Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeProPD: Dynamic Token Tree Pruning and Generation for LLM Parallel Decoding
Recent advancements in generative large language models (LLMs) have significantly boosted the performance in natural language processing tasks. However, their efficiency is hampered by the inherent limitations in autoregressive token generation. While parallel decoding with token tree verification, e.g., Medusa, has been proposed to improve decoding parallelism and efficiency, it often struggles with maintaining contextual relationships due to its independent token prediction approach and incurs significant verification overhead, especially with large tree sizes and batch processing. In this paper, we propose ProPD, an efficient LLM parallel decoding framework based on dynamic token tree pruning and generation. ProPD features an advanced early pruning mechanism to efficiently eliminate unpromising token sequences to improve verification efficiency. Additionally, it introduces a dynamic token tree generation algorithm to balance the computation and parallelism of the verification phase in real-time and maximize the overall efficiency across different batch sizes, sequence lengths, and tasks, etc. We verify ProPD across a diverse set of datasets, LLMs, and batch sizes and demonstrate ProPD consistently outperforms existing decoding algorithms by 1.1-3.2x.
STree: Speculative Tree Decoding for Hybrid State-Space Models
Speculative decoding is a technique to leverage hardware concurrency to improve the efficiency of large-scale autoregressive (AR) Transformer models by enabling multiple steps of token generation in a single forward pass. State-space models (SSMs) are already more efficient than AR Transformers, since their state summarizes all past data with no need to cache or re-process tokens in the sliding window context. However, their state can also comprise thousands of tokens; so, speculative decoding has recently been extended to SSMs. Existing approaches, however, do not leverage the tree-based verification methods, since current SSMs lack the means to compute a token tree efficiently. We propose the first scalable algorithm to perform tree-based speculative decoding in state-space models (SSMs) and hybrid architectures of SSMs and Transformer layers. We exploit the structure of accumulated state transition matrices to facilitate tree-based speculative decoding with minimal overhead to current SSM state update implementations. With the algorithm, we describe a hardware-aware implementation that improves naive application of AR Transformer tree-based speculative decoding methods to SSMs. Furthermore, we outperform vanilla speculative decoding with SSMs even with a baseline drafting model and tree structure on three different benchmarks, opening up opportunities for further speed up with SSM and hybrid model inference. Code will be released upon paper acceptance.
S$^4$C: Speculative Sampling with Syntactic and Semantic Coherence for Efficient Inference of Large Language Models
Large language models (LLMs) exhibit remarkable reasoning capabilities across diverse downstream tasks. However, their autoregressive nature leads to substantial inference latency, posing challenges for real-time applications. Speculative sampling mitigates this issue by introducing a drafting phase followed by a parallel validation phase, enabling faster token generation and verification. Existing approaches, however, overlook the inherent coherence in text generation, limiting their efficiency. To address this gap, we propose a Speculative Sampling with Syntactic and Semantic Coherence (S^4C) framework, which extends speculative sampling by leveraging multi-head drafting for rapid token generation and a continuous verification tree for efficient candidate validation and feature reuse. Experimental results demonstrate that S^4C surpasses baseline methods across mainstream tasks, offering enhanced efficiency, parallelism, and the ability to generate more valid tokens with fewer computational resources. On Spec-bench benchmarks, S^4C achieves an acceleration ratio of 2.26x-2.60x, outperforming state-of-the-art methods.
LongSpec: Long-Context Lossless Speculative Decoding with Efficient Drafting and Verification
As Large Language Models (LLMs) can now process extremely long contexts, efficient inference over these extended inputs has become increasingly important, especially for emerging applications like LLM agents that highly depend on this capability. Speculative decoding (SD) offers a promising lossless acceleration technique compared to lossy alternatives such as quantization and model cascades. However, most state-of-the-art SD methods are trained on short texts (typically fewer than 4k tokens), making them unsuitable for long-context scenarios. Specifically, adapting these methods to long contexts presents three key challenges: (1) the excessive memory demands posed by draft models due to large Key-Value (KV) cache; (2) performance degradation resulting from the mismatch between short-context training and long-context inference; and (3) inefficiencies in tree attention mechanisms when managing long token sequences. This work introduces LongSpec, a framework that addresses these challenges through three core innovations: a memory-efficient draft model with a constant-sized KV cache; novel position indices that mitigate the training-inference mismatch; and an attention aggregation strategy that combines fast prefix computation with standard tree attention to enable efficient decoding. Experimental results confirm the effectiveness of LongSpec, achieving up to a 3.26x speedup over strong Flash Attention baselines across five long-context understanding datasets, as well as a 2.25x reduction in wall-clock time on the AIME24 long reasoning task with the QwQ model, demonstrating significant latency improvements for long-context applications. The code is available at https://github.com/sail-sg/LongSpec.
Turning Trash into Treasure: Accelerating Inference of Large Language Models with Token Recycling
The rapid growth in the parameters of large language models (LLMs) has made inference latency a fundamental bottleneck, limiting broader application of LLMs. Speculative decoding represents a lossless approach to accelerate inference through a guess-and-verify paradigm, leveraging the parallel capabilities of modern hardware. Some speculative decoding methods rely on additional structures to guess draft tokens, such as small models or parameter-efficient architectures, which need extra training before use. Alternatively, retrieval-based train-free techniques build libraries from pre-existing corpora or by n-gram generation. However, they face challenges like large storage requirements, time-consuming retrieval, and limited adaptability. Observing that candidate tokens generated during the decoding process are likely to reoccur in future sequences, we propose Token Recycling. This approach stores candidate tokens in an adjacency matrix and employs a breadth-first search (BFS)-like algorithm on the matrix to construct a draft tree. The tree is then validated through tree attention. New candidate tokens from the decoding process are then used to update the matrix. Token Recycling requires \textless2MB of additional storage and achieves approximately 2x speedup across all sizes of LLMs. It significantly outperforms existing train-free methods by 30\% and even a training method by 25\%. It can be directly applied to any existing LLMs and tasks without the need for adaptation.
CoIn: Counting the Invisible Reasoning Tokens in Commercial Opaque LLM APIs
As post-training techniques evolve, large language models (LLMs) are increasingly augmented with structured multi-step reasoning abilities, often optimized through reinforcement learning. These reasoning-enhanced models outperform standard LLMs on complex tasks and now underpin many commercial LLM APIs. However, to protect proprietary behavior and reduce verbosity, providers typically conceal the reasoning traces while returning only the final answer. This opacity introduces a critical transparency gap: users are billed for invisible reasoning tokens, which often account for the majority of the cost, yet have no means to verify their authenticity. This opens the door to token count inflation, where providers may overreport token usage or inject synthetic, low-effort tokens to inflate charges. To address this issue, we propose CoIn, a verification framework that audits both the quantity and semantic validity of hidden tokens. CoIn constructs a verifiable hash tree from token embedding fingerprints to check token counts, and uses embedding-based relevance matching to detect fabricated reasoning content. Experiments demonstrate that CoIn, when deployed as a trusted third-party auditor, can effectively detect token count inflation with a success rate reaching up to 94.7%, showing the strong ability to restore billing transparency in opaque LLM services. The dataset and code are available at https://github.com/CASE-Lab-UMD/LLM-Auditing-CoIn.
DySpec: Faster Speculative Decoding with Dynamic Token Tree Structure
While speculative decoding has recently appeared as a promising direction for accelerating the inference of large language models (LLMs), the speedup and scalability are strongly bounded by the token acceptance rate. Prevalent methods usually organize predicted tokens as independent chains or fixed token trees, which fails to generalize to diverse query distributions. In this paper, we propose DySpec, a faster speculative decoding algorithm with a novel dynamic token tree structure. We begin by bridging the draft distribution and acceptance rate from intuitive and empirical clues, and successfully show that the two variables are strongly correlated. Based on this, we employ a greedy strategy to dynamically expand the token tree at run time. Theoretically, we show that our method can achieve optimal results under mild assumptions. Empirically, DySpec yields a higher acceptance rate and speedup than fixed trees. DySpec can drastically improve the throughput and reduce the latency of token generation across various data distribution and model sizes, which significantly outperforms strong competitors, including Specinfer and Sequoia. Under low temperature setting, DySpec can improve the throughput up to 9.1times and reduce the latency up to 9.4times on Llama2-70B. Under high temperature setting, DySpec can also improve the throughput up to 6.21times, despite the increasing difficulty of speculating more than one token per step for draft model.
Understanding and Mitigating Tokenization Bias in Language Models
State-of-the-art language models are autoregressive and operate on subword units known as tokens. Specifically, one must encode the conditioning string into a list of tokens before passing to the language models for next-token prediction. We show that popular encoding schemes, such as maximum prefix encoding (MPE) and byte-pair-encoding (BPE), induce a sampling bias that cannot be mitigated with more training or data. To counter this universal problem, for each encoding scheme above, we propose a novel algorithm to obtain unbiased estimates from any language model trained on tokenized data. Our methods do not require finetuning the model, and the complexity, defined as the number of model runs, scales linearly with the sequence length in the case of MPE. As a result, we show that one can simulate token-free behavior from a tokenized language model. We empirically verify the correctness of our method through a Markov-chain setup, where it accurately recovers the transition probabilities, as opposed to the conventional method of directly prompting tokens into the language model.
Think Before You Accept: Semantic Reflective Verification for Faster Speculative Decoding
Large language models (LLMs) suffer from high inference latency due to the auto-regressive decoding process. Speculative decoding accelerates inference by generating multiple draft tokens using a lightweight model and verifying them in parallel. However, existing verification methods rely heavily on distributional consistency while overlooking semantic correctness, thereby limiting the potential speedup of speculative decoding. While some methods employ additional models for relaxed verification of draft tokens, they often fail to generalize effectively to more diverse or open-domain settings. In this work, we propose Reflective Verification, a training-free and semantics-aware approach that achieves a better trade-off between correctness and efficiency. Specifically, we leverage the inherent reflective capacity of LLMs to semantically assess the correctness of draft tokens in parallel during verification. Using prompt-based probing, we obtain both the original and reflective distributions of draft tokens in a single forward pass. The fusion of these distributions enables semantic-level verification of draft tokens that incorporates both consistency and correctness. Experiments across multiple domain benchmarks and model scales demonstrate that our method significantly increases the acceptance length of draft tokens without compromising model performance. Furthermore, we find that the proposed Reflective Verification is orthogonal to existing statistical verification methods, and their combination yields additional 5sim15\% improvements in decoding speed.
Fishing for Magikarp: Automatically Detecting Under-trained Tokens in Large Language Models
The disconnect between tokenizer creation and model training in language models has been known to allow for certain inputs, such as the infamous SolidGoldMagikarp token, to induce unwanted behaviour. Although such `glitch tokens' that are present in the tokenizer vocabulary, but are nearly or fully absent in training, have been observed across a variety of different models, a consistent way of identifying them has been missing. We present a comprehensive analysis of Large Language Model (LLM) tokenizers, specifically targeting this issue of detecting untrained and under-trained tokens. Through a combination of tokenizer analysis, model weight-based indicators, and prompting techniques, we develop effective methods for automatically detecting these problematic tokens. Our findings demonstrate the prevalence of such tokens across various models and provide insights into improving the efficiency and safety of language models.
Multi-Candidate Speculative Decoding
Large language models have shown impressive capabilities across a variety of NLP tasks, yet their generating text autoregressively is time-consuming. One way to speed them up is speculative decoding, which generates candidate segments (a sequence of tokens) from a fast draft model that is then verified in parallel by the target model. However, the acceptance rate of candidate tokens receives limitations from several factors, such as the model, the dataset, and the decoding setup. This paper proposes sampling multiple candidates from a draft model and then organising them in batches for verification. We design algorithms for efficient multi-candidate verification while maintaining the distribution of the target model. Our approach shows significant improvements in acceptance rates on multiple datasets and models, consistently outperforming standard speculative decoding.
