- Approximation of the truncated Zeta distribution and Zipf's law Zipf's law appears in many application areas but does not have a closed form expression, which may make its use cumbersome. Since it coincides with the truncated version of the Zeta distribution, in this paper we propose three approximate closed form expressions for the truncated Zeta distribution, which may be employed for Zipf's law as well. The three approximations are based on the replacement of the sum occurring in Zipf's law with an integral, and are named respectively the integral approximation, the average integral approximation, and the trapezoidal approximation. While the first one is shown to be of little use, the trapezoidal approximation exhibits an error which is typically lower than 1\%, but is as low as 0.1\% for the range of values of the Zipf parameter below 1. 1 authors · Nov 4, 2015
- Approximate Stein Classes for Truncated Density Estimation Estimating truncated density models is difficult, as these models have intractable normalising constants and hard to satisfy boundary conditions. Score matching can be adapted to solve the truncated density estimation problem, but requires a continuous weighting function which takes zero at the boundary and is positive elsewhere. Evaluation of such a weighting function (and its gradient) often requires a closed-form expression of the truncation boundary and finding a solution to a complicated optimisation problem. In this paper, we propose approximate Stein classes, which in turn leads to a relaxed Stein identity for truncated density estimation. We develop a novel discrepancy measure, truncated kernelised Stein discrepancy (TKSD), which does not require fixing a weighting function in advance, and can be evaluated using only samples on the boundary. We estimate a truncated density model by minimising the Lagrangian dual of TKSD. Finally, experiments show the accuracy of our method to be an improvement over previous works even without the explicit functional form of the boundary. 2 authors · Jun 1, 2023
- Linear statistics for Coulomb gases: higher order cumulants We consider N classical particles interacting via the Coulomb potential in spatial dimension d and in the presence of an external trap, at equilibrium at inverse temperature beta. In the large N limit, the particles are confined within a droplet of finite size. We study smooth linear statistics, i.e. the fluctuations of sums of the form {cal L}_N = sum_{i=1}^N f({bf x}_i), where {bf x}_i's are the positions of the particles and where f({bf x}_i) is a sufficiently regular function. There exists at present standard results for the first and second moments of {cal L}_N in the large N limit, as well as associated Central Limit Theorems in general dimension and for a wide class of confining potentials. Here we obtain explicit expressions for the higher order cumulants of {cal L}_N at large N, when the function f({bf x})=f(|{bf x}|) and the confining potential are both rotationnally invariant. A remarkable feature of our results is that these higher cumulants depend only on the value of f'(|{bf x}|) and its higher order derivatives evaluated exactly at the boundary of the droplet, which in this case is a d-dimensional sphere. In the particular two-dimensional case d=2 at the special value beta=2, a connection to the Ginibre ensemble allows us to derive these results in an alternative way using the tools of determinantal point processes. Finally we also obtain the large deviation form of the full probability distribution function of {cal L}_N. 4 authors · Oct 25, 2023
1 Truncation Sampling as Language Model Desmoothing Long samples of text from neural language models can be of poor quality. Truncation sampling algorithms--like top-p or top-k -- address this by setting some words' probabilities to zero at each step. This work provides framing for the aim of truncation, and an improved algorithm for that aim. We propose thinking of a neural language model as a mixture of a true distribution and a smoothing distribution that avoids infinite perplexity. In this light, truncation algorithms aim to perform desmoothing, estimating a subset of the support of the true distribution. Finding a good subset is crucial: we show that top-p unnecessarily truncates high-probability words, for example causing it to truncate all words but Trump for a document that starts with Donald. We introduce eta-sampling, which truncates words below an entropy-dependent probability threshold. Compared to previous algorithms, eta-sampling generates more plausible long English documents according to humans, is better at breaking out of repetition, and behaves more reasonably on a battery of test distributions. 3 authors · Oct 27, 2022
