relevant recent summarization models. We further perform a finer-grained analysis per error-type and find similar performance variance across error types for different factuality metrics. Our results show that no one metric is superior in all settings or for all error types, and we provide recommendations for best practices given these insights.
Statistical Uncertainty in Word Embeddings: GloVe-V
Static word embeddings are ubiquitous in computational social science applications and contribute to practical decision-making in a variety of fields including law and healthcare. However, assessing the statistical uncertainty in downstream conclusions drawn from word embedding statistics has remained challenging. When using only point estimates for embeddings, researchers have no streamlined way of assessing the degree to which their model selection criteria or scientific conclusions are subject to noise due to sparsity in the underlying data used to generate the embeddings. We introduce a method to obtain approximate, easy-to-use, and scalable reconstruction error variance estimates for GloVe (Pennington et al., 2014), one of the most widely used word embedding models, using an analytical approximation to a multivariate normal model. To demonstrate the value of embeddings with variance (GloVe-V), we illustrate how our approach enables principled hypothesis testing in core word embedding tasks, such as comparing the similarity between different word pairs in vector space, assessing the performance of different models, and analyzing the relative degree of ethnic or gender bias in a corpus using different word lists.
Variance Reduced Halpern Iteration for Finite-Sum Monotone Inclusions
Machine learning approaches relying on such criteria as adversarial robustness or multi-agent settings have raised the need for solving game-theoretic equilibrium problems. Of particular relevance to these applications are methods targeting finite-sum structure, which generically arises in empirical variants of learning problems in these contexts. Further, methods with computable approximation errors are highly desirable, as they provide verifiable exit criteria. Motivated by these applications, we study finite-sum monotone inclusion problems, which model broad classes of equilibrium problems. Our main contributions are variants of the classical Halpern iteration that employ variance reduction to obtain improved complexity guarantees in which n component operators in the finite sum are ``on average'' either cocoercive or Lipschitz continuous and monotone, with parameter L. The resulting oracle complexity of our methods, which provide guarantees for the last iterate and for a (computable) operator norm residual, is mathcal{O}( n + nLvarepsilon^{-1}), which improves upon existing methods by a factor up to n. This constitutes the first variance reduction-type result for general finite-sum monotone inclusions and for more specific problems such as convex-concave optimization when operator norm residual is the optimality measure. We further argue that, up to poly-logarithmic factors, this complexity is unimprovable in the monotone Lipschitz setting; i.e., the provided result is near-optimal.
Evaluating Intelligence via Trial and Error
Intelligence is a crucial trait for species to find solutions within a limited number of trial-and-error attempts. Building on this idea, we introduce Survival Game as a framework to evaluate intelligence based on the number of failed attempts in a trial-and-error process. Fewer failures indicate higher intelligence. When the expectation and variance of failure counts are both finite, it signals the ability to consistently find solutions to new challenges, which we define as the Autonomous Level of intelligence. Using Survival Game, we comprehensively evaluate existing AI systems. Our results show that while AI systems achieve the Autonomous Level in simple tasks, they are still far from it in more complex tasks, such as vision, search, recommendation, and language. While scaling current AI technologies might help, this would come at an astronomical cost. Projections suggest that achieving the Autonomous Level for general tasks would require 10^{26} parameters. To put this into perspective, loading such a massive model requires so many H100 GPUs that their total value is 10^{7} times that of Apple Inc.'s market value. Even with Moore's Law, supporting such a parameter scale would take 70 years. This staggering cost highlights the complexity of human tasks and the inadequacies of current AI technologies. To further investigate this phenomenon, we conduct a theoretical analysis of Survival Game and its experimental results. Our findings suggest that human tasks possess a criticality property. As a result, Autonomous Level requires a deep understanding of the task's underlying mechanisms. Current AI systems, however, do not fully grasp these mechanisms and instead rely on superficial mimicry, making it difficult for them to reach an autonomous level. We believe Survival Game can not only guide the future development of AI but also offer profound insights into human intelligence.
Balancing Computational Efficiency and Forecast Error in Machine Learning-based Time-Series Forecasting: Insights from Live Experiments on Meteorological Nowcasting
Machine learning for time-series forecasting remains a key area of research. Despite successful application of many machine learning techniques, relating computational efficiency to forecast error remains an under-explored domain. This paper addresses this topic through a series of real-time experiments to quantify the relationship between computational cost and forecast error using meteorological nowcasting as an example use-case. We employ a variety of popular regression techniques (XGBoost, FC-MLP, Transformer, and LSTM) for multi-horizon, short-term forecasting of three variables (temperature, wind speed, and cloud cover) for multiple locations. During a 5-day live experiment, 4000 data sources were streamed for training and inferencing 144 models per hour. These models were parameterized to explore forecast error for two computational cost minimization methods: a novel auto-adaptive data reduction technique (Variance Horizon) and a performance-based concept drift-detection mechanism. Forecast error of all model variations were benchmarked in real-time against a state-of-the-art numerical weather prediction model. Performance was assessed using classical and novel evaluation metrics. Results indicate that using the Variance Horizon reduced computational usage by more than 50\%, while increasing between 0-15\% in error. Meanwhile, performance-based retraining reduced computational usage by up to 90\% while also improving forecast error by up to 10\%. Finally, the combination of both the Variance Horizon and performance-based retraining outperformed other model configurations by up to 99.7\% when considering error normalized to computational usage.
GVPO: Group Variance Policy Optimization for Large Language Model Post-Training
Post-training plays a crucial role in refining and aligning large language models to meet specific tasks and human preferences. While recent advancements in post-training techniques, such as Group Relative Policy Optimization (GRPO), leverage increased sampling with relative reward scoring to achieve superior performance, these methods often suffer from training instability that limits their practical adoption. To address this challenge, we present Group Variance Policy Optimization (GVPO). GVPO incorporates the analytical solution to KL-constrained reward maximization directly into its gradient weights, ensuring alignment with the optimal policy. The method provides intuitive physical interpretations: its gradient mirrors the mean squared error between the central distance of implicit rewards and that of actual rewards. GVPO offers two key advantages: (1) it guarantees a unique optimal solution, exactly the KL-constrained reward maximization objective, (2) it supports flexible sampling distributions that avoids on-policy and importance sampling limitations. By unifying theoretical guarantees with practical adaptability, GVPO establishes a new paradigm for reliable and versatile LLM post-training.
No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful framework for improving the reasoning abilities of Large Language Models (LLMs). However, current methods such as GRPO rely only on problems where the model responses to the same input differ in correctness, while ignoring those where all responses receive the same reward - so-called zero-variance prompts. In this work, we argue that such prompts are not useless but can, in fact, provide meaningful feedback for policy optimization. To this end, we introduce RL with Zero-Variance Prompts (RL-ZVP), a novel algorithm that extract learning signals from zero-variance prompts. RL-ZVP directly rewards correctness and penalizes errors even without contrasting responses, modulating feedback with token-level characteristics to preserve informative, nuanced signals. Across six math reasoning benchmarks, RL-ZVP achieves significant improvements of up to 8.61 points in accuracy and 7.77 points in pass rate over GRPO, while consistently outperforming other baselines that filter out zero-variance prompts. These results highlight the untapped potential of learning from zero-variance prompts in RLVR.
Prediction Error-based Classification for Class-Incremental Learning
Class-incremental learning (CIL) is a particularly challenging variant of continual learning, where the goal is to learn to discriminate between all classes presented in an incremental fashion. Existing approaches often suffer from excessive forgetting and imbalance of the scores assigned to classes that have not been seen together during training. In this study, we introduce a novel approach, Prediction Error-based Classification (PEC), which differs from traditional discriminative and generative classification paradigms. PEC computes a class score by measuring the prediction error of a model trained to replicate the outputs of a frozen random neural network on data from that class. The method can be interpreted as approximating a classification rule based on Gaussian Process posterior variance. PEC offers several practical advantages, including sample efficiency, ease of tuning, and effectiveness even when data are presented one class at a time. Our empirical results show that PEC performs strongly in single-pass-through-data CIL, outperforming other rehearsal-free baselines in all cases and rehearsal-based methods with moderate replay buffer size in most cases across multiple benchmarks.
EVODiff: Entropy-aware Variance Optimized Diffusion Inference
Diffusion models (DMs) excel in image generation, but suffer from slow inference and the training-inference discrepancies. Although gradient-based solvers like DPM-Solver accelerate the denoising inference, they lack theoretical foundations in information transmission efficiency. In this work, we introduce an information-theoretic perspective on the inference processes of DMs, revealing that successful denoising fundamentally reduces conditional entropy in reverse transitions. This principle leads to our key insights into the inference processes: (1) data prediction parameterization outperforms its noise counterpart, and (2) optimizing conditional variance offers a reference-free way to minimize both transition and reconstruction errors. Based on these insights, we propose an entropy-aware variance optimized method for the generative process of DMs, called EVODiff, which systematically reduces uncertainty by optimizing conditional entropy during denoising. Extensive experiments on DMs validate our insights and demonstrate that our method significantly and consistently outperforms state-of-the-art (SOTA) gradient-based solvers. For example, compared to the DPM-Solver++, EVODiff reduces the reconstruction error by up to 45.5\% (FID improves from 5.10 to 2.78) at 10 function evaluations (NFE) on CIFAR-10, cuts the NFE cost by 25\% (from 20 to 15 NFE) for high-quality samples on ImageNet-256, and improves text-to-image generation while reducing artifacts. Code is available at https://github.com/ShiguiLi/EVODiff.