VOCABTRIM: Vocabulary Pruning for Efficient Speculative Decoding in LLMs
In this paper, we introduce a simple training-free technique to improve the performance of drafter-based speculative decoding (SpD) methods that incorporates language modeling head (LM head) during drafting process. A drafter-based speculative decoding leverages one or more smaller language models, a.k.a. drafters or draft models, to sample a draft sequence or tree consisting of multiple tokens, followed by verification by a base LLM, a target model, accepting a subset as its valid generation. As it is usually considered that the speculative decoding requires one-to-one mapping between vocabularies of the target model and the draft model, it has been natural to share the vocabulary between them, or even share the LM head as in EAGLE or Medusa. We first identify that this draft token sampling scheme inherently contains an unnecessary inference overhead in drafting, especially for some target LLMs with very large vocabularies. Then, we propose a simple technique, VocabTrim, to mitigate the drafting overhead to improve the generation speed in memory-bound environment. VocabTrim reconstructs the drafter LM head to contain only a limited set of tokens, selected by the most frequently sampled from the vocabulary of the target model. While limiting the vocabulary in drafting slightly degrades the acceptance rate, it significantly reduces the drafting latency in memory-bound process which is often the case on edge devices, resulting in higher memory-bound speed up (MBSU). We show that our method can boost the memory-bound speed-up for Llama-3 models on Spec-Bench, specifically by 16% for Llama-3.2-3B-Instruct.
TreeRanker: Fast and Model-agnostic Ranking System for Code Suggestions in IDEs
Token-level code completion is one of the most critical features in modern Integrated Development Environments (IDEs). It assists developers by suggesting relevant identifiers and APIs during coding. While completions are typically derived from static analysis, their usefulness depends heavily on how they are ranked, as correct predictions buried deep in the list are rarely seen by users. Most current systems rely on hand-crafted heuristics or lightweight machine learning models trained on user logs, which can be further improved to capture context information and generalize across projects and coding styles. In this work, we propose a new scoring approach to ranking static completions using language models in a lightweight and model-agnostic way. Our method organizes all valid completions into a prefix tree and performs a single greedy decoding pass to collect token-level scores across the tree. This enables a precise token-aware ranking without needing beam search, prompt engineering, or model adaptations. The approach is fast, architecture-agnostic, and compatible with already deployed models for code completion. These findings highlight a practical and effective pathway for integrating language models into already existing tools within IDEs, and ultimately providing smarter and more responsive developer assistance.
Glitch Tokens in Large Language Models: Categorization Taxonomy and Effective Detection
With the expanding application of Large Language Models (LLMs) in various domains, it becomes imperative to comprehensively investigate their unforeseen behaviors and consequent outcomes. In this study, we introduce and systematically explore the phenomenon of "glitch tokens", which are anomalous tokens produced by established tokenizers and could potentially compromise the models' quality of response. Specifically, we experiment on seven top popular LLMs utilizing three distinct tokenizers and involving a totally of 182,517 tokens. We present categorizations of the identified glitch tokens and symptoms exhibited by LLMs when interacting with glitch tokens. Based on our observation that glitch tokens tend to cluster in the embedding space, we propose GlitchHunter, a novel iterative clustering-based technique, for efficient glitch token detection. The evaluation shows that our approach notably outperforms three baseline methods on eight open-source LLMs. To the best of our knowledge, we present the first comprehensive study on glitch tokens. Our new detection further provides valuable insights into mitigating tokenization-related errors in LLMs.
Seed-CTS: Unleashing the Power of Tree Search for Superior Performance in Competitive Coding Tasks
Competition-level code generation tasks pose significant challenges for current state-of-the-art large language models (LLMs). For example, on the LiveCodeBench-Hard dataset, models such as O1-Mini and O1-Preview achieve pass@1 rates of only 0.366 and 0.143, respectively. While tree search techniques have proven effective in domains like mathematics and general coding, their potential in competition-level code generation remains under-explored. In this work, we propose a novel token-level tree search method specifically designed for code generation. Leveraging Qwen2.5-Coder-32B-Instruct, our approach achieves a pass rate of 0.305 on LiveCodeBench-Hard, surpassing the pass@100 performance of GPT4o-0513 (0.245). Furthermore, by integrating Chain-of-Thought (CoT) prompting, we improve our method's performance to 0.351, approaching O1-Mini's pass@1 rate. To ensure reproducibility, we report the average number of generations required per problem by our tree search method on the test set. Our findings underscore the potential of tree search to significantly enhance performance on competition-level code generation tasks. This opens up new possibilities for large-scale synthesis of challenging code problems supervised fine-tuning (SFT) data, advancing competition-level code generation tasks.
Tokenization Constraints in LLMs: A Study of Symbolic and Arithmetic Reasoning Limits
Tokenization is the first - and often underappreciated - layer of computation in language models. While Chain-of-Thought (CoT) prompting enables transformer models to approximate recurrent computation by externalizing intermediate steps, we show that the success of such reasoning is fundamentally bounded by the structure of tokenized inputs. This work presents a theoretical and empirical investigation into how tokenization schemes, particularly subword-based methods like byte-pair encoding (BPE), impede symbolic computation by merging or obscuring atomic reasoning units. We introduce the notion of Token Awareness to formalize how poor token granularity disrupts logical alignment and prevents models from generalizing symbolic procedures. Through systematic evaluation on arithmetic and symbolic tasks, we demonstrate that token structure dramatically affect reasoning performance, causing failure even with CoT, while atomically-aligned formats unlock strong generalization, allowing small models (e.g., GPT-4o-mini) to outperform larger systems (e.g., o1) in structured reasoning. Our findings reveal that symbolic reasoning ability in LLMs is not purely architectural, but deeply conditioned on token-level representations.
RASD: Retrieval-Augmented Speculative Decoding
Speculative decoding accelerates inference in large language models (LLMs) by generating draft tokens for target model verification. Current approaches for obtaining draft tokens rely on lightweight draft models or additional model structures to generate draft tokens and retrieve context from databases. Due to the draft model's small size and limited training data, model-based speculative decoding frequently becomes less effective in out-of-domain scenarios. Additionally, the time cost of the drafting phase results in a low upper limit on acceptance length during the verification step, limiting overall efficiency. This paper proposes RASD (Retrieval-Augmented Speculative Decoding), which adopts retrieval methods to enhance model-based speculative decoding. We introduce tree pruning and tree fusion to achieve this. Specifically, we develop a pruning method based on the draft model's probability distribution to construct the optimal retrieval tree. Second, we employ the longest prefix matching algorithm to merge the tree generated by the draft model with the retrieval tree, resulting in a unified tree for verification. Experimental results demonstrate that RASD achieves state-of-the-art inference acceleration across tasks such as DocQA, Summary, Code, and In-Domain QA. Moreover, RASD exhibits strong scalability, seamlessly integrating with various speculative decoding approaches, including both generation-based and retrieval-based methods.
Graph of Verification: Structured Verification of LLM Reasoning with Directed Acyclic Graphs
Verifying the reliability of complex, multi-step reasoning in Large Language Models (LLMs) remains a fundamental challenge, as existing methods often lack both faithfulness and precision. To address this issue, we propose the Graph of Verification (GoV) framework. GoV offers three key contributions: First, it explicitly models the underlying deductive process as a directed acyclic graph (DAG), whether this structure is implicit or explicitly constructed. Second, it enforces a topological order over the DAG to guide stepwise verification. Third, GoV introduces the notion of customizable node blocks, which flexibly define the verification granularity, from atomic propositions to full paragraphs, while ensuring that all requisite premises derived from the graph are provided as contextual input for each verification unit. We evaluate GoV on the Number Triangle Summation task and the ProcessBench benchmark with varying levels of reasoning complexity. Experimental results show that GoV substantially improves verification accuracy, faithfulness, and error localization when compared to conventional end-to-end verification approaches. Our code and data are available at https://github.com/Frevor/Graph-of-Verification.
Confidence-Weighted Token Set Cover for Early Hypothesis Pruning in Self-Consistency
Despite its simplicity and efficacy, the high token expenditure of self-consistency can limit its practical utility. Here we investigate if self-consistency can be made more token-efficient for long chain-of-thought reasoning tasks, while preserving its parallelism, through early hypothesis pruning. Concretely, we generate all solutions in parallel, but periodically prune intermediate hypotheses that are deemed unnecessary based on two lightweight indicators: (a) the model's own confidence in individual hypotheses, and (b) lexical coverage of all current hypotheses by candidate subsets that are under consideration for continued retention. We design a fast weighted set cover algorithm that utilizes the two indicators; our evaluation of five LLMs on three math benchmarks shows that this method can improve token efficiency for all models, by 10-35% in many cases.
Lookahead: An Inference Acceleration Framework for Large Language Model with Lossless Generation Accuracy
As Large Language Models (LLMs) have made significant advancements across various tasks, such as question answering, translation, text summarization, and dialogue systems, the need for accuracy in information becomes crucial, especially for serious financial products serving billions of users like Alipay. To address this, Alipay has developed a Retrieval-Augmented Generation (RAG) system that grounds LLMs on the most accurate and up-to-date information. However, for a real-world product serving millions of users, the inference speed of LLMs becomes a critical factor compared to a mere experimental model. Hence, this paper presents a generic framework for accelerating the inference process, resulting in a substantial increase in speed and cost reduction for our RAG system, with lossless generation accuracy. In the traditional inference process, each token is generated sequentially by the LLM, leading to a time consumption proportional to the number of generated tokens. To enhance this process, our framework, named lookahead, introduces a multi-branch strategy. Instead of generating a single token at a time, we propose a Trie-based Retrieval (TR) process that enables the generation of multiple branches simultaneously, each of which is a sequence of tokens. Subsequently, for each branch, a Verification and Accept (VA) process is performed to identify the longest correct sub-sequence as the final output. Our strategy offers two distinct advantages: (1) it guarantees absolute correctness of the output, avoiding any approximation algorithms, and (2) the worst-case performance of our approach is equivalent to the conventional process. We conduct extensive experiments to demonstrate the significant improvements achieved by applying our inference acceleration framework. Code is avaliable: https://github.com/alipay/PainlessInferenceAcceleration.
Tree Cross Attention
Cross Attention is a popular method for retrieving information from a set of context tokens for making predictions. At inference time, for each prediction, Cross Attention scans the full set of O(N) tokens. In practice, however, often only a small subset of tokens are required for good performance. Methods such as Perceiver IO are cheap at inference as they distill the information to a smaller-sized set of latent tokens L < N on which cross attention is then applied, resulting in only O(L) complexity. However, in practice, as the number of input tokens and the amount of information to distill increases, the number of latent tokens needed also increases significantly. In this work, we propose Tree Cross Attention (TCA) - a module based on Cross Attention that only retrieves information from a logarithmic O(log(N)) number of tokens for performing inference. TCA organizes the data in a tree structure and performs a tree search at inference time to retrieve the relevant tokens for prediction. Leveraging TCA, we introduce ReTreever, a flexible architecture for token-efficient inference. We show empirically that Tree Cross Attention (TCA) performs comparable to Cross Attention across various classification and uncertainty regression tasks while being significantly more token-efficient. Furthermore, we compare ReTreever against Perceiver IO, showing significant gains while using the same number of tokens for inference.
Scaling Up Membership Inference: When and How Attacks Succeed on Large Language Models
Membership inference attacks (MIA) attempt to verify the membership of a given data sample in the training set for a model. MIA has become relevant in recent years, following the rapid development of large language models (LLM). Many are concerned about the usage of copyrighted materials for training them and call for methods for detecting such usage. However, recent research has largely concluded that current MIA methods do not work on LLMs. Even when they seem to work, it is usually because of the ill-designed experimental setup where other shortcut features enable "cheating." In this work, we argue that MIA still works on LLMs, but only when multiple documents are presented for testing. We construct new benchmarks that measure the MIA performances at a continuous scale of data samples, from sentences (n-grams) to a collection of documents (multiple chunks of tokens). To validate the efficacy of current MIA approaches at greater scales, we adapt a recent work on Dataset Inference (DI) for the task of binary membership detection that aggregates paragraph-level MIA features to enable MIA at document and collection of documents level. This baseline achieves the first successful MIA on pre-trained and fine-tuned LLMs.
Efficient Guided Generation for Large Language Models
In this article we describe an efficient approach to guiding language model text generation with regular expressions and context-free grammars. Our approach adds little to no overhead to the token sequence generation process, and makes guided generation feasible in practice. An implementation is provided in the open source Python library Outlines.