- Kibble-Zurek Mechanism and Beyond: Lessons from a Holographic Superfluid Disk The superfluid phase transition dynamics and associated spontaneous vortex formation with the crossing of the critical temperature in a disk geometry is studied in the framework of the AdS/CFT correspondence by solving the Einstein-Abelian-Higgs model in an AdS_4 black hole. For a slow quench, the vortex density admits a universal scaling law with the cooling rate as predicted by the Kibble-Zurek mechanism (KZM), while for fast quenches, the density shows a universal scaling behavior as a function of the final temperature, that lies beyond the KZM prediction. The vortex number distribution in both the power-law and saturation regimes can be approximated by a normal distribution. However, the study of the universal scaling of the cumulants reveals non-normal features and indicates that vortex statistics in the newborn superfluid is best described by the Poisson binomial distribution, previously predicted in the KZM regime [Phys. Rev. Lett. 124, 240602 (2020)]. This is confirmed by studying the cumulant scalings as a function of the quench time and the quench depth. Our work supports the existence of a universal defect number distribution that accommodates the KZM scaling, its breakdown at fast quenches, and the additional universal scaling laws as a function of the final value of the control parameter. 4 authors · Jun 7, 2024
2 Balancing Diversity and Risk in LLM Sampling: How to Select Your Method and Parameter for Open-Ended Text Generation Sampling-based decoding strategies have been widely adopted for Large Language Models (LLMs) in numerous applications, targeting a balance between diversity and quality via temperature tuning and tail truncation. Considering the strong dependency of the candidate next tokens on different prefixes, recent studies propose to adaptively truncate the tail of LLMs' predicted distribution. Although improved results have been reported with these methods on open-ended text generation tasks, the results are highly dependent on the curated parameters and the limited exemplar text. In this paper, we propose a systematic way to estimate the capacity of a truncation sampling method by considering the trade-off between diversity and risk at each decoding step, based on our collected prefix tree which preserves the context of a full sentence. Our work offers a comprehensive comparison of existing truncation sampling methods and serves as a practical user guideline for their parameter selection. 3 authors · Aug 24, 2024
- The Fyodorov-Hiary-Keating Conjecture. I By analogy with conjectures for random matrices, Fyodorov-Hiary-Keating and Fyodorov-Keating proposed precise asymptotics for the maximum of the Riemann zeta function in a typical short interval on the critical line. In this paper, we settle the upper bound part of their conjecture in a strong form. More precisely, we show that the measure of those T leq t leq 2T for which $ max_{|h| leq 1} |zeta(1/2 + i t + i h)| > e^y log T {(loglog T)^{3/4}} is bounded by Cy e^{-2y} uniformly in y \geq 1. This is expected to be optimal for y= O(\log\log T). This upper bound is sharper than what is known in the context of random matrices, since it gives (uniform) decay rates in y$. In a subsequent paper we will obtain matching lower bounds. 3 authors · Jul 2, 2020
- New high-dimensional generalizations of Nesbitt's inequality and relative applications Two kinds of novel generalizations of Nesbitt's inequality are explored in various cases regarding dimensions and parameters in this article. Some other cases are also discussed elaborately by using the semiconcave-semiconvex theorem. The general inequalities are then employed to deduce some alternate inequalities and mathematical competition questions. At last, a relation about Hurwitz-Lerch zeta functions is obtained. 2 authors · Mar 18
- Kernel Density Estimators in Large Dimensions This paper studies Kernel density estimation for a high-dimensional distribution rho(x). Traditional approaches have focused on the limit of large number of data points n and fixed dimension d. We analyze instead the regime where both the number n of data points y_i and their dimensionality d grow with a fixed ratio alpha=(log n)/d. Our study reveals three distinct statistical regimes for the kernel-based estimate of the density hat rho_h^{D}(x)=1{n h^d}sum_{i=1}^n Kleft(x-y_i{h}right), depending on the bandwidth h: a classical regime for large bandwidth where the Central Limit Theorem (CLT) holds, which is akin to the one found in traditional approaches. Below a certain value of the bandwidth, h_{CLT}(alpha), we find that the CLT breaks down. The statistics of hat rho_h^{D}(x) for a fixed x drawn from rho(x) is given by a heavy-tailed distribution (an alpha-stable distribution). In particular below a value h_G(alpha), we find that hat rho_h^{D}(x) is governed by extreme value statistics: only a few points in the database matter and give the dominant contribution to the density estimator. We provide a detailed analysis for high-dimensional multivariate Gaussian data. We show that the optimal bandwidth threshold based on Kullback-Leibler divergence lies in the new statistical regime identified in this paper. Our findings reveal limitations of classical approaches, show the relevance of these new statistical regimes, and offer new insights for Kernel density estimation in high-dimensional settings. 2 authors · Aug 11, 2024