Generalized Gaussian Temporal Difference Error for Uncertainty-aware Reinforcement Learning
Conventional uncertainty-aware temporal difference (TD) learning methods often rely on simplistic assumptions, typically including a zero-mean Gaussian distribution for TD errors. Such oversimplification can lead to inaccurate error representations and compromised uncertainty estimation. In this paper, we introduce a novel framework for generalized Gaussian error modeling in deep reinforcement learning, applicable to both discrete and continuous control settings. Our framework enhances the flexibility of error distribution modeling by incorporating additional higher-order moment, particularly kurtosis, thereby improving the estimation and mitigation of data-dependent noise, i.e., aleatoric uncertainty. We examine the influence of the shape parameter of the generalized Gaussian distribution (GGD) on aleatoric uncertainty and provide a closed-form expression that demonstrates an inverse relationship between uncertainty and the shape parameter. Additionally, we propose a theoretically grounded weighting scheme to fully leverage the GGD. To address epistemic uncertainty, we enhance the batch inverse variance weighting by incorporating bias reduction and kurtosis considerations, resulting in improved robustness. Extensive experimental evaluations using policy gradient algorithms demonstrate the consistent efficacy of our method, showcasing significant performance improvements.
AdaFlow: Imitation Learning with Variance-Adaptive Flow-Based Policies
Diffusion-based imitation learning improves Behavioral Cloning (BC) on multi-modal decision-making, but comes at the cost of significantly slower inference due to the recursion in the diffusion process. It urges us to design efficient policy generators while keeping the ability to generate diverse actions. To address this challenge, we propose AdaFlow, an imitation learning framework based on flow-based generative modeling. AdaFlow represents the policy with state-conditioned ordinary differential equations (ODEs), which are known as probability flows. We reveal an intriguing connection between the conditional variance of their training loss and the discretization error of the ODEs. With this insight, we propose a variance-adaptive ODE solver that can adjust its step size in the inference stage, making AdaFlow an adaptive decision-maker, offering rapid inference without sacrificing diversity. Interestingly, it automatically reduces to a one-step generator when the action distribution is uni-modal. Our comprehensive empirical evaluation shows that AdaFlow achieves high performance with fast inference speed.
On Balancing Bias and Variance in Unsupervised Multi-Source-Free Domain Adaptation
Due to privacy, storage, and other constraints, there is a growing need for unsupervised domain adaptation techniques in machine learning that do not require access to the data used to train a collection of source models. Existing methods for multi-source-free domain adaptation (MSFDA) typically train a target model using pseudo-labeled data produced by the source models, which focus on improving the pseudo-labeling techniques or proposing new training objectives. Instead, we aim to analyze the fundamental limits of MSFDA. In particular, we develop an information-theoretic bound on the generalization error of the resulting target model, which illustrates an inherent bias-variance trade-off. We then provide insights on how to balance this trade-off from three perspectives, including domain aggregation, selective pseudo-labeling, and joint feature alignment, which leads to the design of novel algorithms. Experiments on multiple datasets validate our theoretical analysis and demonstrate the state-of-art performance of the proposed algorithm, especially on some of the most challenging datasets, including Office-Home and DomainNet.
Non-Uniform Spatial Alignment Errors in sUAS Imagery From Wide-Area Disasters
This work presents the first quantitative study of alignment errors between small uncrewed aerial systems (sUAS) geospatial imagery and a priori building polygons and finds that alignment errors are non-uniform and irregular. The work also introduces a publicly available dataset of imagery, building polygons, and human-generated and curated adjustments that can be used to evaluate existing strategies for aligning building polygons with sUAS imagery. There are no efforts that have aligned pre-existing spatial data with sUAS imagery, and thus, there is no clear state of practice. However, this effort and analysis show that the translational alignment errors present in this type of data, averaging 82px and an intersection over the union of 0.65, which would induce further errors and biases in downstream machine learning systems unless addressed. This study identifies and analyzes the translational alignment errors of 21,619 building polygons in fifty-one orthomosaic images, covering 16787.2 Acres (26.23 square miles), constructed from sUAS raw imagery from nine wide-area disasters (Hurricane Ian, Hurricane Harvey, Hurricane Michael, Hurricane Ida, Hurricane Idalia, Hurricane Laura, the Mayfield Tornado, the Musset Bayou Fire, and the Kilauea Eruption). The analysis finds no uniformity among the angle and distance metrics of the building polygon alignments as they present an average degree variance of 0.4 and an average pixel distance variance of 0.45. This work alerts the sUAS community to the problem of spatial alignment and that a simple linear transform, often used to align satellite imagery, will not be sufficient to align spatial data in sUAS orthomosaic imagery.
Suppressing the sample variance of DESI-like galaxy clustering with fast simulations
Ongoing and upcoming galaxy redshift surveys, such as the Dark Energy Spectroscopic Instrument (DESI) survey, will observe vast regions of sky and a wide range of redshifts. In order to model the observations and address various systematic uncertainties, N-body simulations are routinely adopted, however, the number of large simulations with sufficiently high mass resolution is usually limited by available computing time. Therefore, achieving a simulation volume with the effective statistical errors significantly smaller than those of the observations becomes prohibitively expensive. In this study, we apply the Convergence Acceleration by Regression and Pooling (CARPool) method to mitigate the sample variance of the DESI-like galaxy clustering in the AbacusSummit simulations, with the assistance of the quasi-N-body simulations FastPM. Based on the halo occupation distribution (HOD) models, we construct different FastPM galaxy catalogs, including the luminous red galaxies (LRGs), emission line galaxies (ELGs), and quasars, with their number densities and two-point clustering statistics well matched to those of AbacusSummit. We also employ the same initial conditions between AbacusSummit and FastPM to achieve high cross-correlation, as it is useful in effectively suppressing the variance. Our method of reducing noise in clustering is equivalent to performing a simulation with volume larger by a factor of 5 and 4 for LRGs and ELGs, respectively. We also mitigate the standard deviation of the LRG bispectrum with the triangular configurations k_2=2k_1=0.2 h/Mpc by a factor of 1.6. With smaller sample variance on galaxy clustering, we are able to constrain the baryon acoustic oscillations (BAO) scale parameters to higher precision. The CARPool method will be beneficial to better constrain the theoretical systematics of BAO, redshift space distortions (RSD) and primordial non-Gaussianity (NG).
Butterfly Effects of SGD Noise: Error Amplification in Behavior Cloning and Autoregression
This work studies training instabilities of behavior cloning with deep neural networks. We observe that minibatch SGD updates to the policy network during training result in sharp oscillations in long-horizon rewards, despite negligibly affecting the behavior cloning loss. We empirically disentangle the statistical and computational causes of these oscillations, and find them to stem from the chaotic propagation of minibatch SGD noise through unstable closed-loop dynamics. While SGD noise is benign in the single-step action prediction objective, it results in catastrophic error accumulation over long horizons, an effect we term gradient variance amplification (GVA). We show that many standard mitigation techniques do not alleviate GVA, but find an exponential moving average (EMA) of iterates to be surprisingly effective at doing so. We illustrate the generality of this phenomenon by showing the existence of GVA and its amelioration by EMA in both continuous control and autoregressive language generation. Finally, we provide theoretical vignettes that highlight the benefits of EMA in alleviating GVA and shed light on the extent to which classical convex models can help in understanding the benefits of iterate averaging in deep learning.
TEVR: Improving Speech Recognition by Token Entropy Variance Reduction
This paper presents TEVR, a speech recognition model designed to minimize the variation in token entropy w.r.t. to the language model. This takes advantage of the fact that if the language model will reliably and accurately predict a token anyway, then the acoustic model doesn't need to be accurate in recognizing it. We train German ASR models with 900 million parameters and show that on CommonVoice German, TEVR scores a very competitive 3.64% word error rate, which outperforms the best reported results by a relative 16.89% reduction in word error rate. We hope that releasing our fully trained speech recognition pipeline to the community will lead to privacy-preserving offline virtual assistants in the future.
From Noisy Traces to Stable Gradients: Bias-Variance Optimized Preference Optimization for Aligning Large Reasoning Models
Large reasoning models (LRMs) generate intermediate reasoning traces before producing final answers, yielding strong gains on multi-step and mathematical tasks. Yet aligning LRMs with human preferences, a crucial prerequisite for model deployment, remains underexplored. The statistically correct objective for preference alignment requires marginalizing over reasoning traces, but this computation is intractable in practice. A common workaround optimizes a single sampled trajectory, which introduces substantial gradient variance from stochastic trace sampling. To address this challenge, we frame preference optimization for LRMs through the lens of the bias--variance trade-off and propose Bias--Variance Optimized Preference Optimization (BVPO), a simple, drop-in method that mixes two gradient estimators: a high-variance trace-based estimator and a low-variance empty-trace estimator obtained by disabling reasoning trace generation. Our theory shows that BVPO strictly reduces trace-induced variance for any nontrivial mixture, provides a closed-form choice of the mixing weight that minimizes mean-squared error relative to the true marginal gradient, and under standard smoothness and step-size conditions, tightens classical convergence bounds for stochastic gradient descent. Empirically, BVPO improves alignment over the best baseline by up to 7.8 points on AlpacaEval~2 and 6.8 points on Arena-Hard. Despite being trained only on general conversational data, BVPO also boosts reasoning performance for base models by up to 4.0 points on the average of six math reasoning benchmarks. These results identify variance from trace sampling as a key bottleneck and demonstrate that directly optimizing the bias--variance trade-off yields more stable training and stronger overall performance.
Distributional Soft Actor-Critic: Off-Policy Reinforcement Learning for Addressing Value Estimation Errors
In reinforcement learning (RL), function approximation errors are known to easily lead to the Q-value overestimations, thus greatly reducing policy performance. This paper presents a distributional soft actor-critic (DSAC) algorithm, which is an off-policy RL method for continuous control setting, to improve the policy performance by mitigating Q-value overestimations. We first discover in theory that learning a distribution function of state-action returns can effectively mitigate Q-value overestimations because it is capable of adaptively adjusting the update stepsize of the Q-value function. Then, a distributional soft policy iteration (DSPI) framework is developed by embedding the return distribution function into maximum entropy RL. Finally, we present a deep off-policy actor-critic variant of DSPI, called DSAC, which directly learns a continuous return distribution by keeping the variance of the state-action returns within a reasonable range to address exploding and vanishing gradient problems. We evaluate DSAC on the suite of MuJoCo continuous control tasks, achieving the state-of-the-art performance.