Getting the most out of your tokenizer for pre-training and domain adaptation
Tokenization is an understudied and often neglected component of modern LLMs. Most published works use a single tokenizer for all experiments, often borrowed from another model, without performing ablations or analysis to optimize tokenization. Moreover, the tokenizer is generally kept unchanged when fine-tuning a base model. In this paper, we show that the size, pre-tokenization regular expression, and training data of a tokenizer can significantly impact the model's generation speed, effective context size, memory usage, and downstream performance. We train specialized Byte-Pair Encoding code tokenizers, and conduct extensive ablations on the impact of tokenizer design on the performance of LLMs for code generation tasks such as HumanEval and MBPP, and provide recommendations for tokenizer hyper-parameters selection and switching the tokenizer in a pre-trained LLM. We perform our experiments on models trained from scratch and from pre-trained models, verifying their applicability to a wide range of use-cases. We find that when fine-tuning on more than 50 billion tokens, we can specialize the tokenizer of a pre-trained LLM to obtain large gains in generation speed and effective context size.
Don't Get Lost in the Trees: Streamlining LLM Reasoning by Overcoming Tree Search Exploration Pitfalls
Recent advancements in tree search algorithms guided by verifiers have significantly enhanced the reasoning capabilities of large language models (LLMs), but at the cost of increased computational resources. In this work, we identify two key challenges contributing to this inefficiency: over-exploration due to redundant states with semantically equivalent content, and under-exploration caused by high variance in verifier scoring leading to frequent trajectory switching. To address these issues, we propose FETCH, an efficient tree search framework, which is a flexible, plug-and-play system compatible with various tree search algorithms. Our framework mitigates over-exploration by merging semantically similar states using agglomerative clustering of text embeddings obtained from a fine-tuned SimCSE model. To tackle under-exploration, we enhance verifiers by incorporating temporal difference learning with adjusted lambda-returns during training to reduce variance, and employing a verifier ensemble to aggregate scores during inference. Experiments on GSM8K, GSM-Plus, and MATH datasets demonstrate that our methods significantly improve reasoning accuracy and computational efficiency across four different tree search algorithms, paving the way for more practical applications of LLM-based reasoning. The code is available at https://github.com/Soistesimmer/Fetch.
CharBench: Evaluating the Role of Tokenization in Character-Level Tasks
Tasks that require character-level reasoning, such as counting or locating characters within words, remain challenging for contemporary language models. A common conjecture is that language models' reliance on subword units, rather than characters, contributes to their struggles with character-level tasks, yet recent studies offer conflicting conclusions about the role of tokenization, leaving its impact unclear. To address this gap, we introduce CharBench, a comprehensive benchmark of character-level tasks that is two orders of magnitude larger than existing alternatives. We evaluate a diverse range of leading open-weight and proprietary models on CharBench and find that it presents a significant challenge to modern LLMs, with an average accuracy of 43.6% and 32.3% on some tasks. We present an in-depth analysis of how intrinsic properties of words and their segmentations into tokens correspond to model performance. For counting tasks, we find that tokenization properties are weakly correlated with correctness, while the length of the queried word and the actual character count play a more significant part. In contrast, for tasks requiring intra-word positional understanding, performance is negatively correlated with the length of the token containing the queried character, suggesting that longer tokens obscure character position information for LLMs. We encourage future work to build on the benchmark and evaluation methodology introduced here as tools for improving model performance on such tasks.
Problematic Tokens: Tokenizer Bias in Large Language Models
Recent advancements in large language models(LLMs), such as GPT-4 and GPT-4o, have shown exceptional performance, especially in languages with abundant resources like English, thanks to extensive datasets that ensure robust training. Conversely, these models exhibit limitations when processing under-resourced languages such as Chinese and Korean, where issues including hallucinatory responses remain prevalent. This paper traces the roots of these disparities to the tokenization process inherent to these models. Specifically, it explores how the tokenizers vocabulary, often used to speed up the tokenization process and reduce tokens but constructed independently of the actual model training data, inadequately represents non-English languages. This misrepresentation results in the propagation of under-trained or untrained tokens, which perpetuate biases and pose serious concerns related to data security and ethical standards. We aim to dissect the tokenization mechanics of GPT-4o, illustrating how its simplified token-handling methods amplify these risks and offer strategic solutions to mitigate associated security and ethical issues. Through this study, we emphasize the critical need to rethink tokenization frameworks to foster more equitable and secure AI technologies. The code and data are available at https://github.com/yeyimilk/LLMGPT4o
LLMCad: Fast and Scalable On-device Large Language Model Inference
Generative tasks, such as text generation and question answering, hold a crucial position in the realm of mobile applications. Due to their sensitivity to privacy concerns, there is a growing demand for their execution directly on mobile devices. Currently, the execution of these generative tasks heavily depends on Large Language Models (LLMs). Nevertheless, the limited memory capacity of these devices presents a formidable challenge to the scalability of such models. In our research, we introduce LLMCad, an innovative on-device inference engine specifically designed for efficient generative Natural Language Processing (NLP) tasks. The core idea behind LLMCad revolves around model collaboration: a compact LLM, residing in memory, takes charge of generating the most straightforward tokens, while a high-precision LLM steps in to validate these tokens and rectify any identified errors. LLMCad incorporates three novel techniques: (1) Instead of generating candidate tokens in a sequential manner, LLMCad employs the smaller LLM to construct a token tree, encompassing a wider range of plausible token pathways. Subsequently, the larger LLM can efficiently validate all of these pathways simultaneously. (2) It employs a self-adjusting fallback strategy, swiftly initiating the verification process whenever the smaller LLM generates an erroneous token. (3) To ensure a continuous flow of token generation, LLMCad speculatively generates tokens during the verification process by implementing a compute-IO pipeline. Through an extensive series of experiments, LLMCad showcases an impressive token generation speed, achieving rates up to 9.3x faster than existing inference engines.
FEVER: a large-scale dataset for Fact Extraction and VERification
In this paper we introduce a new publicly available dataset for verification against textual sources, FEVER: Fact Extraction and VERification. It consists of 185,445 claims generated by altering sentences extracted from Wikipedia and subsequently verified without knowledge of the sentence they were derived from. The claims are classified as Supported, Refuted or NotEnoughInfo by annotators achieving 0.6841 in Fleiss kappa. For the first two classes, the annotators also recorded the sentence(s) forming the necessary evidence for their judgment. To characterize the challenge of the dataset presented, we develop a pipeline approach and compare it to suitably designed oracles. The best accuracy we achieve on labeling a claim accompanied by the correct evidence is 31.87%, while if we ignore the evidence we achieve 50.91%. Thus we believe that FEVER is a challenging testbed that will help stimulate progress on claim verification against textual sources.
Better & Faster Large Language Models via Multi-token Prediction
Large language models such as GPT and Llama are trained with a next-token prediction loss. In this work, we suggest that training language models to predict multiple future tokens at once results in higher sample efficiency. More specifically, at each position in the training corpus, we ask the model to predict the following n tokens using n independent output heads, operating on top of a shared model trunk. Considering multi-token prediction as an auxiliary training task, we measure improved downstream capabilities with no overhead in training time for both code and natural language models. The method is increasingly useful for larger model sizes, and keeps its appeal when training for multiple epochs. Gains are especially pronounced on generative benchmarks like coding, where our models consistently outperform strong baselines by several percentage points. Our 13B parameter models solves 12 % more problems on HumanEval and 17 % more on MBPP than comparable next-token models. Experiments on small algorithmic tasks demonstrate that multi-token prediction is favorable for the development of induction heads and algorithmic reasoning capabilities. As an additional benefit, models trained with 4-token prediction are up to 3 times faster at inference, even with large batch sizes.
Strongly Incremental Constituency Parsing with Graph Neural Networks
Parsing sentences into syntax trees can benefit downstream applications in NLP. Transition-based parsers build trees by executing actions in a state transition system. They are computationally efficient, and can leverage machine learning to predict actions based on partial trees. However, existing transition-based parsers are predominantly based on the shift-reduce transition system, which does not align with how humans are known to parse sentences. Psycholinguistic research suggests that human parsing is strongly incremental: humans grow a single parse tree by adding exactly one token at each step. In this paper, we propose a novel transition system called attach-juxtapose. It is strongly incremental; it represents a partial sentence using a single tree; each action adds exactly one token into the partial tree. Based on our transition system, we develop a strongly incremental parser. At each step, it encodes the partial tree using a graph neural network and predicts an action. We evaluate our parser on Penn Treebank (PTB) and Chinese Treebank (CTB). On PTB, it outperforms existing parsers trained with only constituency trees; and it performs on par with state-of-the-art parsers that use dependency trees as additional training data. On CTB, our parser establishes a new state of the art. Code is available at https://github.com/princeton-vl/attach-juxtapose-parser.
PSIMiner: A Tool for Mining Rich Abstract Syntax Trees from Code
The application of machine learning algorithms to source code has grown in the past years. Since these algorithms are quite sensitive to input data, it is not surprising that researchers experiment with input representations. Nowadays, a popular starting point to represent code is abstract syntax trees (ASTs). Abstract syntax trees have been used for a long time in various software engineering domains, and in particular in IDEs. The API of modern IDEs allows to manipulate and traverse ASTs, resolve references between code elements, etc. Such algorithms can enrich ASTs with new data and therefore may be useful in ML-based code analysis. In this work, we present PSIMiner - a tool for processing PSI trees from the IntelliJ Platform. PSI trees contain code syntax trees as well as functions to work with them, and therefore can be used to enrich code representation using static analysis algorithms of modern IDEs. To showcase this idea, we use our tool to infer types of identifiers in Java ASTs and extend the code2seq model for the method name prediction problem.
Recursive Speculative Decoding: Accelerating LLM Inference via Sampling Without Replacement
Speculative decoding is an inference-acceleration method for large language models (LLMs) where a small language model generates a draft-token sequence which is further verified by the target LLM in parallel. Recent works have advanced this method by establishing a draft-token tree, achieving superior performance over a single-sequence speculative decoding. However, those works independently generate tokens at each level of the tree, not leveraging the tree's entire diversifiability. Besides, their empirical superiority has been shown for fixed length of sequences, implicitly granting more computational resource to LLM for the tree-based methods. None of the existing works has conducted empirical studies with fixed target computational budgets despite its importance to resource-bounded devices. We present Recursive Speculative Decoding (RSD), a novel tree-based method that samples draft tokens without replacement and maximizes the diversity of the tree. During RSD's drafting, the tree is built by either Gumbel-Top-k trick that draws tokens without replacement in parallel or Stochastic Beam Search that samples sequences without replacement while early-truncating unlikely draft sequences and reducing the computational cost of LLM. We empirically evaluate RSD with Llama 2 and OPT models, showing that RSD outperforms the baseline methods, consistently for fixed draft sequence length and in most cases for fixed computational budgets at LLM.
On Computing Optimal Tree Ensembles
Random forests and, more generally, (decision\nobreakdash-)tree ensembles are widely used methods for classification and regression. Recent algorithmic advances allow to compute decision trees that are optimal for various measures such as their size or depth. We are not aware of such research for tree ensembles and aim to contribute to this area. Mainly, we provide two novel algorithms and corresponding lower bounds. First, we are able to carry over and substantially improve on tractability results for decision trees, obtaining a (6delta D S)^S cdot poly-time algorithm, where S is the number of cuts in the tree ensemble, D the largest domain size, and delta is the largest number of features in which two examples differ. To achieve this, we introduce the witness-tree technique which also seems promising for practice. Second, we show that dynamic programming, which has been successful for decision trees, may also be viable for tree ensembles, providing an ell^n cdot poly-time algorithm, where ell is the number of trees and n the number of examples. Finally, we compare the number of cuts necessary to classify training data sets for decision trees and tree ensembles, showing that ensembles may need exponentially fewer cuts for increasing number of trees.