- Interpreting the extremely diffuse stellar distribution of Nube galaxy through fuzzy dark matter Recent observations have revealed an unusual stellar distribution within the almost dark dwarf galaxy Nube. The galaxy exhibits a remarkably flat stellar distribution, with an effective radius of approximately 6.9 kpc, exceeding the typical size of dwarf galaxies and even surpassing that of ultra-diffuse galaxies (UDGs) with similar stellar masses. The dynamical heating effect of fuzzy dark matter (FDM) may offer an explanation for this extremely diffuse stellar distribution in Nube. In this research, we utilize simulation techniques to investigate this issue and find that a particle mass O (1)times 10^{-23} eV offers a plausible explanation for this peculiar stellar distribution anomaly. 4 authors · Dec 2, 2024
- Search for dark matter subhalos among unassociated Fermi-LAT sources in presence of dataset shift We search for dark matter (DM) annihilating subhalos of the Milky Way halo among the Fermi Large Area Telescope (LAT) unassociated sources. We construct, for the first time, a statistical model of the unassociated sources at latitudes above 10 degrees. The latter is built as a combination of both DM annihilation subhalos as well as Galactic and extragalactic astrophysical components. The astrophysical components are constructed based on distributions of associated sources, while the distribution of DM subhalos is derived from Monte Carlo simulations. In this model we take into account the differences in the distributions of associated and unassociated sources including both covariate and prior probability shifts (both being forms of ``dataset shifts''). Previous searches of DM subhalos were based on classify-and-count strategies, while the approach adopted in this work is based on quantification learning, which allows one to determine a well-defined statistical interpretation of the contribution of a population of DM subhalos to the unassociated Fermi-LAT sources. In the bb annihilation channel and for a range of DM masses from 10 GeV to 1 TeV, we don't find a significant contribution from DM subhalos and derive a statistical 95% confidence upper limit on the DM annihilation cross section in this channel. While the derived limits are consistent with previous classify-and-count approaches, our generative statistical model opens new avenues for population studies of Fermi-LAT sources and, more generally, for searches of anomalies on top of backgrounds in presence of statistical and systematic uncertainties. 5 authors · Mar 18
- Alternating Apéry-Type Series and Colored Multiple Zeta Values of Level Eight Ap\'{e}ry-type (inverse) binomial series have appeared prominently in the calculations of Feynman integrals in recent years. In our previous work, we showed that a few large classes of the non-alternating Ap\'ery-type (inverse) central binomial series can be evaluated using colored multiple zeta values of level four (i.e., special values of multiple polylogarithms at fourth roots of unity) by expressing them in terms of iterated integrals. In this sequel, we shall prove that for several classes of the alternating versions we need to raise the level to eight. Our main idea is to adopt hyperbolic trigonometric 1-forms to replace the ordinary trigonometric ones used in the non-alternating setting. 2 authors · May 2, 2022
- Analysis on Riemann Hypothesis with Cross Entropy Optimization and Reasoning In this paper, we present a novel framework for the analysis of Riemann Hypothesis [27], which is composed of three key components: a) probabilistic modeling with cross entropy optimization and reasoning; b) the application of the law of large numbers; c) the application of mathematical inductions. The analysis is mainly conducted by virtue of probabilistic modeling of cross entropy optimization and reasoning with rare event simulation techniques. The application of the law of large numbers [2, 3, 6] and the application of mathematical inductions make the analysis of Riemann Hypothesis self-contained and complete to make sure that the whole complex plane is covered as conjectured in Riemann Hypothesis. We also discuss the method of enhanced top-p sampling with large language models (LLMs) for reasoning, where next token prediction is not just based on the estimated probabilities of each possible token in the current round but also based on accumulated path probabilities among multiple top-k chain of thoughts (CoTs) paths. The probabilistic modeling of cross entropy optimization and reasoning may suit well with the analysis of Riemann Hypothesis as Riemann Zeta functions are inherently dealing with the sums of infinite components of a complex number series. We hope that our analysis in this paper could shed some light on some of the insights of Riemann Hypothesis. The framework and techniques presented in this paper, coupled with recent developments with chain of thought (CoT) or diagram of thought (DoT) reasoning in large language models (LLMs) with reinforcement learning (RL) [1, 7, 18, 21, 24, 34, 39-41], could pave the way for eventual proof of Riemann Hypothesis [27]. 2 authors · Sep 29, 2024