Calibrated Chaos: Variance Between Runs of Neural Network Training is Harmless and Inevitable
Typical neural network trainings have substantial variance in test-set performance between repeated runs, impeding hyperparameter comparison and training reproducibility. We present the following results towards understanding this variation. (1) Despite having significant variance on their test-sets, we demonstrate that standard CIFAR-10 and ImageNet trainings have very little variance in their performance on the test-distributions from which those test-sets are sampled, suggesting that variance is less of a practical issue than previously thought. (2) We present a simplifying statistical assumption which closely approximates the structure of the test-set accuracy distribution. (3) We argue that test-set variance is inevitable in the following two senses. First, we show that variance is largely caused by high sensitivity of the training process to initial conditions, rather than by specific sources of randomness like the data order and augmentations. Second, we prove that variance is unavoidable given the observation that ensembles of trained networks are well-calibrated. (4) We conduct preliminary studies of distribution-shift, fine-tuning, data augmentation and learning rate through the lens of variance between runs.
Observation-Centric SORT: Rethinking SORT for Robust Multi-Object Tracking
Kalman filter (KF) based methods for multi-object tracking (MOT) make an assumption that objects move linearly. While this assumption is acceptable for very short periods of occlusion, linear estimates of motion for prolonged time can be highly inaccurate. Moreover, when there is no measurement available to update Kalman filter parameters, the standard convention is to trust the priori state estimations for posteriori update. This leads to the accumulation of errors during a period of occlusion. The error causes significant motion direction variance in practice. In this work, we show that a basic Kalman filter can still obtain state-of-the-art tracking performance if proper care is taken to fix the noise accumulated during occlusion. Instead of relying only on the linear state estimate (i.e., estimation-centric approach), we use object observations (i.e., the measurements by object detector) to compute a virtual trajectory over the occlusion period to fix the error accumulation of filter parameters during the occlusion period. This allows more time steps to correct errors accumulated during occlusion. We name our method Observation-Centric SORT (OC-SORT). It remains Simple, Online, and Real-Time but improves robustness during occlusion and non-linear motion. Given off-the-shelf detections as input, OC-SORT runs at 700+ FPS on a single CPU. It achieves state-of-the-art on multiple datasets, including MOT17, MOT20, KITTI, head tracking, and especially DanceTrack where the object motion is highly non-linear. The code and models are available at https://github.com/noahcao/OC_SORT.
Establishing Task Scaling Laws via Compute-Efficient Model Ladders
We develop task scaling laws and model ladders to predict the individual task performance of pretrained language models (LMs) in the overtrained setting. Standard power laws for language modeling loss cannot accurately model task performance. Therefore, we leverage a two-step prediction approach: first use model and data size to predict a task-specific loss, and then use this task loss to predict task performance. We train a set of small-scale "ladder" models, collect data points to fit the parameterized functions of the two prediction steps, and make predictions for two target models: a 7B model trained to 4T tokens and a 13B model trained to 5T tokens. Training the ladder models only costs 1% of the compute used for the target models. On four multiple-choice tasks written in ranked classification format, we can predict the accuracy of both target models within 2 points of absolute error. We have higher prediction error on four other tasks (average absolute error 6.9) and find that these are often tasks with higher variance in task metrics. We also find that using less compute to train fewer ladder models tends to deteriorate predictions. Finally, we empirically show that our design choices and the two-step approach lead to superior performance in establishing scaling laws.
Optimum Risk Portfolio and Eigen Portfolio: A Comparative Analysis Using Selected Stocks from the Indian Stock Market
Designing an optimum portfolio that allocates weights to its constituent stocks in a way that achieves the best trade-off between the return and the risk is a challenging research problem. The classical mean-variance theory of portfolio proposed by Markowitz is found to perform sub-optimally on the real-world stock market data since the error in estimation for the expected returns adversely affects the performance of the portfolio. This paper presents three approaches to portfolio design, viz, the minimum risk portfolio, the optimum risk portfolio, and the Eigen portfolio, for seven important sectors of the Indian stock market. The daily historical prices of the stocks are scraped from Yahoo Finance website from January 1, 2016, to December 31, 2020. Three portfolios are built for each of the seven sectors chosen for this study, and the portfolios are analyzed on the training data based on several metrics such as annualized return and risk, weights assigned to the constituent stocks, the correlation heatmaps, and the principal components of the Eigen portfolios. Finally, the optimum risk portfolios and the Eigen portfolios for all sectors are tested on their return over a period of a six-month period. The performances of the portfolios are compared and the portfolio yielding the higher return for each sector is identified.
Diverse Weight Averaging for Out-of-Distribution Generalization
Standard neural networks struggle to generalize under distribution shifts in computer vision. Fortunately, combining multiple networks can consistently improve out-of-distribution generalization. In particular, weight averaging (WA) strategies were shown to perform best on the competitive DomainBed benchmark; they directly average the weights of multiple networks despite their nonlinearities. In this paper, we propose Diverse Weight Averaging (DiWA), a new WA strategy whose main motivation is to increase the functional diversity across averaged models. To this end, DiWA averages weights obtained from several independent training runs: indeed, models obtained from different runs are more diverse than those collected along a single run thanks to differences in hyperparameters and training procedures. We motivate the need for diversity by a new bias-variance-covariance-locality decomposition of the expected error, exploiting similarities between WA and standard functional ensembling. Moreover, this decomposition highlights that WA succeeds when the variance term dominates, which we show occurs when the marginal distribution changes at test time. Experimentally, DiWA consistently improves the state of the art on DomainBed without inference overhead.
Adversarial Adaptive Sampling: Unify PINN and Optimal Transport for the Approximation of PDEs
Solving partial differential equations (PDEs) is a central task in scientific computing. Recently, neural network approximation of PDEs has received increasing attention due to its flexible meshless discretization and its potential for high-dimensional problems. One fundamental numerical difficulty is that random samples in the training set introduce statistical errors into the discretization of loss functional which may become the dominant error in the final approximation, and therefore overshadow the modeling capability of the neural network. In this work, we propose a new minmax formulation to optimize simultaneously the approximate solution, given by a neural network model, and the random samples in the training set, provided by a deep generative model. The key idea is to use a deep generative model to adjust random samples in the training set such that the residual induced by the approximate PDE solution can maintain a smooth profile when it is being minimized. Such an idea is achieved by implicitly embedding the Wasserstein distance between the residual-induced distribution and the uniform distribution into the loss, which is then minimized together with the residual. A nearly uniform residual profile means that its variance is small for any normalized weight function such that the Monte Carlo approximation error of the loss functional is reduced significantly for a certain sample size. The adversarial adaptive sampling (AAS) approach proposed in this work is the first attempt to formulate two essential components, minimizing the residual and seeking the optimal training set, into one minmax objective functional for the neural network approximation of PDEs.
A Theoretical Analysis of Deep Q-Learning
Despite the great empirical success of deep reinforcement learning, its theoretical foundation is less well understood. In this work, we make the first attempt to theoretically understand the deep Q-network (DQN) algorithm (Mnih et al., 2015) from both algorithmic and statistical perspectives. In specific, we focus on a slight simplification of DQN that fully captures its key features. Under mild assumptions, we establish the algorithmic and statistical rates of convergence for the action-value functions of the iterative policy sequence obtained by DQN. In particular, the statistical error characterizes the bias and variance that arise from approximating the action-value function using deep neural network, while the algorithmic error converges to zero at a geometric rate. As a byproduct, our analysis provides justifications for the techniques of experience replay and target network, which are crucial to the empirical success of DQN. Furthermore, as a simple extension of DQN, we propose the Minimax-DQN algorithm for zero-sum Markov game with two players. Borrowing the analysis of DQN, we also quantify the difference between the policies obtained by Minimax-DQN and the Nash equilibrium of the Markov game in terms of both the algorithmic and statistical rates of convergence.
Abstract Reward Processes: Leveraging State Abstraction for Consistent Off-Policy Evaluation
Evaluating policies using off-policy data is crucial for applying reinforcement learning to real-world problems such as healthcare and autonomous driving. Previous methods for off-policy evaluation (OPE) generally suffer from high variance or irreducible bias, leading to unacceptably high prediction errors. In this work, we introduce STAR, a framework for OPE that encompasses a broad range of estimators -- which include existing OPE methods as special cases -- that achieve lower mean squared prediction errors. STAR leverages state abstraction to distill complex, potentially continuous problems into compact, discrete models which we call abstract reward processes (ARPs). Predictions from ARPs estimated from off-policy data are provably consistent (asymptotically correct). Rather than proposing a specific estimator, we present a new framework for OPE and empirically demonstrate that estimators within STAR outperform existing methods. The best STAR estimator outperforms baselines in all twelve cases studied, and even the median STAR estimator surpasses the baselines in seven out of the twelve cases.
Robust Losses for Learning Value Functions
Most value function learning algorithms in reinforcement learning are based on the mean squared (projected) Bellman error. However, squared errors are known to be sensitive to outliers, both skewing the solution of the objective and resulting in high-magnitude and high-variance gradients. To control these high-magnitude updates, typical strategies in RL involve clipping gradients, clipping rewards, rescaling rewards, or clipping errors. While these strategies appear to be related to robust losses -- like the Huber loss -- they are built on semi-gradient update rules which do not minimize a known loss. In this work, we build on recent insights reformulating squared Bellman errors as a saddlepoint optimization problem and propose a saddlepoint reformulation for a Huber Bellman error and Absolute Bellman error. We start from a formalization of robust losses, then derive sound gradient-based approaches to minimize these losses in both the online off-policy prediction and control settings. We characterize the solutions of the robust losses, providing insight into the problem settings where the robust losses define notably better solutions than the mean squared Bellman error. Finally, we show that the resulting gradient-based algorithms are more stable, for both prediction and control, with less sensitivity to meta-parameters.