Token Cleaning: Fine-Grained Data Selection for LLM Supervised Fine-Tuning
Recent studies show that in supervised fine-tuning (SFT) of large language models (LLMs), data quality matters more than quantity. While most data cleaning methods concentrate on filtering entire samples, the quality of individual tokens within a sample can vary significantly. After pre-training, even in high-quality samples, patterns or phrases that are not task-related can be redundant, uninformative, or even harmful. Continuing to fine-tune on these patterns may offer limited benefit and even degrade downstream task performance. In this paper, we investigate token quality from a noisy-label perspective and propose a generic token cleaning pipeline for SFT tasks. Our method filters out uninformative tokens while preserving those carrying key task-specific information. Specifically, we first evaluate token quality by examining the influence of model updates on each token, then apply a threshold-based separation. The token influence can be measured in a single pass with a fixed reference model or iteratively with self-evolving reference models. The benefits and limitations of both methods are analyzed theoretically by error upper bounds. Extensive experiments show that our framework consistently improves downstream performance. Code is available at https://github.com/UCSC-REAL/TokenCleaning.
A Token-level Text Image Foundation Model for Document Understanding
In recent years, general visual foundation models (VFMs) have witnessed increasing adoption, particularly as image encoders for popular multi-modal large language models (MLLMs). However, without semantically fine-grained supervision, these models still encounter fundamental prediction errors in the context of downstream text-image-related tasks, i.e., perception, understanding and reasoning with images containing small and dense texts. To bridge this gap, we develop TokenOCR, the first token-level visual foundation model specifically tailored for text-image-related tasks, designed to support a variety of traditional downstream applications. To facilitate the pretraining of TokenOCR, we also devise a high-quality data production pipeline that constructs the first token-level image text dataset, TokenIT, comprising 20 million images and 1.8 billion token-mask pairs. Furthermore, leveraging this foundation with exceptional image-as-text capability, we seamlessly replace previous VFMs with TokenOCR to construct a document-level MLLM, TokenVL, for VQA-based document understanding tasks. Finally, extensive experiments demonstrate the effectiveness of TokenOCR and TokenVL. Code, datasets, and weights will be available at https://token-family.github.io/TokenOCR_project.
Achieving Tokenizer Flexibility in Language Models through Heuristic Adaptation and Supertoken Learning
Pretrained language models (LLMs) are often constrained by their fixed tokenization schemes, leading to inefficiencies and performance limitations, particularly for multilingual or specialized applications. This tokenizer lock-in presents significant challenges. standard methods to overcome this often require prohibitive computational resources. Although tokenizer replacement with heuristic initialization aims to reduce this burden, existing methods often require exhaustive residual fine-tuning and still may not fully preserve semantic nuances or adequately address the underlying compression inefficiencies. Our framework introduces two innovations: first, Tokenadapt, a model-agnostic tokenizer transplantation method, and second, novel pre-tokenization learning for multi-word Supertokens to enhance compression and reduce fragmentation. Tokenadapt initializes new unique token embeddings via a hybrid heuristic that combines two methods: a local estimate based on subword decomposition using the old tokenizer, and a global estimate utilizing the top-k semantically similar tokens from the original vocabulary. This methodology aims to preserve semantics while significantly minimizing retraining requirements. Empirical investigations validate both contributions: the transplantation heuristic successfully initializes unique tokens, markedly outperforming conventional baselines and sophisticated methods including Transtokenizer and ReTok, while our Supertokens achieve notable compression gains. Our zero-shot perplexity results demonstrate that the TokenAdapt hybrid initialization consistently yields lower perplexity ratios compared to both ReTok and TransTokenizer baselines across different base models and newly trained target tokenizers. TokenAdapt typically reduced the overall perplexity ratio significantly compared to ReTok, yielding at least a 2-fold improvement in these aggregate scores.
Byte BPE Tokenization as an Inverse string Homomorphism
Tokenization is an important preprocessing step in the training and inference of large language models (LLMs). While there has been extensive research on the expressive power of the neural achitectures used in LLMs, the impact of tokenization has not been well understood. In this work, we demonstrate that tokenization, irrespective of the algorithm used, acts as an inverse homomorphism between strings and tokens. This suggests that the character space of the source language and the token space of the tokenized language are homomorphic, preserving the structural properties of the source language. Additionally, we explore the concept of proper tokenization, which refers to an unambiguous tokenization returned from the tokenizer. Our analysis reveals that the expressiveness of neural architectures in recognizing context-free languages is not affected by tokenization.
OPT-Tree: Speculative Decoding with Adaptive Draft Tree Structure
Autoregressive language models demonstrate excellent performance in various scenarios. However, the inference efficiency is limited by its one-step-one-word generation mode, which has become a pressing problem recently as the models become increasingly larger. Speculative decoding employs a "draft and then verify" mechanism to allow multiple tokens to be generated in one step, realizing lossless acceleration. Existing methods mainly adopt fixed heuristic draft structures, which fail to adapt to different situations to maximize the acceptance length during verification. To alleviate this dilemma, we proposed OPT-Tree, an algorithm to construct adaptive and scalable draft trees. It searches the optimal tree structure that maximizes the mathematical expectation of the acceptance length in each decoding step. Experimental results reveal that OPT-Tree outperforms the existing draft structures and achieves a speed-up ratio of up to 3.2 compared with autoregressive decoding. If the draft model is powerful enough and the node budget is sufficient, it can generate more than ten tokens in a single step. Our code is available at https://github.com/Jikai0Wang/OPT-Tree.
Token Alignment via Character Matching for Subword Completion
Generative models, widely utilized in various applications, can often struggle with prompts corresponding to partial tokens. This struggle stems from tokenization, where partial tokens fall out of distribution during inference, leading to incorrect or nonsensical outputs. This paper examines a technique to alleviate the tokenization artifact on text completion in generative models, maintaining performance even in regular non-subword cases. The method, termed token alignment, involves backtracking to the last complete tokens and ensuring the model's generation aligns with the prompt. This approach showcases marked improvement across many partial token scenarios, including nuanced cases like space-prefix and partial indentation, with only a minor time increase. The technique and analysis detailed in this paper contribute to the continuous advancement of generative models in handling partial inputs, bearing relevance for applications like code completion and text autocompletion.
Training-Free Token Pruning via Zeroth-Order Gradient Estimation in Vision-Language Models
Large Vision-Language Models (VLMs) enable strong multimodal reasoning but incur heavy inference costs from redundant visual tokens. Token pruning alleviates this issue, yet existing approaches face limitations. Attention-based methods rely on raw attention scores, which are often unstable across layers and heads and can lead to redundant selections. Diversity-based methods improve robustness by selecting tokens far apart in feature space but risk dropping regions needed for accurate prediction. We propose \ours, a training-free framework built on a simple intuition: tokens with higher sensitivity are more likely to influence the model's output, and they should also capture complementary visual cues rather than overlapping information. To achieve this, we estimate token sensitivity using zeroth-order perturbations at the projection layer, a shallow and computationally light component of the model. This approach measures how small random perturbations affect the projection outputs, allowing us to approximate each token's influence through lightweight forward passes without backpropagation. Extensive experiments across multiple VLMs and benchmarks show that \ours consistently outperforms prior methods, pruning up to 94.4\% of tokens while maintaining accuracy and significantly improving efficiency, achieving up to 2.30x faster end-to-end inference over the baseline.
Critical Tokens Matter: Token-Level Contrastive Estimation Enhence LLM's Reasoning Capability
Large Language Models (LLMs) have exhibited remarkable performance on reasoning tasks. They utilize autoregressive token generation to construct reasoning trajectories, enabling the development of a coherent chain of thought. In this work, we explore the impact of individual tokens on the final outcomes of reasoning tasks. We identify the existence of ``critical tokens'' that lead to incorrect reasoning trajectories in LLMs. Specifically, we find that LLMs tend to produce positive outcomes when forced to decode other tokens instead of critical tokens. Motivated by this observation, we propose a novel approach - cDPO - designed to automatically recognize and conduct token-level rewards for the critical tokens during the alignment process. Specifically, we develop a contrastive estimation approach to automatically identify critical tokens. It is achieved by comparing the generation likelihood of positive and negative models. To achieve this, we separately fine-tune the positive and negative models on various reasoning trajectories, consequently, they are capable of identifying identify critical tokens within incorrect trajectories that contribute to erroneous outcomes. Moreover, to further align the model with the critical token information during the alignment process, we extend the conventional DPO algorithms to token-level DPO and utilize the differential likelihood from the aforementioned positive and negative model as important weight for token-level DPO learning.Experimental results on GSM8K and MATH500 benchmarks with two-widely used models Llama-3 (8B and 70B) and deepseek-math (7B) demonstrate the effectiveness of the propsoed approach cDPO.
From Decoding to Meta-Generation: Inference-time Algorithms for Large Language Models
One of the most striking findings in modern research on large language models (LLMs) is that scaling up compute during training leads to better results. However, less attention has been given to the benefits of scaling compute during inference. This survey focuses on these inference-time approaches. We explore three areas under a unified mathematical formalism: token-level generation algorithms, meta-generation algorithms, and efficient generation. Token-level generation algorithms, often called decoding algorithms, operate by sampling a single token at a time or constructing a token-level search space and then selecting an output. These methods typically assume access to a language model's logits, next-token distributions, or probability scores. Meta-generation algorithms work on partial or full sequences, incorporating domain knowledge, enabling backtracking, and integrating external information. Efficient generation methods aim to reduce token costs and improve the speed of generation. Our survey unifies perspectives from three research communities: traditional natural language processing, modern LLMs, and machine learning systems.
ST-Raptor: LLM-Powered Semi-Structured Table Question Answering
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.
Min-K%++: Improved Baseline for Detecting Pre-Training Data from Large Language Models
The problem of pre-training data detection for large language models (LLMs) has received growing attention due to its implications in critical issues like copyright violation and test data contamination. The current state-of-the-art approach, Min-K%, measures the raw token probability which we argue may not be the most informative signal. Instead, we propose Min-K%++ to normalize the token probability with statistics of the categorical distribution over the whole vocabulary, which accurately reflects the relative likelihood of the target token compared with other candidate tokens in the vocabulary. Theoretically, we back up our method by showing that the statistic it estimates is explicitly optimized during LLM training, thus serving as a reliable indicator for detecting training data. Empirically, on the WikiMIA benchmark, Min-K%++ outperforms the SOTA Min-K% by 6.2% to 10.5% in detection AUROC averaged over five models. On the more challenging MIMIR benchmark, Min-K%++ consistently improves upon Min-K% and performs on par with reference-based method, despite not requiring an extra reference model.
On Eliciting Syntax from Language Models via Hashing
Unsupervised parsing, also known as grammar induction, aims to infer syntactic structure from raw text. Recently, binary representation has exhibited remarkable information-preserving capabilities at both lexicon and syntax levels. In this paper, we explore the possibility of leveraging this capability to deduce parsing trees from raw text, relying solely on the implicitly induced grammars within models. To achieve this, we upgrade the bit-level CKY from zero-order to first-order to encode the lexicon and syntax in a unified binary representation space, switch training from supervised to unsupervised under the contrastive hashing framework, and introduce a novel loss function to impose stronger yet balanced alignment signals. Our model shows competitive performance on various datasets, therefore, we claim that our method is effective and efficient enough to acquire high-quality parsing trees from pre-trained language models at a low cost.
Learn Your Tokens: Word-Pooled Tokenization for Language Modeling
Language models typically tokenize text into subwords, using a deterministic, hand-engineered heuristic of combining characters into longer surface-level strings such as 'ing' or whole words. Recent literature has repeatedly shown the limitations of such a tokenization strategy, particularly for documents not written in English and for representing numbers. On the other extreme, byte/character-level language models are much less restricted but suffer from increased sequence description lengths and a subsequent quadratic expansion in self-attention computation. Recent attempts to compress and limit these context lengths with fixed size convolutions is helpful but completely ignores the word boundary. This paper considers an alternative 'learn your tokens' scheme which utilizes the word boundary to pool bytes/characters into word representations, which are fed to the primary language model, before again decoding individual characters/bytes per word in parallel. We find that our moderately expressive and moderately fast end-to-end tokenizer outperform by over 300% both subwords and byte/character models over the intrinsic language modeling metric of next-word prediction across datasets. It particularly outshines on rare words, outperforming by a factor of 30! We extensively study the language modeling setup for all three categories of tokenizers and theoretically analyze how our end-to-end models can also be a strong trade-off in efficiency and robustness.
Predicting the Order of Upcoming Tokens Improves Language Modeling
Multi-Token Prediction (MTP) has been proposed as an auxiliary objective to improve next-token prediction (NTP) in language model training but shows inconsistent improvements, underperforming in standard NLP benchmarks. We argue that MTP's exact future token prediction is too difficult as an auxiliary loss. Instead, we propose Token Order Prediction (TOP), which trains models to order upcoming tokens by their proximity using a learning-to-rank loss. TOP requires only a single additional unembedding layer compared to MTP's multiple transformer layers. We pretrain models of 340M, 1.8B, and 7B parameters using NTP, MTP, and TOP objectives. Results on eight standard NLP benchmarks show that TOP overall outperforms both NTP and MTP even at scale. Our code is available at https://github.com/zaydzuhri/token-order-prediction
R2R: Efficiently Navigating Divergent Reasoning Paths with Small-Large Model Token Routing
Large Language Models (LLMs) achieve impressive reasoning capabilities at the cost of substantial inference overhead, posing substantial deployment challenges. Although distilled Small Language Models (SLMs) significantly enhance efficiency, their performance suffers as they fail to follow LLMs' reasoning paths. Luckily, we reveal that only a small fraction of tokens genuinely diverge reasoning paths between LLMs and SLMs. Most generated tokens are either identical or exhibit neutral differences, such as minor variations in abbreviations or expressions. Leveraging this insight, we introduce **Roads to Rome (R2R)**, a neural token routing method that selectively utilizes LLMs only for these critical, path-divergent tokens, while leaving the majority of token generation to the SLM. We also develop an automatic data generation pipeline that identifies divergent tokens and generates token-level routing labels to train the lightweight router. We apply R2R to combine R1-1.5B and R1-32B models from the DeepSeek family, and evaluate on challenging math, coding, and QA benchmarks. With an average activated parameter size of 5.6B, R2R surpasses the average accuracy of R1-7B by 1.6x, outperforming even the R1-14B model. Compared to R1-32B, it delivers a 2.8x wall-clock speedup with comparable performance, advancing the Pareto frontier of test-time scaling efficiency. Our code is available at https://github.com/thu-nics/R2R.
EvalTree: Profiling Language Model Weaknesses via Hierarchical Capability Trees
An ideal model evaluation should achieve two goals: identifying where the model fails and providing actionable improvement guidance. Toward these goals for Language Model (LM) evaluations, we formulate the problem of generating a weakness profile, a set of weaknesses expressed in natural language, given an LM's performance on every individual instance in a benchmark. We introduce a suite of quantitative assessments to compare different weakness profiling methods. We also propose a weakness profiling method EvalTree. It constructs a capability tree where each node represents a capability described in natural language and is linked to a subset of benchmark instances that specifically evaluate this capability; it then extracts nodes where the LM performs poorly to generate a weakness profile. On the MATH and WildChat benchmarks, we show that EvalTree outperforms baseline weakness profiling methods by identifying weaknesses more precisely and comprehensively. Weakness profiling further enables weakness-guided data collection, and training data collection guided by EvalTree-identified weaknesses improves LM performance more than other data collection strategies. We also show how EvalTree exposes flaws in Chatbot Arena's human-voter-based evaluation practice. To facilitate future work, we release our code and an interface that allows practitioners to interactively explore the capability trees built by EvalTree.
Pretraining Data Detection for Large Language Models: A Divergence-based Calibration Method
As the scale of training corpora for large language models (LLMs) grows, model developers become increasingly reluctant to disclose details on their data. This lack of transparency poses challenges to scientific evaluation and ethical deployment. Recently, pretraining data detection approaches, which infer whether a given text was part of an LLM's training data through black-box access, have been explored. The Min-K\% Prob method, which has achieved state-of-the-art results, assumes that a non-training example tends to contain a few outlier words with low token probabilities. However, the effectiveness may be limited as it tends to misclassify non-training texts that contain many common words with high probabilities predicted by LLMs. To address this issue, we introduce a divergence-based calibration method, inspired by the divergence-from-randomness concept, to calibrate token probabilities for pretraining data detection. We compute the cross-entropy (i.e., the divergence) between the token probability distribution and the token frequency distribution to derive a detection score. We have developed a Chinese-language benchmark, PatentMIA, to assess the performance of detection approaches for LLMs on Chinese text. Experimental results on English-language benchmarks and PatentMIA demonstrate that our proposed method significantly outperforms existing methods. Our code and PatentMIA benchmark are available at https://github.com/zhang-wei-chao/DC-PDD.
Greed is All You Need: An Evaluation of Tokenizer Inference Methods
While subword tokenizers such as BPE and WordPiece are typically used to build vocabularies for NLP models, the method of decoding text into a sequence of tokens from these vocabularies is often left unspecified, or ill-suited to the method in which they were constructed. We provide a controlled analysis of seven tokenizer inference methods across four different algorithms and three vocabulary sizes, performed on a novel intrinsic evaluation suite we curated for English, combining measures rooted in morphology, cognition, and information theory. We show that for the most commonly used tokenizers, greedy inference performs surprisingly well; and that SaGe, a recently-introduced contextually-informed tokenizer, outperforms all others on morphological alignment.
EAGLE-2: Faster Inference of Language Models with Dynamic Draft Trees
Inference with modern Large Language Models (LLMs) is expensive and time-consuming, and speculative sampling has proven to be an effective solution. Most speculative sampling methods such as EAGLE use a static draft tree, implicitly assuming that the acceptance rate of draft tokens depends only on their position. Interestingly, we found that the acceptance rate of draft tokens is also context-dependent. In this paper, building upon EAGLE, we propose EAGLE-2, which introduces a new technique of context-aware dynamic draft tree into drafting modeling. This improvement leverages the fact that the draft model of EAGLE is well-calibrated: the confidence scores from the draft model approximate acceptance rates with small errors. We conducted extensive evaluations on three series of LLMs and six tasks, with EAGLE-2 achieving speedup ratios 3.05x-4.26x, which is 20%-40% faster than EAGLE-1. EAGLE-2 also ensures that the distribution of the generated text remains unchanged, making it a lossless acceleration algorithm.
Protecting Copyrighted Material with Unique Identifiers in Large Language Model Training
A primary concern regarding training large language models (LLMs) is whether they abuse copyrighted online text. With the increasing training data scale and the prevalence of LLMs in daily lives, two problems arise: 1) false positive membership inference results misled by similar examples; 2) membership inference methods are usually too complex for end users to understand and use. To address these issues, we propose an alternative insert-and-detect methodology, advocating that web users and content platforms employ \textit{unique identifiers} for reliable and independent membership inference. Users and platforms can create their identifiers, embed them in copyrighted text, and independently detect them in future LLMs. As an initial demonstration, we introduce \textbf{ghost sentences} and a user-friendly last-k words test, allowing end users to chat with LLMs for membership inference. Ghost sentences consist primarily of unique passphrases of random natural words, which can come with customized elements to bypass possible filter rules. The last-k words test requires a significant repetition time of ghost sentences~(ge10). For cases with fewer repetitions, we designed an extra perplexity test, as LLMs exhibit high perplexity when encountering unnatural passphrases. We also conduct a comprehensive study on the memorization and membership inference of ghost sentences, examining factors such as training data scales, model sizes, repetition times, insertion positions, wordlist of passphrases, alignment, etc. Our study shows the possibility of applying ghost sentences in real scenarios and provides instructions for the potential application.
SemToken: Semantic-Aware Tokenization for Efficient Long-Context Language Modeling
Tokenization plays a critical role in language modeling, yet existing approaches such as Byte-Pair Encoding (BPE) or WordPiece operate purely on frequency statistics, ignoring the underlying semantic structure of text. This leads to over-tokenization of semantically redundant spans and underutilization of contextual coherence, particularly in long-context scenarios. In this work, we propose SemToken, a semantic-aware tokenization framework that jointly reduces token redundancy and improves computation efficiency. SemToken first extracts contextual semantic embeddings via lightweight encoders and performs local semantic clustering to merge semantically equivalent tokens. Then, it allocates heterogeneous token granularity based on semantic density, allowing finer-grained tokenization in content-rich regions and coarser compression in repetitive or low-entropy spans. SemToken can be seamlessly integrated with modern language models and attention acceleration methods. Experiments on long-context language modeling benchmarks such as WikiText-103 and LongBench show that SemToken achieves up to 2.4times reduction in token count and 1.9times speedup, with negligible or no degradation in perplexity and downstream accuracy. Our findings suggest that semantic structure offers a promising new axis for optimizing tokenization and computation in large language models.
Tokenization Matters! Degrading Large Language Models through Challenging Their Tokenization
Large Language Models (LLMs) have shown remarkable capabilities in language understanding and generation. Nonetheless, it was also witnessed that LLMs tend to produce inaccurate responses to specific queries. This deficiency can be traced to the tokenization step LLMs must undergo, which is an inevitable limitation inherent to all LLMs. In fact, incorrect tokenization is the critical point that hinders LLMs in understanding the input precisely, thus leading to unsatisfactory output. To demonstrate this flaw of LLMs, we construct an adversarial dataset, named as ADT (Adversarial Dataset for Tokenizer), which draws upon the vocabularies of various open-source LLMs to challenge LLMs' tokenization. ADT consists of two subsets: the manually constructed ADT-Human and the automatically generated ADT-Auto. Our empirical results reveal that our ADT is highly effective on challenging the tokenization of leading LLMs, including GPT-4o, Llama-3, Qwen2.5-max and so on, thus degrading these LLMs' capabilities. Moreover, our method of automatic data generation has been proven efficient and robust, which can be applied to any open-source LLMs. To the best of our knowledge, our study is the first to investigating LLMs' vulnerability in terms of challenging their token segmentation, which will shed light on the subsequent research of improving LLMs' capabilities through optimizing their tokenization process and algorithms.
Syntax-Aware On-the-Fly Code Completion
Code completion aims to help improve developers' productivity by suggesting the next code tokens from a given context. Various approaches have been proposed to incorporate abstract syntax tree (AST) information for model training, ensuring that code completion is aware of the syntax of the programming languages. However, existing syntax-aware code completion approaches are not on-the-fly, as we found that for every two-thirds of characters that developers type, AST fails to be extracted because it requires the syntactically correct source code, limiting its practicality in real-world scenarios. On the other hand, existing on-the-fly code completion does not consider syntactic information yet. In this paper, we propose PyCoder to leverage token types, a kind of lightweight syntactic information, which is readily available and aligns with the natural order of source code. Our PyCoder is trained in a multi-task training manner so that by learning the supporting task of predicting token types during the training phase, the models achieve better performance on predicting tokens and lines of code without the need for token types in the inference phase. Comprehensive experiments show that PyCoder achieves the first rank on the CodeXGLUE leaderboard with an accuracy of 77.12% for the token-level predictions, which is 0.43%-24.25% more accurate than baselines. In addition, PyCoder achieves an exact match of 43.37% for the line-level predictions, which is 3.63%-84.73% more accurate than baselines. These results lead us to conclude that token type information (an alternative to syntactic information) that is rarely used in the past can greatly improve the performance of code completion approaches, without requiring the syntactically correct source code like AST-based approaches do. Our PyCoder is publicly available on HuggingFace.
Lexinvariant Language Models
Token embeddings, a mapping from discrete lexical symbols to continuous vectors, are at the heart of any language model (LM). However, lexical symbol meanings can also be determined and even redefined by their structural role in a long context. In this paper, we ask: is it possible for a language model to be performant without any fixed token embeddings? Such a language model would have to rely entirely on the co-occurence and repetition of tokens in the context rather than the a priori identity of any token. To answer this, we study lexinvariantlanguage models that are invariant to lexical symbols and therefore do not need fixed token embeddings in practice. First, we prove that we can construct a lexinvariant LM to converge to the true language model at a uniform rate that is polynomial in terms of the context length, with a constant factor that is sublinear in the vocabulary size. Second, to build a lexinvariant LM, we simply encode tokens using random Gaussian vectors, such that each token maps to the same representation within each sequence but different representations across sequences. Empirically, we demonstrate that it can indeed attain perplexity comparable to that of a standard language model, given a sufficiently long context. We further explore two properties of the lexinvariant language models: First, given text generated from a substitution cipher of English, it implicitly implements Bayesian in-context deciphering and infers the mapping to the underlying real tokens with high accuracy. Second, it has on average 4X better accuracy over synthetic in-context reasoning tasks. Finally, we discuss regularizing standard language models towards lexinvariance and potential practical applications.