Decomposing The Dark Matter of Sparse Autoencoders
Sparse autoencoders (SAEs) are a promising technique for decomposing language model activations into interpretable linear features. However, current SAEs fall short of completely explaining model performance, resulting in "dark matter": unexplained variance in activations. This work investigates dark matter as an object of study in its own right. Surprisingly, we find that much of SAE dark matter--about half of the error vector itself and >90% of its norm--can be linearly predicted from the initial activation vector. Additionally, we find that the scaling behavior of SAE error norms at a per token level is remarkably predictable: larger SAEs mostly struggle to reconstruct the same contexts as smaller SAEs. We build on the linear representation hypothesis to propose models of activations that might lead to these observations, including postulating a new type of "introduced error"; these insights imply that the part of the SAE error vector that cannot be linearly predicted ("nonlinear" error) might be fundamentally different from the linearly predictable component. To validate this hypothesis, we empirically analyze nonlinear SAE error and show that 1) it contains fewer not yet learned features, 2) SAEs trained on it are quantitatively worse, 3) it helps predict SAE per-token scaling behavior, and 4) it is responsible for a proportional amount of the downstream increase in cross entropy loss when SAE activations are inserted into the model. Finally, we examine two methods to reduce nonlinear SAE error at a fixed sparsity: inference time gradient pursuit, which leads to a very slight decrease in nonlinear error, and linear transformations from earlier layer SAE outputs, which leads to a larger reduction.
Parameter estimation from the core-bounce phase of rotating core collapse supernovae in real interferometer noise
In this work we propose an analytical model that reproduces the core-bounds phase of gravitational waves (GW) of Rapidly Rotating (RR) from Core Collapse Supernovae (CCSNe), as a function of three parameters, the arrival time tau, the ratio of the kinetic and potential energy beta and a phenomenological parameter alpha related to rotation and equation of state (EOS). To validate the model we use 126 waveforms from the Richers catalog Richers_2017 selected with the criteria of exploring a range of rotation profiles, and involving EOS. To quantify the degree of accuracy of the proposed model, with a particular focus on the rotation parameter beta, we show that the average Fitting Factor (FF) between the simulated waveforms with the templates is 94.4\%. In order to estimate the parameters we propose a frequentist matched filtering approach in real interferometric noise which does not require assigning any priors. We use the Matched Filter (MF) technique, where we inject a bank of templates considering simulated colored Gaussian noise and the real noise of O3L1. For example for A300w6.00\_BHBLP at 10Kpc we obtain a standar deviation of sigma = 3.34times 10^{-3} for simulated colored Gaussian noise and sigma= 1.46times 10^{-2} for real noise. On the other hand, from the asymptotic expansion of the variance we obtain the theoretical minimum error for beta at 10 kpc and optimal orientation. The estimation error in this case is from 10^{-2} to 10^{-3} as beta increases. We show that the results of the estimation error of beta for the 3-parameter space (3D) is consistent with the single-parameter space (1D), which allows us to conclude that beta is decoupled from the others two parameters.
Only Pay for What Is Uncertain: Variance-Adaptive Thompson Sampling
Most bandit algorithms assume that the reward variances or their upper bounds are known, and that they are the same for all arms. This naturally leads to suboptimal performance and higher regret due to variance overestimation. On the other hand, underestimated reward variances may lead to linear regret due to committing early to a suboptimal arm. This motivated prior works on variance-adaptive frequentist algorithms, which have strong instance-dependent regret bounds but cannot incorporate prior knowledge on reward variances. We lay foundations for the Bayesian setting, which incorporates prior knowledge. This results in lower regret in practice, due to using the prior in the algorithm design, and also improved regret guarantees. Specifically, we study Gaussian bandits with {unknown heterogeneous reward variances}, and develop a Thompson sampling algorithm with prior-dependent Bayes regret bounds. We achieve lower regret with lower reward variances and more informative priors on them, which is precisely why we pay only for what is uncertain. This is the first result of its kind. Finally, we corroborate our theory with extensive experiments, which show the superiority of our variance-adaptive Bayesian algorithm over prior frequentist approaches. We also show that our approach is robust to model misspecification and can be applied with estimated priors.
MONSTER: Monash Scalable Time Series Evaluation Repository
We introduce MONSTER-the MONash Scalable Time Series Evaluation Repository-a collection of large datasets for time series classification. The field of time series classification has benefitted from common benchmarks set by the UCR and UEA time series classification repositories. However, the datasets in these benchmarks are small, with median sizes of 217 and 255 examples, respectively. In consequence they favour a narrow subspace of models that are optimised to achieve low classification error on a wide variety of smaller datasets, that is, models that minimise variance, and give little weight to computational issues such as scalability. Our hope is to diversify the field by introducing benchmarks using larger datasets. We believe that there is enormous potential for new progress in the field by engaging with the theoretical and practical challenges of learning effectively from larger quantities of data.
Dynamic Sparse No Training: Training-Free Fine-tuning for Sparse LLMs
The ever-increasing large language models (LLMs), though opening a potential path for the upcoming artificial general intelligence, sadly drops a daunting obstacle on the way towards their on-device deployment. As one of the most well-established pre-LLMs approaches in reducing model complexity, network pruning appears to lag behind in the era of LLMs, due mostly to its costly fine-tuning (or re-training) necessity under the massive volumes of model parameter and training data. To close this industry-academia gap, we introduce Dynamic Sparse No Training (DSnoT), a training-free fine-tuning approach that slightly updates sparse LLMs without the expensive backpropagation and any weight updates. Inspired by the Dynamic Sparse Training, DSnoT minimizes the reconstruction error between the dense and sparse LLMs, in the fashion of performing iterative weight pruning-and-growing on top of sparse LLMs. To accomplish this purpose, DSnoT particularly takes into account the anticipated reduction in reconstruction error for pruning and growing, as well as the variance w.r.t. different input data for growing each weight. This practice can be executed efficiently in linear time since its obviates the need of backpropagation for fine-tuning LLMs. Extensive experiments on LLaMA-V1/V2, Vicuna, and OPT across various benchmarks demonstrate the effectiveness of DSnoT in enhancing the performance of sparse LLMs, especially at high sparsity levels. For instance, DSnoT is able to outperform the state-of-the-art Wanda by 26.79 perplexity at 70% sparsity with LLaMA-7B. Our paper offers fresh insights into how to fine-tune sparse LLMs in an efficient training-free manner and open new venues to scale the great potential of sparsity to LLMs. Codes are available at https://github.com/zyxxmu/DSnoT.
NeRFVS: Neural Radiance Fields for Free View Synthesis via Geometry Scaffolds
We present NeRFVS, a novel neural radiance fields (NeRF) based method to enable free navigation in a room. NeRF achieves impressive performance in rendering images for novel views similar to the input views while suffering for novel views that are significantly different from the training views. To address this issue, we utilize the holistic priors, including pseudo depth maps and view coverage information, from neural reconstruction to guide the learning of implicit neural representations of 3D indoor scenes. Concretely, an off-the-shelf neural reconstruction method is leveraged to generate a geometry scaffold. Then, two loss functions based on the holistic priors are proposed to improve the learning of NeRF: 1) A robust depth loss that can tolerate the error of the pseudo depth map to guide the geometry learning of NeRF; 2) A variance loss to regularize the variance of implicit neural representations to reduce the geometry and color ambiguity in the learning procedure. These two loss functions are modulated during NeRF optimization according to the view coverage information to reduce the negative influence brought by the view coverage imbalance. Extensive results demonstrate that our NeRFVS outperforms state-of-the-art view synthesis methods quantitatively and qualitatively on indoor scenes, achieving high-fidelity free navigation results.
Multi-Cali Anything: Dense Feature Multi-Frame Structure-from-Motion for Large-Scale Camera Array Calibration
Calibrating large-scale camera arrays, such as those in dome-based setups, is time-intensive and typically requires dedicated captures of known patterns. While extrinsics in such arrays are fixed due to the physical setup, intrinsics often vary across sessions due to factors like lens adjustments or temperature changes. In this paper, we propose a dense-feature-driven multi-frame calibration method that refines intrinsics directly from scene data, eliminating the necessity for additional calibration captures. Our approach enhances traditional Structure-from-Motion (SfM) pipelines by introducing an extrinsics regularization term to progressively align estimated extrinsics with ground-truth values, a dense feature reprojection term to reduce keypoint errors by minimizing reprojection loss in the feature space, and an intrinsics variance term for joint optimization across multiple frames. Experiments on the Multiface dataset show that our method achieves nearly the same precision as dedicated calibration processes, and significantly enhances intrinsics and 3D reconstruction accuracy. Fully compatible with existing SfM pipelines, our method provides an efficient and practical plug-and-play solution for large-scale camera setups. Our code is publicly available at: https://github.com/YJJfish/Multi-Cali-Anything
Phase diagram and eigenvalue dynamics of stochastic gradient descent in multilayer neural networks
Hyperparameter tuning is one of the essential steps to guarantee the convergence of machine learning models. We argue that intuition about the optimal choice of hyperparameters for stochastic gradient descent can be obtained by studying a neural network's phase diagram, in which each phase is characterised by distinctive dynamics of the singular values of weight matrices. Taking inspiration from disordered systems, we start from the observation that the loss landscape of a multilayer neural network with mean squared error can be interpreted as a disordered system in feature space, where the learnt features are mapped to soft spin degrees of freedom, the initial variance of the weight matrices is interpreted as the strength of the disorder, and temperature is given by the ratio of the learning rate and the batch size. As the model is trained, three phases can be identified, in which the dynamics of weight matrices is qualitatively different. Employing a Langevin equation for stochastic gradient descent, previously derived using Dyson Brownian motion, we demonstrate that the three dynamical regimes can be classified effectively, providing practical guidance for the choice of hyperparameters of the optimiser.