Hiding Text in Large Language Models: Introducing Unconditional Token Forcing Confusion
With the help of simple fine-tuning, one can artificially embed hidden text into large language models (LLMs). This text is revealed only when triggered by a specific query to the LLM. Two primary applications are LLM fingerprinting and steganography. In the context of LLM fingerprinting, a unique text identifier (fingerprint) is embedded within the model to verify licensing compliance. In the context of steganography, the LLM serves as a carrier for hidden messages that can be disclosed through a designated trigger. Our work demonstrates that embedding hidden text in the LLM via fine-tuning, though seemingly secure due to the vast number of potential triggers (any sequence of characters or tokens could serve as a trigger), is susceptible to extraction through analysis of the LLM's output decoding process. We propose a novel approach to extraction called Unconditional Token Forcing. It is premised on the hypothesis that iteratively feeding each token from the LLM's vocabulary into the model should reveal sequences with abnormally high token probabilities, indicating potential embedded text candidates. Additionally, our experiments show that when the first token of a hidden fingerprint is used as an input, the LLM not only produces an output sequence with high token probabilities, but also repetitively generates the fingerprint itself. We also present a method to hide text in such a way that it is resistant to Unconditional Token Forcing, which we named Unconditional Token Forcing Confusion.
Zero-Shot Detection of LLM-Generated Text using Token Cohesiveness
The increasing capability and widespread usage of large language models (LLMs) highlight the desirability of automatic detection of LLM-generated text. Zero-shot detectors, due to their training-free nature, have received considerable attention and notable success. In this paper, we identify a new feature, token cohesiveness, that is useful for zero-shot detection, and we demonstrate that LLM-generated text tends to exhibit higher token cohesiveness than human-written text. Based on this observation, we devise TOCSIN, a generic dual-channel detection paradigm that uses token cohesiveness as a plug-and-play module to improve existing zero-shot detectors. To calculate token cohesiveness, TOCSIN only requires a few rounds of random token deletion and semantic difference measurement, making it particularly suitable for a practical black-box setting where the source model used for generation is not accessible. Extensive experiments with four state-of-the-art base detectors on various datasets, source models, and evaluation settings demonstrate the effectiveness and generality of the proposed approach. Code available at: https://github.com/Shixuan-Ma/TOCSIN.
Meaning Typed Prompting: A Technique for Efficient, Reliable Structured Output Generation
Extending Large Language Models (LLMs) to advanced applications requires reliable structured output generation. Existing methods which often rely on rigid JSON schemas, can lead to unreliable outputs, diminished reasoning capabilities, and increased computational overhead, limiting LLMs' adaptability for complex tasks. We introduce Meaning Typed Prompting (MTP), a technique for efficient structured output generation that integrates types, meanings, and abstractions, such as variables and classes, into the prompting process. By utilizing expressive type definitions, MTP enhances output clarity and reduces dependence on complex abstractions, simplifying development, and improving implementation efficiency. This enables LLMs to understand relationships and generate structured data more effectively. Empirical evaluations on multiple benchmarks demonstrate that MTP outperforms existing frameworks in accuracy, reliability, consistency, and token efficiency. We present Semantix, a framework that implements MTP, providing practical insights into its application.
Stop Looking for Important Tokens in Multimodal Language Models: Duplication Matters More
Vision tokens in multimodal large language models often dominate huge computational overhead due to their excessive length compared to linguistic modality. Abundant recent methods aim to solve this problem with token pruning, which first defines an importance criterion for tokens and then prunes the unimportant vision tokens during inference. However, in this paper, we show that the importance is not an ideal indicator to decide whether a token should be pruned. Surprisingly, it usually results in inferior performance than random token pruning and leading to incompatibility to efficient attention computation operators.Instead, we propose DART (Duplication-Aware Reduction of Tokens), which prunes tokens based on its duplication with other tokens, leading to significant and training-free acceleration. Concretely, DART selects a small subset of pivot tokens and then retains the tokens with low duplication to the pivots, ensuring minimal information loss during token pruning. Experiments demonstrate that DART can prune 88.9% vision tokens while maintaining comparable performance, leading to a 1.99times and 2.99times speed-up in total time and prefilling stage, respectively, with good compatibility to efficient attention operators. Our codes are available at https://github.com/ZichenWen1/DART.
CompassVerifier: A Unified and Robust Verifier for LLMs Evaluation and Outcome Reward
Answer verification is crucial not only for evaluating large language models (LLMs) by matching their unstructured outputs against standard answers, but also serves as the reward model to guide LLM optimization. Most evaluation frameworks rely on regularized matching or employ general LLMs for answer verification, which demands extensive, repetitive customization for regex rules or evaluation prompts. Two fundamental limitations persist in current methodologies: 1) the absence of comprehensive benchmarks that systematically evaluate verification capabilities across different LLMs; and 2) the nascent stage of verifier development, where existing approaches lack both the robustness to handle complex edge cases and the generalizability across different domains. In this work, we develop CompassVerifier, an accurate and robust lightweight verifier model for evaluation and outcome reward. It demonstrates multi-domain competency spanning math, knowledge, and diverse reasoning tasks, with the capability to process various answer types, including multi-subproblems, formulas, and sequence answers, while effectively identifying abnormal/invalid responses. We introduce VerifierBench benchmark comprising model outputs collected from multiple data sources, augmented through manual analysis of metaerror patterns to enhance CompassVerifier. We anticipate that CompassVerifier and VerifierBench will facilitate answer verification, evaluation protocols, and reinforcement learning research. Code and dataset are available at https://github.com/open-compass/CompassVerifier.
Have Seen Me Before? Automating Dataset Updates Towards Reliable and Timely Evaluation
Due to the expanding capabilities and pre-training data, Large Language Models (LLMs) are facing increasingly serious evaluation challenges. On one hand, the data leakage issue cause over-estimation on existing benchmarks. On the other hand, periodically curating datasets manually is costly. In this paper, we propose to automate dataset updates for reliable and timely evaluation. The basic idea is to generate unseen and high-quality testing samples based on existing ones to mitigate leakage issues. In specific, we propose two strategies with systematically verification. First, the mimicking strategy employs LLMs to create new samples resembling existing ones, to the maximum extent preserving the stylistic of the original dataset. Our experiments demonstrate its evaluation stability across multiple instantiations and its effectiveness in dealing with data leakage issues in most cases. Second, for the cases that mimicking dataset works poorly, we design an extending strategy that adjusts the difficulty of the generated samples according to varying cognitive levels. This not only makes our evaluation more systematic, but also, with a balanced difficulty, even discern model capabilities better at fine-grained levels.
Exact Byte-Level Probabilities from Tokenized Language Models for FIM-Tasks and Model Ensembles
Tokenization is associated with many poorly understood shortcomings in language models (LMs), yet remains an important component for long sequence scaling purposes. This work studies how tokenization impacts model performance by analyzing and comparing the stochastic behavior of tokenized models with their byte-level, or token-free, counterparts. We discover that, even when the two models are statistically equivalent, their predictive distributions over the next byte can be substantially different, a phenomenon we term as "tokenization bias''. To fully characterize this phenomenon, we introduce the Byte-Token Representation Lemma, a framework that establishes a mapping between the learned token distribution and its equivalent byte-level distribution. From this result, we develop a next-byte sampling algorithm that eliminates tokenization bias without requiring further training or optimization. In other words, this enables zero-shot conversion of tokenized LMs into statistically equivalent token-free ones. We demonstrate its broad applicability with two use cases: fill-in-the-middle (FIM) tasks and model ensembles. In FIM tasks where input prompts may terminate mid-token, leading to out-of-distribution tokenization, our method mitigates performance degradation and achieves an approximately 18% improvement in FIM coding benchmarks, consistently outperforming the standard token healing fix. For model ensembles where each model employs a distinct vocabulary, our approach enables seamless integration, resulting in improved performance (up to 3.7%) over individual models across various standard baselines in reasoning, knowledge, and coding.
Ouroboros: Speculative Decoding with Large Model Enhanced Drafting
Drafting-then-verifying decoding methods such as speculative decoding are widely adopted training-free methods to accelerate the inference of large language models (LLMs). Instead of employing an autoregressive process to decode tokens sequentially, speculative decoding initially creates drafts with an efficient small model. Then LLMs are required to conduct verification and correction in a non-autoregressive fashion to minimize time overhead. Generating longer drafts can lead to even more significant speedups once verified, but also incurs substantial trial and error costs if it fails. Suffering from the high verification failure probability, existing decoding methods cannot draft too much content for verification at one time, achieving sub-optimal inference acceleration. In this paper, we introduce Ouroboros, which constructs a phrase candidate pool from the verification process of LLMs to provide candidates for draft generation of the small model. Thereby, Ouroboros can further improve the efficiency and effectiveness of the initial drafts. The experimental results on typical text generation tasks show that Ouroboros achieves speedups of up to 1.9x and 2.8x compared to lookahead decoding and speculative decoding, respectively. The source code of Ouroboros is available at https://github.com/thunlp/Ouroboros.
AutoJudge: Judge Decoding Without Manual Annotation
We introduce AutoJudge, a framework that accelerates large language model (LLM) inference with task-specific lossy speculative decoding. Instead of matching the original model output distribution token-by-token, we identify which of the generated tokens affect the downstream quality of the generated response, relaxing the guarantee so that the "unimportant" tokens can be generated faster. Our approach relies on a semi-greedy search algorithm to test which of the mismatches between target and draft model should be corrected to preserve quality, and which ones may be skipped. We then train a lightweight classifier based on existing LLM embeddings to predict, at inference time, which mismatching tokens can be safely accepted without compromising the final answer quality. We test our approach with Llama 3.2 1B (draft) and Llama 3.1 8B (target) models on zero-shot GSM8K reasoning, where it achieves up to 1.5x more accepted tokens per verification cycle with under 1% degradation in answer accuracy compared to standard speculative decoding and over 2x with small loss in accuracy. When applied to the LiveCodeBench benchmark, our approach automatically detects other, programming-specific important tokens and shows similar speedups, demonstrating its ability to generalize across tasks.
Toucan: Token-Aware Character Level Language Modeling
Character-level language models obviate the need for separately trained tokenizers, but efficiency suffers from longer sequence lengths. Learning to combine character representations into tokens has made training these models more efficient, but they still require decoding characters individually. We propose Toucan, an augmentation to character-level models to make them "token-aware". Comparing our method to prior work, we demonstrate significant speed-ups in character generation without a loss in language modeling performance. We then explore differences between our learned dynamic tokenization of character sequences with popular fixed vocabulary solutions such as Byte-Pair Encoding and WordPiece, finding our approach leads to a greater amount of longer sequences tokenized as single items. Our project and code are available at https://nlp.jhu.edu/nuggets/.
Text2Token: Unsupervised Text Representation Learning with Token Target Prediction
Unsupervised text representation learning (TRL) is a fundamental task in natural language processing, which is beneficial for improving search and recommendations with the web's unlabeled texts. A recent empirical study finds that the high-quality representation aligns with the key token of the input text, uncovering the potential connection between representation space and vocabulary space. Inspired by the findings, we revisit the generative tasks and develop an unsupervised generative framework for TRL, Text2Token. The framework is based on the token target prediction task, utilizing carefully constructed target token distribution as supervisory signals. To construct the high-quality target token distribution, we analyze the token-alignment properties with advanced embedders and identify two essential categories of key tokens: (1) the meaningful tokens in the text and (2) semantically derived tokens beyond the text. Based on these insights, we propose two methods -- data-driven and model-derived -- to construct synthetic token targets from data or the LLM backbone. Experiments on the MTEB v2 benchmark demonstrate that Text2Token achieves performance competitive with the state-of-the-art embedder with unsupervised contrastive learning, LLM2Vec. Our analysis further shows that vocabulary and representation spaces optimize together and toward the optimum solution during training, providing new ideas and insights for future work.
MLCPD: A Unified Multi-Language Code Parsing Dataset with Universal AST Schema
We introduce the MultiLang Code Parser Dataset (MLCPD), a large-scale, language-agnostic dataset unifying syntactic and structural representations of code across ten major programming languages. MLCPD contains over seven million parsed source files normalized under our proposed universal Abstract Syntax Tree (AST) schema, enabling consistent cross-language reasoning, structural learning, and multilingual software analysis. Unlike existing corpora that focus purely on token-level code or isolated parsers, MLCPD provides both hierarchical tree representations and rich metadata for every file, ensuring lossless syntactic coverage and structural uniformity. Each entry includes a normalized schema, language-level metadata, and abstracted node semantics stored in Parquet format for scalable retrieval. Empirical analyses reveal strong cross-language structural regularities-demonstrating that syntactic graphs from languages as diverse as Python, Java, and Go can be aligned under a shared schema. We release the dataset publicly on Hugging Face and the accompanying codebase on GitHub, which includes complete pipelines for dataset reproduction, grammar compilation, and a visualization tool for exploring the unified AST across languages. Together, these resources establish MLCPD as an open, reproducible foundation for future research in cross-language representation learning and program analysis.
Witness Generation for JSON Schema
JSON Schema is an important, evolving standard schema language for families of JSON documents. It is based on a complex combination of structural and Boolean assertions, and features negation and recursion. The static analysis of JSON Schema documents comprises practically relevant problems, including schema satisfiability, inclusion, and equivalence. These three problems can be reduced to witness generation: given a schema, generate an element of the schema, if it exists, and report failure otherwise. Schema satisfiability, inclusion, and equivalence have been shown to be decidable, by reduction to reachability in alternating tree automata. However, no witness generation algorithm has yet been formally described. We contribute a first, direct algorithm for JSON Schema witness generation. We study its effectiveness and efficiency, in experiments over several schema collections, including thousands of real-world schemas. Our focus is on the completeness of the language, where we only exclude the uniqueItems operator, and on the ability of the algorithm to run in a reasonable time on a large set of real-world examples, despite the exponential complexity of the underlying problem.
Token embeddings violate the manifold hypothesis
To fully understand the behavior of a large language model (LLM) requires our understanding of its input space. If this input space differs from our assumption, our understanding of and conclusions about the LLM is likely flawed, regardless of its architecture. Here, we elucidate the structure of the token embeddings, the input domain for LLMs, both empirically and theoretically. We present a generalized and statistically testable model where the neighborhood of each token splits into well-defined signal and noise dimensions. This model is based on a generalization of a manifold called a fiber bundle, so we denote our hypothesis test as the ``fiber bundle null.'' Failing to reject the null is uninformative, but rejecting it at a specific token indicates that token has a statistically significant local structure, and so is of interest to us. By running our test over several open-source LLMs, each with unique token embeddings, we find that the null is frequently rejected, and so the token subspace is provably not a fiber bundle and hence also not a manifold. As a consequence of our findings, when an LLM is presented with two semantically equivalent prompts, and if one prompt contains a token implicated by our test, that prompt will likely exhibit more output variability proportional to the local signal dimension of the token.
Needle Threading: Can LLMs Follow Threads through Near-Million-Scale Haystacks?
As the context limits of Large Language Models (LLMs) increase, the range of possible applications and downstream functions broadens. In many real-world tasks, decisions depend on details scattered across collections of often disparate documents containing mostly irrelevant information. Long-context LLMs appear well-suited to this form of complex information retrieval and reasoning, which has traditionally proven costly and time-consuming. However, although the development of longer context models has seen rapid gains in recent years, our understanding of how effectively LLMs use their context has not kept pace. To address this, we conduct a set of retrieval experiments designed to evaluate the capabilities of 17 leading LLMs, such as their ability to follow threads of information through the context window. Strikingly, we find that many models are remarkably threadsafe: capable of simultaneously following multiple threads without significant loss in performance. Still, for many models, we find the effective context limit is significantly shorter than the supported context length, with accuracy decreasing as the context window grows. Our study also highlights the important point that token counts from different tokenizers should not be directly compared -- they often correspond to substantially different numbers of written characters. We release our code and long-context experimental data.
Evaluating the Impact of Source Code Parsers on ML4SE Models
As researchers and practitioners apply Machine Learning to increasingly more software engineering problems, the approaches they use become more sophisticated. A lot of modern approaches utilize internal code structure in the form of an abstract syntax tree (AST) or its extensions: path-based representation, complex graph combining AST with additional edges. Even though the process of extracting ASTs from code can be done with different parsers, the impact of choosing a parser on the final model quality remains unstudied. Moreover, researchers often omit the exact details of extracting particular code representations. In this work, we evaluate two models, namely Code2Seq and TreeLSTM, in the method name prediction task backed by eight different parsers for the Java language. To unify the process of data preparation with different parsers, we develop SuperParser, a multi-language parser-agnostic library based on PathMiner. SuperParser facilitates the end-to-end creation of datasets suitable for training and evaluation of ML models that work with structural information from source code. Our results demonstrate that trees built by different parsers vary in their structure and content. We then analyze how this diversity affects the models' quality and show that the quality gap between the most and least suitable parsers for both models turns out to be significant. Finally, we discuss other features of the parsers that researchers and practitioners should take into account when selecting a parser along with the impact on the models' quality. The code of SuperParser is publicly available at https://doi.org/10.5281/zenodo.6366591. We also publish Java-norm, the dataset we use to evaluate the models: https://doi.org/10.5281/zenodo.6366599.
Automated Feature Labeling with Token-Space Gradient Descent
We present a novel approach to feature labeling using gradient descent in token-space. While existing methods typically use language models to generate hypotheses about feature meanings, our method directly optimizes label representations by using a language model as a discriminator to predict feature activations. We formulate this as a multi-objective optimization problem in token-space, balancing prediction accuracy, entropy minimization, and linguistic naturalness. Our proof-of-concept experiments demonstrate successful convergence to interpretable single-token labels across diverse domains, including features for detecting animals, mammals, Chinese text, and numbers. Although our current implementation is constrained to single-token labels and relatively simple features, the results suggest that token-space gradient descent could become a valuable addition to the interpretability researcher's toolkit.
HyperTree Proof Search for Neural Theorem Proving
We propose an online training procedure for a transformer-based automated theorem prover. Our approach leverages a new search algorithm, HyperTree Proof Search (HTPS), inspired by the recent success of AlphaZero. Our model learns from previous proof searches through online training, allowing it to generalize to domains far from the training distribution. We report detailed ablations of our pipeline's main components by studying performance on three environments of increasing complexity. In particular, we show that with HTPS alone, a model trained on annotated proofs manages to prove 65.4% of a held-out set of Metamath theorems, significantly outperforming the previous state of the art of 56.5% by GPT-f. Online training on these unproved theorems increases accuracy to 82.6%. With a similar computational budget, we improve the state of the art on the Lean-based miniF2F-curriculum dataset from 31% to 42% proving accuracy.
The Geometry of Tokens in Internal Representations of Large Language Models
We investigate the relationship between the geometry of token embeddings and their role in the next token prediction within transformer models. An important aspect of this connection uses the notion of empirical measure, which encodes the distribution of token point clouds across transformer layers and drives the evolution of token representations in the mean-field interacting picture. We use metrics such as intrinsic dimension, neighborhood overlap, and cosine similarity to observationally probe these empirical measures across layers. To validate our approach, we compare these metrics to a dataset where the tokens are shuffled, which disrupts the syntactic and semantic structure. Our findings reveal a correlation between the geometric properties of token embeddings and the cross-entropy loss of next token predictions, implying that prompts with higher loss values have tokens represented in higher-dimensional spaces.
Empowering Character-level Text Infilling by Eliminating Sub-Tokens
In infilling tasks, sub-tokens, representing instances where a complete token is segmented into two parts, often emerge at the boundaries of prefixes, middles, and suffixes. Traditional methods focused on training models at the token level, leading to sub-optimal performance in character-level infilling tasks during the inference stage. Alternately, some approaches considered character-level infilling, but they relied on predicting sub-tokens in inference, yet this strategy diminished ability in character-level infilling tasks due to the large perplexity of the model on sub-tokens. In this paper, we introduce FIM-SE, which stands for Fill-In-the-Middle with both Starting and Ending character constraints. The proposed method addresses character-level infilling tasks by utilizing a line-level format to avoid predicting any sub-token in inference. In addition, we incorporate two special tokens to signify the rest of the incomplete lines, thereby enhancing generation guidance. Extensive experiments demonstrate that our proposed approach surpasses previous methods, offering a significant advantage. Code is available at https://github.com/SenseLLM/FIM-SE.
Attention Score is not All You Need for Token Importance Indicator in KV Cache Reduction: Value Also Matters
Scaling the context size of large language models (LLMs) enables them to perform various new tasks, e.g., book summarization. However, the memory cost of the Key and Value (KV) cache in attention significantly limits the practical applications of LLMs. Recent works have explored token pruning for KV cache reduction in LLMs, relying solely on attention scores as a token importance indicator. However, our investigation into value vector norms revealed a notably non-uniform pattern questioning their reliance only on attention scores. Inspired by this, we propose a new method: Value-Aware Token Pruning (VATP) which uses both attention scores and the ell_{1} norm of value vectors to evaluate token importance. Extensive experiments on LLaMA2-7B-chat and Vicuna-v1.5-7B across 16 LongBench tasks demonstrate VATP's superior performance.
Reading Order Matters: Information Extraction from Visually-rich Documents by Token Path Prediction
Recent advances in multimodal pre-trained models have significantly improved information extraction from visually-rich documents (VrDs), in which named entity recognition (NER) is treated as a sequence-labeling task of predicting the BIO entity tags for tokens, following the typical setting of NLP. However, BIO-tagging scheme relies on the correct order of model inputs, which is not guaranteed in real-world NER on scanned VrDs where text are recognized and arranged by OCR systems. Such reading order issue hinders the accurate marking of entities by BIO-tagging scheme, making it impossible for sequence-labeling methods to predict correct named entities. To address the reading order issue, we introduce Token Path Prediction (TPP), a simple prediction head to predict entity mentions as token sequences within documents. Alternative to token classification, TPP models the document layout as a complete directed graph of tokens, and predicts token paths within the graph as entities. For better evaluation of VrD-NER systems, we also propose two revised benchmark datasets of NER on scanned documents which can reflect real-world scenarios. Experiment results demonstrate the effectiveness of our method, and suggest its potential to be a universal solution to various information extraction tasks on documents.
Data Mixture Inference: What do BPE Tokenizers Reveal about their Training Data?
The pretraining data of today's strongest language models is opaque. In particular, little is known about the proportions of various domains or languages represented. In this work, we tackle a task which we call data mixture inference, which aims to uncover the distributional make-up of training data. We introduce a novel attack based on a previously overlooked source of information -- byte-pair encoding (BPE) tokenizers, used by the vast majority of modern language models. Our key insight is that the ordered list of merge rules learned by a BPE tokenizer naturally reveals information about the token frequencies in its training data: the first merge is the most common byte pair, the second is the most common pair after merging the first token, and so on. Given a tokenizer's merge list along with data samples for each category of interest, we formulate a linear program that solves for the proportion of each category in the tokenizer's training set. Importantly, to the extent to which tokenizer training data is representative of the pretraining data, we indirectly learn about the pretraining data. In controlled experiments, we show that our attack recovers mixture ratios with high precision for tokenizers trained on known mixtures of natural languages, programming languages, and data sources. We then apply our approach to off-the-shelf tokenizers released with recent LMs. We confirm much publicly disclosed information about these models, and also make several new inferences: GPT-4o's tokenizer is much more multilingual than its predecessors, training on 39% non-English data; Llama3 extends GPT-3.5's tokenizer primarily for multilingual (48%) use; GPT-3.5's and Claude's tokenizers are trained on predominantly code (~60%). We hope our work sheds light on current design practices for pretraining data, and inspires continued research into data mixture inference for LMs.