Understanding the Disharmony between Dropout and Batch Normalization by Variance Shift
This paper first answers the question "why do the two most powerful techniques Dropout and Batch Normalization (BN) often lead to a worse performance when they are combined together?" in both theoretical and statistical aspects. Theoretically, we find that Dropout would shift the variance of a specific neural unit when we transfer the state of that network from train to test. However, BN would maintain its statistical variance, which is accumulated from the entire learning procedure, in the test phase. The inconsistency of that variance (we name this scheme as "variance shift") causes the unstable numerical behavior in inference that leads to more erroneous predictions finally, when applying Dropout before BN. Thorough experiments on DenseNet, ResNet, ResNeXt and Wide ResNet confirm our findings. According to the uncovered mechanism, we next explore several strategies that modifies Dropout and try to overcome the limitations of their combination by avoiding the variance shift risks.
Quantifying Variance in Evaluation Benchmarks
Evaluation benchmarks are the cornerstone of measuring capabilities of large language models (LLMs), as well as driving progress in said capabilities. Originally designed to make claims about capabilities (or lack thereof) in fully pretrained models, evaluation benchmarks are now also extensively used to decide between various training choices. Despite this widespread usage, we rarely quantify the variance in our evaluation benchmarks, which dictates whether differences in performance are meaningful. Here, we define and measure a range of metrics geared towards measuring variance in evaluation benchmarks, including seed variance across initialisations, and monotonicity during training. By studying a large number of models -- both openly available and pretrained from scratch -- we provide empirical estimates for a variety of variance metrics, with considerations and recommendations for practitioners. We also evaluate the utility and tradeoffs of continuous versus discrete performance measures and explore options for better understanding and reducing this variance. We find that simple changes, such as framing choice tasks (like MMLU) as completion tasks, can often reduce variance for smaller scale (sim7B) models, while more involved methods inspired from human testing literature (such as item analysis and item response theory) struggle to meaningfully reduce variance. Overall, our work provides insights into variance in evaluation benchmarks, suggests LM-specific techniques to reduce variance, and more generally encourages practitioners to carefully factor in variance when comparing models.
Variance Reduction in Deep Learning: More Momentum is All You Need
Variance reduction (VR) techniques have contributed significantly to accelerating learning with massive datasets in the smooth and strongly convex setting (Schmidt et al., 2017; Johnson & Zhang, 2013; Roux et al., 2012). However, such techniques have not yet met the same success in the realm of large-scale deep learning due to various factors such as the use of data augmentation or regularization methods like dropout (Defazio & Bottou, 2019). This challenge has recently motivated the design of novel variance reduction techniques tailored explicitly for deep learning (Arnold et al., 2019; Ma & Yarats, 2018). This work is an additional step in this direction. In particular, we exploit the ubiquitous clustering structure of rich datasets used in deep learning to design a family of scalable variance reduced optimization procedures by combining existing optimizers (e.g., SGD+Momentum, Quasi Hyperbolic Momentum, Implicit Gradient Transport) with a multi-momentum strategy (Yuan et al., 2019). Our proposal leads to faster convergence than vanilla methods on standard benchmark datasets (e.g., CIFAR and ImageNet). It is robust to label noise and amenable to distributed optimization. We provide a parallel implementation in JAX.
Torch.manual_seed(3407) is all you need: On the influence of random seeds in deep learning architectures for computer vision
In this paper I investigate the effect of random seed selection on the accuracy when using popular deep learning architectures for computer vision. I scan a large amount of seeds (up to 10^4) on CIFAR 10 and I also scan fewer seeds on Imagenet using pre-trained models to investigate large scale datasets. The conclusions are that even if the variance is not very large, it is surprisingly easy to find an outlier that performs much better or much worse than the average.
Optimally truncated WKB approximation for the highly oscillatory stationary 1D Schrödinger equation
We discuss the numerical solution of initial value problems for varepsilon^2,varphi''+a(x),varphi=0 in the highly oscillatory regime, i.e., with a(x)>0 and 0<varepsilonll 1. We analyze and implement an approximate solution based on the well-known WKB-ansatz. The resulting approximation error is of magnitude O(varepsilon^{N}) where N refers to the truncation order of the underlying asymptotic series. When the optimal truncation order N_{opt} is chosen, the error behaves like O(varepsilon^{-2}exp(-cvarepsilon^{-1})) with some c>0.
Detecting Errors in a Numerical Response via any Regression Model
Noise plagues many numerical datasets, where the recorded values in the data may fail to match the true underlying values due to reasons including: erroneous sensors, data entry/processing mistakes, or imperfect human estimates. We consider general regression settings with covariates and a potentially corrupted response whose observed values may contain errors. By accounting for various uncertainties, we introduced veracity scores that distinguish between genuine errors and natural data fluctuations, conditioned on the available covariate information in the dataset. We propose a simple yet efficient filtering procedure for eliminating potential errors, and establish theoretical guarantees for our method. We also contribute a new error detection benchmark involving 5 regression datasets with real-world numerical errors (for which the true values are also known). In this benchmark and additional simulation studies, our method identifies incorrect values with better precision/recall than other approaches.
Tackling Interference Induced by Data Training Loops in A/B Tests: A Weighted Training Approach
In modern recommendation systems, the standard pipeline involves training machine learning models on historical data to predict user behaviors and improve recommendations continuously. However, these data training loops can introduce interference in A/B tests, where data generated by control and treatment algorithms, potentially with different distributions, are combined. To address these challenges, we introduce a novel approach called weighted training. This approach entails training a model to predict the probability of each data point appearing in either the treatment or control data and subsequently applying weighted losses during model training. We demonstrate that this approach achieves the least variance among all estimators that do not cause shifts in the training distributions. Through simulation studies, we demonstrate the lower bias and variance of our approach compared to other methods.
Heteroscedastic Uncertainty Estimation Framework for Unsupervised Registration
Deep learning methods for unsupervised registration often rely on objectives that assume a uniform noise level across the spatial domain (e.g. mean-squared error loss), but noise distributions are often heteroscedastic and input-dependent in real-world medical images. Thus, this assumption often leads to degradation in registration performance, mainly due to the undesired influence of noise-induced outliers. To mitigate this, we propose a framework for heteroscedastic image uncertainty estimation that can adaptively reduce the influence of regions with high uncertainty during unsupervised registration. The framework consists of a collaborative training strategy for the displacement and variance estimators, and a novel image fidelity weighting scheme utilizing signal-to-noise ratios. Our approach prevents the model from being driven away by spurious gradients caused by the simplified homoscedastic assumption, leading to more accurate displacement estimation. To illustrate its versatility and effectiveness, we tested our framework on two representative registration architectures across three medical image datasets. Our method consistently outperforms baselines and produces sensible uncertainty estimates. The code is publicly available at https://voldemort108x.github.io/hetero_uncertainty/.
DEUP: Direct Epistemic Uncertainty Prediction
Epistemic Uncertainty is a measure of the lack of knowledge of a learner which diminishes with more evidence. While existing work focuses on using the variance of the Bayesian posterior due to parameter uncertainty as a measure of epistemic uncertainty, we argue that this does not capture the part of lack of knowledge induced by model misspecification. We discuss how the excess risk, which is the gap between the generalization error of a predictor and the Bayes predictor, is a sound measure of epistemic uncertainty which captures the effect of model misspecification. We thus propose a principled framework for directly estimating the excess risk by learning a secondary predictor for the generalization error and subtracting an estimate of aleatoric uncertainty, i.e., intrinsic unpredictability. We discuss the merits of this novel measure of epistemic uncertainty, and highlight how it differs from variance-based measures of epistemic uncertainty and addresses its major pitfall. Our framework, Direct Epistemic Uncertainty Prediction (DEUP) is particularly interesting in interactive learning environments, where the learner is allowed to acquire novel examples in each round. Through a wide set of experiments, we illustrate how existing methods in sequential model optimization can be improved with epistemic uncertainty estimates from DEUP, and how DEUP can be used to drive exploration in reinforcement learning. We also evaluate the quality of uncertainty estimates from DEUP for probabilistic image classification and predicting synergies of drug combinations.
Pervasive Label Errors in Test Sets Destabilize Machine Learning Benchmarks
We identify label errors in the test sets of 10 of the most commonly-used computer vision, natural language, and audio datasets, and subsequently study the potential for these label errors to affect benchmark results. Errors in test sets are numerous and widespread: we estimate an average of at least 3.3% errors across the 10 datasets, where for example label errors comprise at least 6% of the ImageNet validation set. Putative label errors are identified using confident learning algorithms and then human-validated via crowdsourcing (51% of the algorithmically-flagged candidates are indeed erroneously labeled, on average across the datasets). Traditionally, machine learning practitioners choose which model to deploy based on test accuracy - our findings advise caution here, proposing that judging models over correctly labeled test sets may be more useful, especially for noisy real-world datasets. Surprisingly, we find that lower capacity models may be practically more useful than higher capacity models in real-world datasets with high proportions of erroneously labeled data. For example, on ImageNet with corrected labels: ResNet-18 outperforms ResNet-50 if the prevalence of originally mislabeled test examples increases by just 6%. On CIFAR-10 with corrected labels: VGG-11 outperforms VGG-19 if the prevalence of originally mislabeled test examples increases by just 5%. Test set errors across the 10 datasets can be viewed at https://labelerrors.com and all label errors can be reproduced by https://github.com/cleanlab/label-errors.
Vector-Valued Control Variates
Control variates are variance reduction tools for Monte Carlo estimators. They can provide significant variance reduction, but usually require a large number of samples, which can be prohibitive when sampling or evaluating the integrand is computationally expensive. Furthermore, there are many scenarios where we need to compute multiple related integrals simultaneously or sequentially, which can further exacerbate computational costs. In this paper, we propose vector-valued control variates, an extension of control variates which can be used to reduce the variance of multiple Monte Carlo estimators jointly. This allows for the transfer of information across integration tasks, and hence reduces the need for a large number of samples. We focus on control variates based on kernel interpolants and our novel construction is obtained through a generalised Stein identity and the development of novel matrix-valued Stein reproducing kernels. We demonstrate our methodology on a range of problems including multifidelity modelling, Bayesian inference for dynamical systems, and model evidence computation through thermodynamic integration.
Sharp Variance-Dependent Bounds in Reinforcement Learning: Best of Both Worlds in Stochastic and Deterministic Environments
We study variance-dependent regret bounds for Markov decision processes (MDPs). Algorithms with variance-dependent regret guarantees can automatically exploit environments with low variance (e.g., enjoying constant regret on deterministic MDPs). The existing algorithms are either variance-independent or suboptimal. We first propose two new environment norms to characterize the fine-grained variance properties of the environment. For model-based methods, we design a variant of the MVP algorithm (Zhang et al., 2021a). We apply new analysis techniques to demonstrate that this algorithm enjoys variance-dependent bounds with respect to the norms we propose. In particular, this bound is simultaneously minimax optimal for both stochastic and deterministic MDPs, the first result of its kind. We further initiate the study on model-free algorithms with variance-dependent regret bounds by designing a reference-function-based algorithm with a novel capped-doubling reference update schedule. Lastly, we also provide lower bounds to complement our upper bounds.
Practical and Matching Gradient Variance Bounds for Black-Box Variational Bayesian Inference
Understanding the gradient variance of black-box variational inference (BBVI) is a crucial step for establishing its convergence and developing algorithmic improvements. However, existing studies have yet to show that the gradient variance of BBVI satisfies the conditions used to study the convergence of stochastic gradient descent (SGD), the workhorse of BBVI. In this work, we show that BBVI satisfies a matching bound corresponding to the ABC condition used in the SGD literature when applied to smooth and quadratically-growing log-likelihoods. Our results generalize to nonlinear covariance parameterizations widely used in the practice of BBVI. Furthermore, we show that the variance of the mean-field parameterization has provably superior dimensional dependence.
PA&DA: Jointly Sampling PAth and DAta for Consistent NAS
Based on the weight-sharing mechanism, one-shot NAS methods train a supernet and then inherit the pre-trained weights to evaluate sub-models, largely reducing the search cost. However, several works have pointed out that the shared weights suffer from different gradient descent directions during training. And we further find that large gradient variance occurs during supernet training, which degrades the supernet ranking consistency. To mitigate this issue, we propose to explicitly minimize the gradient variance of the supernet training by jointly optimizing the sampling distributions of PAth and DAta (PA&DA). We theoretically derive the relationship between the gradient variance and the sampling distributions, and reveal that the optimal sampling probability is proportional to the normalized gradient norm of path and training data. Hence, we use the normalized gradient norm as the importance indicator for path and training data, and adopt an importance sampling strategy for the supernet training. Our method only requires negligible computation cost for optimizing the sampling distributions of path and data, but achieves lower gradient variance during supernet training and better generalization performance for the supernet, resulting in a more consistent NAS. We conduct comprehensive comparisons with other improved approaches in various search spaces. Results show that our method surpasses others with more reliable ranking performance and higher accuracy of searched architectures, showing the effectiveness of our method. Code is available at https://github.com/ShunLu91/PA-DA.
Vanishing Variance Problem in Fully Decentralized Neural-Network Systems
Federated learning and gossip learning are emerging methodologies designed to mitigate data privacy concerns by retaining training data on client devices and exclusively sharing locally-trained machine learning (ML) models with others. The primary distinction between the two lies in their approach to model aggregation: federated learning employs a centralized parameter server, whereas gossip learning adopts a fully decentralized mechanism, enabling direct model exchanges among nodes. This decentralized nature often positions gossip learning as less efficient compared to federated learning. Both methodologies involve a critical step: computing a representation of received ML models and integrating this representation into the existing model. Conventionally, this representation is derived by averaging the received models, exemplified by the FedAVG algorithm. Our findings suggest that this averaging approach inherently introduces a potential delay in model convergence. We identify the underlying cause and refer to it as the "vanishing variance" problem, where averaging across uncorrelated ML models undermines the optimal variance established by the Xavier weight initialization. Unlike federated learning where the central server ensures model correlation, and unlike traditional gossip learning which circumvents this problem through model partitioning and sampling, our research introduces a variance-corrected model averaging algorithm. This novel algorithm preserves the optimal variance needed during model averaging, irrespective of network topology or non-IID data distributions. Our extensive simulation results demonstrate that our approach enables gossip learning to achieve convergence efficiency comparable to that of federated learning.
Concentration of Measure for Distributions Generated via Diffusion Models
We show via a combination of mathematical arguments and empirical evidence that data distributions sampled from diffusion models satisfy a Concentration of Measure Property saying that any Lipschitz 1-dimensional projection of a random vector is not too far from its mean with high probability. This implies that such models are quite restrictive and gives an explanation for a fact previously observed in the literature that conventional diffusion models cannot capture "heavy-tailed" data (i.e. data x for which the norm |x|_2 does not possess a sub-Gaussian tail) well. We then proceed to train a generalized linear model using stochastic gradient descent (SGD) on the diffusion-generated data for a multiclass classification task and observe empirically that a Gaussian universality result holds for the test error. In other words, the test error depends only on the first and second order statistics of the diffusion-generated data in the linear setting. Results of such forms are desirable because they allow one to assume the data itself is Gaussian for analyzing performance of the trained classifier. Finally, we note that current approaches to proving universality do not apply to this case as the covariance matrices of the data tend to have vanishing minimum singular values for the diffusion-generated data, while the current proofs assume that this is not the case (see Subsection 3.4 for more details). This leaves extending previous mathematical universality results as an intriguing open question.
EchoingECG: An Electrocardiogram Cross-Modal Model for Echocardiogram Tasks
Electrocardiogram (ECG) is a widely used tool for assessing cardiac function due to its low cost and accessibility. Emergent research shows that ECGs can help make predictions on key outcomes traditionally derived from more complex modalities such as echocardiograms (ECHO), enabling the use of ECGs as a more accessible method to predict broader measurements of cardiac function. ECHO, in particular, are of great importance because they require considerable hospital resources while playing a key role in clinical cardiac assessment. To aid this use case, we introduce EchoingECG, a probabilistic student-teacher model that leverages uncertainty-aware ECG embeddings and ECHO supervision to improve ECG-based cardiac function prediction. Our approach integrates Probabilistic Cross-Modal Embeddings (PCME++), a probabilistic contrastive framework, with ECHO-CLIP, a vision-language pre-trained model trained on ECHO-text pairs, to distill ECHO knowledge into ECG representations. Through experiments and external validation, we showed that EchoingECG outperforms state-of-the-art foundation ECG models in zero-shot, few-shot, and fine-tune settings for ECHO predictions based on ECG. We also highlighted that variance estimation (enabled through our method) enhanced our understanding of model performance by identifying underlying regions of uncertainty within ECGs. The code is available: https://github.com/mcintoshML/EchoingECG.
Adaptive Safety Evaluation for Connected and Automated Vehicles with Sparse Control Variates
Safety performance evaluation is critical for developing and deploying connected and automated vehicles (CAVs). One prevailing way is to design testing scenarios using prior knowledge of CAVs, test CAVs in these scenarios, and then evaluate their safety performances. However, significant differences between CAVs and prior knowledge could severely reduce the evaluation efficiency. Towards addressing this issue, most existing studies focus on the adaptive design of testing scenarios during the CAV testing process, but so far they cannot be applied to high-dimensional scenarios. In this paper, we focus on the adaptive safety performance evaluation by leveraging the testing results, after the CAV testing process. It can significantly improve the evaluation efficiency and be applied to high-dimensional scenarios. Specifically, instead of directly evaluating the unknown quantity (e.g., crash rates) of CAV safety performances, we evaluate the differences between the unknown quantity and known quantity (i.e., control variates). By leveraging the testing results, the control variates could be well designed and optimized such that the differences are close to zero, so the evaluation variance could be dramatically reduced for different CAVs. To handle the high-dimensional scenarios, we propose the sparse control variates method, where the control variates are designed only for the sparse and critical variables of scenarios. According to the number of critical variables in each scenario, the control variates are stratified into strata and optimized within each stratum using multiple linear regression techniques. We justify the proposed method's effectiveness by rigorous theoretical analysis and empirical study of high-dimensional overtaking scenarios.
Dimensionless Anomaly Detection on Multivariate Streams with Variance Norm and Path Signature
In this paper, we propose a dimensionless anomaly detection method for multivariate streams. Our method is independent of the unit of measurement for the different stream channels, therefore dimensionless. We first propose the variance norm, a generalisation of Mahalanobis distance to handle infinite-dimensional feature space and singular empirical covariance matrix rigorously. We then combine the variance norm with the path signature, an infinite collection of iterated integrals that provide global features of streams, to propose SigMahaKNN, a method for anomaly detection on (multivariate) streams. We show that SigMahaKNN is invariant to stream reparametrisation, stream concatenation and has a graded discrimination power depending on the truncation level of the path signature. We implement SigMahaKNN as an open-source software, and perform extensive numerical experiments, showing significantly improved anomaly detection on streams compared to isolation forest and local outlier factors in applications ranging from language analysis, hand-writing analysis, ship movement paths analysis and univariate time-series analysis.
Discovery of interpretable structural model errors by combining Bayesian sparse regression and data assimilation: A chaotic Kuramoto-Sivashinsky test case
Models of many engineering and natural systems are imperfect. The discrepancy between the mathematical representations of a true physical system and its imperfect model is called the model error. These model errors can lead to substantial differences between the numerical solutions of the model and the state of the system, particularly in those involving nonlinear, multi-scale phenomena. Thus, there is increasing interest in reducing model errors, particularly by leveraging the rapidly growing observational data to understand their physics and sources. Here, we introduce a framework named MEDIDA: Model Error Discovery with Interpretability and Data Assimilation. MEDIDA only requires a working numerical solver of the model and a small number of noise-free or noisy sporadic observations of the system. In MEDIDA, first the model error is estimated from differences between the observed states and model-predicted states (the latter are obtained from a number of one-time-step numerical integrations from the previous observed states). If observations are noisy, a data assimilation (DA) technique such as ensemble Kalman filter (EnKF) is employed to provide the analysis state of the system, which is then used to estimate the model error. Finally, an equation-discovery technique, here the relevance vector machine (RVM), a sparsity-promoting Bayesian method, is used to identify an interpretable, parsimonious, and closed-form representation of the model error. Using the chaotic Kuramoto-Sivashinsky (KS) system as the test case, we demonstrate the excellent performance of MEDIDA in discovering different types of structural/parametric model errors, representing different types of missing physics, using noise-free and noisy observations.
Contextual Combinatorial Bandits with Probabilistically Triggered Arms
We study contextual combinatorial bandits with probabilistically triggered arms (C^2MAB-T) under a variety of smoothness conditions that capture a wide range of applications, such as contextual cascading bandits and contextual influence maximization bandits. Under the triggering probability modulated (TPM) condition, we devise the C^2-UCB-T algorithm and propose a novel analysis that achieves an O(dKT) regret bound, removing a potentially exponentially large factor O(1/p_{min}), where d is the dimension of contexts, p_{min} is the minimum positive probability that any arm can be triggered, and batch-size K is the maximum number of arms that can be triggered per round. Under the variance modulated (VM) or triggering probability and variance modulated (TPVM) conditions, we propose a new variance-adaptive algorithm VAC^2-UCB and derive a regret bound O(dT), which is independent of the batch-size K. As a valuable by-product, our analysis technique and variance-adaptive algorithm can be applied to the CMAB-T and C^2MAB setting, improving existing results there as well. We also include experiments that demonstrate the improved performance of our algorithms compared with benchmark algorithms on synthetic and real-world datasets.
Optimal randomized multilevel Monte Carlo for repeatedly nested expectations
The estimation of repeatedly nested expectations is a challenging task that arises in many real-world systems. However, existing methods generally suffer from high computational costs when the number of nestings becomes large. Fix any non-negative integer D for the total number of nestings. Standard Monte Carlo methods typically cost at least O(varepsilon^{-(2+D)}) and sometimes O(varepsilon^{-2(1+D)}) to obtain an estimator up to varepsilon-error. More advanced methods, such as multilevel Monte Carlo, currently only exist for D = 1. In this paper, we propose a novel Monte Carlo estimator called READ, which stands for "Recursive Estimator for Arbitrary Depth.'' Our estimator has an optimal computational cost of O(varepsilon^{-2}) for every fixed D under suitable assumptions, and a nearly optimal computational cost of O(varepsilon^{-2(1 + delta)}) for any 0 < delta < frac12 under much more general assumptions. Our estimator is also unbiased, which makes it easy to parallelize. The key ingredients in our construction are an observation of the problem's recursive structure and the recursive use of the randomized multilevel Monte Carlo method.
Showing Your Work Doesn't Always Work
In natural language processing, a recently popular line of work explores how to best report the experimental results of neural networks. One exemplar publication, titled "Show Your Work: Improved Reporting of Experimental Results," advocates for reporting the expected validation effectiveness of the best-tuned model, with respect to the computational budget. In the present work, we critically examine this paper. As far as statistical generalizability is concerned, we find unspoken pitfalls and caveats with this approach. We analytically show that their estimator is biased and uses error-prone assumptions. We find that the estimator favors negative errors and yields poor bootstrapped confidence intervals. We derive an unbiased alternative and bolster our claims with empirical evidence from statistical simulation. Our codebase is at http://github.com/castorini/meanmax.
OpenRAND: A Performance Portable, Reproducible Random Number Generation Library for Parallel Computations
We introduce OpenRAND, a C++17 library aimed at facilitating reproducible scientific research through the generation of statistically robust and yet replicable random numbers. OpenRAND accommodates single and multi-threaded applications on CPUs and GPUs and offers a simplified, user-friendly API that complies with the C++ standard's random number engine interface. It is portable: it functions seamlessly as a lightweight, header-only library, making it adaptable to a wide spectrum of software and hardware platforms. It is statistically robust: a suite of built-in tests ensures no pattern exists within single or multiple streams. Despite the simplicity and portability, it is remarkably performant-matching and sometimes even outperforming native libraries by a significant margin. Our tests, including a Brownian walk simulation, affirm its reproducibility and highlight its computational efficiency, outperforming CUDA's cuRAND by up to 1.8 times.
Understanding the Limitations of Variational Mutual Information Estimators
Variational approaches based on neural networks are showing promise for estimating mutual information (MI) between high dimensional variables. However, they can be difficult to use in practice due to poorly understood bias/variance tradeoffs. We theoretically show that, under some conditions, estimators such as MINE exhibit variance that could grow exponentially with the true amount of underlying MI. We also empirically demonstrate that existing estimators fail to satisfy basic self-consistency properties of MI, such as data processing and additivity under independence. Based on a unified perspective of variational approaches, we develop a new estimator that focuses on variance reduction. Empirical results on standard benchmark tasks demonstrate that our proposed estimator exhibits improved bias-variance trade-offs on standard benchmark tasks.
Deep Linear Networks can Benignly Overfit when Shallow Ones Do
We bound the excess risk of interpolating deep linear networks trained using gradient flow. In a setting previously used to establish risk bounds for the minimum ell_2-norm interpolant, we show that randomly initialized deep linear networks can closely approximate or even match known bounds for the minimum ell_2-norm interpolant. Our analysis also reveals that interpolating deep linear models have exactly the same conditional variance as the minimum ell_2-norm solution. Since the noise affects the excess risk only through the conditional variance, this implies that depth does not improve the algorithm's ability to "hide the noise". Our simulations verify that aspects of our bounds reflect typical behavior for simple data distributions. We also find that similar phenomena are seen in simulations with ReLU networks, although the situation there is more nuanced.
Efficient Backpropagation with Variance-Controlled Adaptive Sampling
Sampling-based algorithms, which eliminate ''unimportant'' computations during forward and/or back propagation (BP), offer potential solutions to accelerate neural network training. However, since sampling introduces approximations to training, such algorithms may not consistently maintain accuracy across various tasks. In this work, we introduce a variance-controlled adaptive sampling (VCAS) method designed to accelerate BP. VCAS computes an unbiased stochastic gradient with fine-grained layerwise importance sampling in data dimension for activation gradient calculation and leverage score sampling in token dimension for weight gradient calculation. To preserve accuracy, we control the additional variance by learning the sample ratio jointly with model parameters during training. We assessed VCAS on multiple fine-tuning and pre-training tasks in both vision and natural language domains. On all the tasks, VCAS can preserve the original training loss trajectory and validation accuracy with an up to 73.87% FLOPs reduction of BP and 49.58% FLOPs reduction of the whole training process. The implementation is available at https://github.com/thu-ml/VCAS .
The threat of analytic flexibility in using large language models to simulate human data: A call to attention
Social scientists are now using large language models to create "silicon samples" - synthetic datasets intended to stand in for human respondents, aimed at revolutionising human subjects research. However, there are many analytic choices which must be made to produce these samples. Though many of these choices are defensible, their impact on sample quality is poorly understood. I map out these analytic choices and demonstrate how a very small number of decisions can dramatically change the correspondence between silicon samples and human data. Configurations (N = 252) varied substantially in their capacity to estimate (i) rank ordering of participants, (ii) response distributions, and (iii) between-scale correlations. Most critically, configurations were not consistent in quality: those that performed well on one dimension often performed poorly on another, implying that there is no "one-size-fits-all" configuration that optimises the accuracy of these samples. I call for greater attention to the threat of analytic flexibility in using silicon samples.
Demystifying Disagreement-on-the-Line in High Dimensions
Evaluating the performance of machine learning models under distribution shift is challenging, especially when we only have unlabeled data from the shifted (target) domain, along with labeled data from the original (source) domain. Recent work suggests that the notion of disagreement, the degree to which two models trained with different randomness differ on the same input, is a key to tackle this problem. Experimentally, disagreement and prediction error have been shown to be strongly connected, which has been used to estimate model performance. Experiments have led to the discovery of the disagreement-on-the-line phenomenon, whereby the classification error under the target domain is often a linear function of the classification error under the source domain; and whenever this property holds, disagreement under the source and target domain follow the same linear relation. In this work, we develop a theoretical foundation for analyzing disagreement in high-dimensional random features regression; and study under what conditions the disagreement-on-the-line phenomenon occurs in our setting. Experiments on CIFAR-10-C, Tiny ImageNet-C, and Camelyon17 are consistent with our theory and support the universality of the theoretical findings.
Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market
Stock price prediction is a challenging task and a lot of propositions exist in the literature in this area. Portfolio construction is a process of choosing a group of stocks and investing in them optimally to maximize the return while minimizing the risk. Since the time when Markowitz proposed the Modern Portfolio Theory, several advancements have happened in the area of building efficient portfolios. An investor can get the best benefit out of the stock market if the investor invests in an efficient portfolio and could take the buy or sell decision in advance, by estimating the future asset value of the portfolio with a high level of precision. In this project, we have built an efficient portfolio and to predict the future asset value by means of individual stock price prediction of the stocks in the portfolio. As part of building an efficient portfolio we have studied multiple portfolio optimization methods beginning with the Modern Portfolio theory. We have built the minimum variance portfolio and optimal risk portfolio for all the five chosen sectors by using past daily stock prices over the past five years as the training data, and have also conducted back testing to check the performance of the portfolio. A comparative study of minimum variance portfolio and optimal risk portfolio with equal weight portfolio is done by backtesting.
Why does Throwing Away Data Improve Worst-Group Error?
When facing data with imbalanced classes or groups, practitioners follow an intriguing strategy to achieve best results. They throw away examples until the classes or groups are balanced in size, and then perform empirical risk minimization on the reduced training set. This opposes common wisdom in learning theory, where the expected error is supposed to decrease as the dataset grows in size. In this work, we leverage extreme value theory to address this apparent contradiction. Our results show that the tails of the data distribution play an important role in determining the worst-group-accuracy of linear classifiers. When learning on data with heavy tails, throwing away data restores the geometric symmetry of the resulting classifier, and therefore improves its worst-group generalization.
AutoDEUQ: Automated Deep Ensemble with Uncertainty Quantification
Deep neural networks are powerful predictors for a variety of tasks. However, they do not capture uncertainty directly. Using neural network ensembles to quantify uncertainty is competitive with approaches based on Bayesian neural networks while benefiting from better computational scalability. However, building ensembles of neural networks is a challenging task because, in addition to choosing the right neural architecture or hyperparameters for each member of the ensemble, there is an added cost of training each model. We propose AutoDEUQ, an automated approach for generating an ensemble of deep neural networks. Our approach leverages joint neural architecture and hyperparameter search to generate ensembles. We use the law of total variance to decompose the predictive variance of deep ensembles into aleatoric (data) and epistemic (model) uncertainties. We show that AutoDEUQ outperforms probabilistic backpropagation, Monte Carlo dropout, deep ensemble, distribution-free ensembles, and hyper ensemble methods on a number of regression benchmarks.
Short-term Volatility Estimation for High Frequency Trades using Gaussian processes (GPs)
The fundamental theorem behind financial markets is that stock prices are intrinsically complex and stochastic. One of the complexities is the volatility associated with stock prices. Volatility is a tendency for prices to change unexpectedly [1]. Price volatility is often detrimental to the return economics, and thus, investors should factor it in whenever making investment decisions, choices, and temporal or permanent moves. It is, therefore, crucial to make necessary and regular short and long-term stock price volatility forecasts for the safety and economics of investors returns. These forecasts should be accurate and not misleading. Different models and methods, such as ARCH GARCH models, have been intuitively implemented to make such forecasts. However, such traditional means fail to capture the short-term volatility forecasts effectively. This paper, therefore, investigates and implements a combination of numeric and probabilistic models for short-term volatility and return forecasting for high-frequency trades. The essence is that one-day-ahead volatility forecasts were made with Gaussian Processes (GPs) applied to the outputs of a Numerical market prediction (NMP) model. Firstly, the stock price data from NMP was corrected by a GP. Since it is not easy to set price limits in a market due to its free nature and randomness, a Censored GP was used to model the relationship between the corrected stock prices and returns. Forecasting errors were evaluated using the implied and estimated data.
Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
Chinchilla Scaling: A replication attempt
Hoffmann et al. (2022) propose three methods for estimating a compute-optimal scaling law. We attempt to replicate their third estimation procedure, which involves fitting a parametric loss function to a reconstruction of data from their plots. We find that the reported estimates are inconsistent with their first two estimation methods, fail at fitting the extracted data, and report implausibly narrow confidence intervals--intervals this narrow would require over 600,000 experiments, while they likely only ran fewer than 500. In contrast, our rederivation of the scaling law using the third approach yields results that are compatible with the findings from the first two estimation procedures described by Hoffmann et al.
Interpretable structural model error discovery from sparse assimilation increments using spectral bias-reduced neural networks: A quasi-geostrophic turbulence test case
Earth system models suffer from various structural and parametric errors in their representation of nonlinear, multi-scale processes, leading to uncertainties in their long-term projections. The effects of many of these errors (particularly those due to fast physics) can be quantified in short-term simulations, e.g., as differences between the predicted and observed states (analysis increments). With the increase in the availability of high-quality observations and simulations, learning nudging from these increments to correct model errors has become an active research area. However, most studies focus on using neural networks, which while powerful, are hard to interpret, are data-hungry, and poorly generalize out-of-distribution. Here, we show the capabilities of Model Error Discovery with Interpretability and Data Assimilation (MEDIDA), a general, data-efficient framework that uses sparsity-promoting equation-discovery techniques to learn model errors from analysis increments. Using two-layer quasi-geostrophic turbulence as the test case, MEDIDA is shown to successfully discover various linear and nonlinear structural/parametric errors when full observations are available. Discovery from spatially sparse observations is found to require highly accurate interpolation schemes. While NNs have shown success as interpolators in recent studies, here, they are found inadequate due to their inability to accurately represent small scales, a phenomenon known as spectral bias. We show that a general remedy, adding a random Fourier feature layer to the NN, resolves this issue enabling MEDIDA to successfully discover model errors from sparse observations. These promising results suggest that with further development, MEDIDA could be scaled up to models of the Earth system and real observations.
Hard Examples Are All You Need: Maximizing GRPO Post-Training Under Annotation Budgets
Collecting high-quality training examples for language model fine-tuning is expensive, with practical budgets limiting the amount of data that can be procured. We investigate whether example difficulty affects GRPO training effectiveness by comparing selection strategies (easy, medium, hard, random) across multiple models and reasoning tasks. Training on the hardest 10\% of examples (those where the base model fails most often) yields dramatic performance gains up to 47\%, while easy examples produce minimal improvements of 3-15\%. This occurs because GRPO requires outcome variance to generate learning signals; hard examples maintain mixed success/failure outcomes throughout training while easy examples quickly converge to consistent success, eliminating learning opportunities. Moreover, models trained on hard examples show superior out-of-distribution generalization, with only hard-trained models achieving meaningful gains on the AIME2025 benchmark. Our findings provide clear guidance: when budget-constrained, prioritize collecting and annotating examples where your base model struggles, as these drive nearly all learning value in GRPO fine-tuning
Position: Don't use the CLT in LLM evals with fewer than a few hundred datapoints
Rigorous statistical evaluations of large language models (LLMs), including valid error bars and significance testing, are essential for meaningful and reliable performance assessment. Currently, when such statistical measures are reported, they typically rely on the Central Limit Theorem (CLT). In this position paper, we argue that while CLT-based methods for uncertainty quantification are appropriate when benchmarks consist of thousands of examples, they fail to provide adequate uncertainty estimates for LLM evaluations that rely on smaller, highly specialized benchmarks. In these small-data settings, we demonstrate that CLT-based methods perform very poorly, usually dramatically underestimating uncertainty (i.e. producing error bars that are too small). We give recommendations for alternative frequentist and Bayesian methods that are both easy to implement and more appropriate in these increasingly common scenarios. We provide a simple Python library for these Bayesian methods at https://github.com/sambowyer/bayes_evals .
Model Merging by Uncertainty-Based Gradient Matching
Models trained on different datasets can be merged by a weighted-averaging of their parameters, but why does it work and when can it fail? Here, we connect the inaccuracy of weighted-averaging to mismatches in the gradients and propose a new uncertainty-based scheme to improve the performance by reducing the mismatch. The connection also reveals implicit assumptions in other schemes such as averaging, task arithmetic, and Fisher-weighted averaging. Our new method gives consistent improvements for large language models and vision transformers, both in terms of performance and robustness to hyperparameters.
A Confidence Interval for the ell_2 Expected Calibration Error
Recent advances in machine learning have significantly improved prediction accuracy in various applications. However, ensuring the calibration of probabilistic predictions remains a significant challenge. Despite efforts to enhance model calibration, the rigorous statistical evaluation of model calibration remains less explored. In this work, we develop confidence intervals the ell_2 Expected Calibration Error (ECE). We consider top-1-to-k calibration, which includes both the popular notion of confidence calibration as well as full calibration. For a debiased estimator of the ECE, we show asymptotic normality, but with different convergence rates and asymptotic variances for calibrated and miscalibrated models. We develop methods to construct asymptotically valid confidence intervals for the ECE, accounting for this behavior as well as non-negativity. Our theoretical findings are supported through extensive experiments, showing that our methods produce valid confidence intervals with shorter lengths compared to those obtained by resampling-based methods.
Performance Evaluation of Equal-Weight Portfolio and Optimum Risk Portfolio on Indian Stocks
Designing an optimum portfolio for allocating suitable weights to its constituent assets so that the return and risk associated with the portfolio are optimized is a computationally hard problem. The seminal work of Markowitz that attempted to solve the problem by estimating the future returns of the stocks is found to perform sub-optimally on real-world stock market data. This is because the estimation task becomes extremely challenging due to the stochastic and volatile nature of stock prices. This work illustrates three approaches to portfolio design minimizing the risk, optimizing the risk, and assigning equal weights to the stocks of a portfolio. Thirteen critical sectors listed on the National Stock Exchange (NSE) of India are first chosen. Three portfolios are designed following the above approaches choosing the top ten stocks from each sector based on their free-float market capitalization. The portfolios are designed using the historical prices of the stocks from Jan 1, 2017, to Dec 31, 2022. The portfolios are evaluated on the stock price data from Jan 1, 2022, to Dec 31, 2022. The performances of the portfolios are compared, and the portfolio yielding the higher return for each sector is identified.
One Initialization to Rule them All: Fine-tuning via Explained Variance Adaptation
Foundation models (FMs) are pre-trained on large-scale datasets and then fine-tuned on a downstream task for a specific application. The most successful and most commonly used fine-tuning method is to update the pre-trained weights via a low-rank adaptation (LoRA). LoRA introduces new weight matrices that are usually initialized at random with a uniform rank distribution across model weights. Recent works focus on weight-driven initialization or learning of adaptive ranks during training. Both approaches have only been investigated in isolation, resulting in slow convergence or a uniform rank distribution, in turn leading to sub-optimal performance. We propose to enhance LoRA by initializing the new weights in a data-driven manner by computing singular value decomposition on minibatches of activation vectors. Then, we initialize the LoRA matrices with the obtained right-singular vectors and re-distribute ranks among all weight matrices to explain the maximal amount of variance and continue the standard LoRA fine-tuning procedure. This results in our new method Explained Variance Adaptation (EVA). We apply EVA to a variety of fine-tuning tasks ranging from language generation and understanding to image classification and reinforcement learning. EVA exhibits faster convergence than competitors and attains the highest average score across a multitude of tasks per domain.