Towards Repository-Level Program Verification with Large Language Models
Recent advancements in large language models (LLMs) suggest great promises in code and proof generations. However, scaling automated formal verification to real-world projects requires resolving cross-module dependencies and global contexts, which are crucial challenges overlooked by existing LLM-based methods with a special focus on targeting isolated, function-level verification tasks. To systematically explore and address the significant challenges of verifying entire software repositories, we introduce RVBench, the first verification benchmark explicitly designed for repository-level evaluation, constructed from four diverse and complex open-source Verus projects. We further introduce RagVerus, an extensible framework that synergizes retrieval-augmented generation with context-aware prompting to automate proof synthesis for multi-module repositories. RagVerus triples proof pass rates on existing benchmarks under constrained model inference budgets, and achieves a 27% relative improvement on the more challenging RVBench benchmark, demonstrating a scalable and sample-efficient verification solution.
EMS-SD: Efficient Multi-sample Speculative Decoding for Accelerating Large Language Models
Speculative decoding emerges as a pivotal technique for enhancing the inference speed of Large Language Models (LLMs). Despite recent research aiming to improve prediction efficiency, multi-sample speculative decoding has been overlooked due to varying numbers of accepted tokens within a batch in the verification phase. Vanilla method adds padding tokens in order to ensure that the number of new tokens remains consistent across samples. However, this increases the computational and memory access overhead, thereby reducing the speedup ratio. We propose a novel method that can resolve the issue of inconsistent tokens accepted by different samples without necessitating an increase in memory or computing overhead. Furthermore, our proposed method can handle the situation where the prediction tokens of different samples are inconsistent without the need to add padding tokens. Sufficient experiments demonstrate the efficacy of our method. Our code is available at https://github.com/niyunsheng/EMS-SD.
Multi-Word Tokenization for Sequence Compression
Large Language Models have proven highly successful at modelling a variety of tasks. However, this comes at a steep computational cost that hinders wider industrial uptake. In this pa005 per, we present MWT: a Multi-Word Tokenizer that goes beyond word boundaries by representing frequent multi-word expressions as single tokens. MWTs produce a more compact and efficient tokenization that yields two benefits: (1) Increase in performance due to a greater coverage of input data given a fixed sequence length and budget; (2) Faster and lighter inference due to the ability to reduce the sequence length with negligible drops in performance. Our results show that MWT is more robust across shorter sequence lengths, thus allowing for major speedups via early sequence truncation.
Characterizing Prompt Compression Methods for Long Context Inference
Long context inference presents challenges at the system level with increased compute and memory requirements, as well as from an accuracy perspective in being able to reason over long contexts. Recently, several methods have been proposed to compress the prompt to reduce the context length. However, there has been little work on comparing the different proposed methods across different tasks through a standardized analysis. This has led to conflicting results. To address this, here we perform a comprehensive characterization and evaluation of different prompt compression methods. In particular, we analyze extractive compression, summarization-based abstractive compression, and token pruning methods. Surprisingly, we find that extractive compression often outperforms all the other approaches, and enables up to 10x compression with minimal accuracy degradation. Interestingly, we also find that despite several recent claims, token pruning methods often lag behind extractive compression. We only found marginal improvements on summarization tasks.
Super Tiny Language Models
The rapid advancement of large language models (LLMs) has led to significant improvements in natural language processing but also poses challenges due to their high computational and energy demands. This paper introduces a series of research efforts focused on Super Tiny Language Models (STLMs), which aim to deliver high performance with significantly reduced parameter counts. We explore innovative techniques such as byte-level tokenization with a pooling mechanism, weight tying, and efficient training strategies. These methods collectively reduce the parameter count by 90% to 95% compared to traditional models while maintaining competitive performance. This series of papers will explore into various subproblems, including tokenizer-free models, self-play based training, and alternative training objectives, targeting models with 10M, 50M, and 100M parameters. Our ultimate goal is to make high-performance language models more accessible and practical for a wide range of applications.
Efficient Algorithms for Recognizing Weighted Tree-Adjoining Languages
The class of tree-adjoining languages can be characterized by various two-level formalisms, consisting of a context-free grammar (CFG) or pushdown automaton (PDA) controlling another CFG or PDA. These four formalisms are equivalent to tree-adjoining grammars (TAG), linear indexed grammars (LIG), pushdown-adjoining automata (PAA), and embedded pushdown automata (EPDA). We define semiring-weighted versions of the above two-level formalisms, and we design new algorithms for computing their stringsums (the weight of all derivations of a string) and allsums (the weight of all derivations). From these, we also immediately obtain stringsum and allsum algorithms for TAG, LIG, PAA, and EPDA. For LIG, our algorithm is more time-efficient by a factor of O(n|N|) (where n is the string length and |N| is the size of the nonterminal set) and more space-efficient by a factor of O(|Gamma|) (where |Gamma| is the size of the stack alphabet) than the algorithm of Vijay-Shanker and Weir (1989). For EPDA, our algorithm is both more space-efficient and time-efficient than the algorithm of Alonso et al. (2001) by factors of O(|Gamma|^2) and O(|Gamma|^3), respectively. Finally, we give the first PAA stringsum and allsum algorithms.
Semantic Role Labeling as Dependency Parsing: Exploring Latent Tree Structures Inside Arguments
Semantic role labeling (SRL) is a fundamental yet challenging task in the NLP community. Recent works of SRL mainly fall into two lines: 1) BIO-based; 2) span-based. Despite ubiquity, they share some intrinsic drawbacks of not considering internal argument structures, potentially hindering the model's expressiveness. The key challenge is arguments are flat structures, and there are no determined subtree realizations for words inside arguments. To remedy this, in this paper, we propose to regard flat argument spans as latent subtrees, accordingly reducing SRL to a tree parsing task. In particular, we equip our formulation with a novel span-constrained TreeCRF to make tree structures span-aware and further extend it to the second-order case. We conduct extensive experiments on CoNLL05 and CoNLL12 benchmarks. Results reveal that our methods perform favorably better than all previous syntax-agnostic works, achieving new state-of-the-art under both end-to-end and w/ gold predicates settings.
Multi-head Span-based Detector for AI-generated Fragments in Scientific Papers
This paper describes a system designed to distinguish between AI-generated and human-written scientific excerpts in the DAGPap24 competition hosted within the Fourth Workshop on Scientific Document Processing. In this competition the task is to find artificially generated token-level text fragments in documents of a scientific domain. Our work focuses on the use of a multi-task learning architecture with two heads. The application of this approach is justified by the specificity of the task, where class spans are continuous over several hundred characters. We considered different encoder variations to obtain a state vector for each token in the sequence, as well as a variation in splitting fragments into tokens to further feed into the input of a transform-based encoder. This approach allows us to achieve a 9% quality improvement relative to the baseline solution score on the development set (from 0.86 to 0.95) using the average macro F1-score, as well as a score of 0.96 on a closed test part of the dataset from the competition.
ManyTypes4Py: A Benchmark Python Dataset for Machine Learning-based Type Inference
In this paper, we present ManyTypes4Py, a large Python dataset for machine learning (ML)-based type inference. The dataset contains a total of 5,382 Python projects with more than 869K type annotations. Duplicate source code files were removed to eliminate the negative effect of the duplication bias. To facilitate training and evaluation of ML models, the dataset was split into training, validation and test sets by files. To extract type information from abstract syntax trees (ASTs), a lightweight static analyzer pipeline is developed and accompanied with the dataset. Using this pipeline, the collected Python projects were analyzed and the results of the AST analysis were stored in JSON-formatted files. The ManyTypes4Py dataset is shared on zenodo and its tools are publicly available on GitHub.
Parallel Speculative Decoding with Adaptive Draft Length
Speculative decoding (SD), where an extra draft model is employed to provide multiple draft tokens first and then the original target model verifies these tokens in parallel, has shown great power for LLM inference acceleration. However, existing SD methods suffer from the mutual waiting problem, i.e., the target model gets stuck when the draft model is guessing tokens, and vice versa. This problem is directly incurred by the asynchronous execution of the draft model and the target model, and is exacerbated due to the fixed draft length in speculative decoding. To address these challenges, we propose a conceptually simple, flexible, and general framework to boost speculative decoding, namely Parallel spEculative decoding with Adaptive dRaft Length (PEARL). Specifically, PEARL proposes pre-verify to verify the first draft token in advance during the drafting phase, and post-verify to generate more draft tokens during the verification phase. PEARL parallels the drafting phase and the verification phase via applying the two strategies, and achieves adaptive draft length for different scenarios, which effectively alleviates the mutual waiting problem. Moreover, we theoretically demonstrate that the mean accepted tokens of PEARL is more than existing draft-then-verify works. Experiments on various text generation benchmarks demonstrate the effectiveness of our \name, leading to a superior speedup performance up to 3.79times and 1.52times, compared to auto-regressive decoding and vanilla speculative decoding, respectively.
The Geometry of Self-Verification in a Task-Specific Reasoning Model
How do reasoning models verify their own answers? We study this question by training a model using DeepSeek R1's recipe on the CountDown task. We leverage the fact that preference tuning leads to mode collapse, yielding a model that always produces highly structured chain-of-thought sequences. With this setup, we do top-down and bottom-up analyses to reverse-engineer how the model verifies its outputs. Top-down, we find Gated Linear Unit (GLU) weights encoding verification-related tokens, such as ``success'' or ``incorrect''. Bottom-up, we find that ``previous-token heads'' are mainly responsible for self-verification in our setup. Our analyses meet in the middle: drawing inspiration from inter-layer communication channels, we use the identified GLU weights to localize as few as three attention heads that can disable self-verification, pointing to a necessary component of a potentially larger verification circuit. Finally, we verify that similar verification components exist in our base model and a general reasoning DeepSeek-R1 model.
Robust and Fine-Grained Detection of AI Generated Texts
An ideal detection system for machine generated content is supposed to work well on any generator as many more advanced LLMs come into existence day by day. Existing systems often struggle with accurately identifying AI-generated content over shorter texts. Further, not all texts might be entirely authored by a human or LLM, hence we focused more over partial cases i.e human-LLM co-authored texts. Our paper introduces a set of models built for the task of token classification which are trained on an extensive collection of human-machine co-authored texts, which performed well over texts of unseen domains, unseen generators, texts by non-native speakers and those with adversarial inputs. We also introduce a new dataset of over 2.4M such texts mostly co-authored by several popular proprietary LLMs over 23 languages. We also present findings of our models' performance over each texts of each domain and generator. Additional findings include comparison of performance against each adversarial method, length of input texts and characteristics of generated texts compared to the original human authored texts.
Benchmarking Language Models for Code Syntax Understanding
Pre-trained language models have demonstrated impressive performance in both natural language processing and program understanding, which represent the input as a token sequence without explicitly modeling its structure. Some prior works show that pre-trained language models can capture the syntactic rules of natural languages without finetuning on syntax understanding tasks. However, there is limited understanding of how well pre-trained models understand the code structure so far. In this work, we perform the first thorough benchmarking of the state-of-the-art pre-trained models for identifying the syntactic structures of programs. Specifically, we introduce CodeSyntax, a large-scale dataset of programs annotated with the syntactic relationships in their corresponding abstract syntax trees. Our key observation is that existing language models pretrained on code still lack the understanding of code syntax. In fact, these pre-trained programming language models fail to match the performance of simple baselines based on positional offsets and keywords. We also present a natural language benchmark to highlight the differences between natural languages and programming languages in terms of syntactic structure understanding. Our findings point out key limitations of existing pre-training methods for programming languages, and suggest the importance of modeling code syntactic structures.
KL3M Tokenizers: A Family of Domain-Specific and Character-Level Tokenizers for Legal, Financial, and Preprocessing Applications
We present the KL3M tokenizers, a family of specialized tokenizers for legal, financial, and governmental text. Despite established work on tokenization, specialized tokenizers for professional domains remain understudied. Our paper offers two main contributions to this area. First, we introduce domain-specific BPE tokenizers for legal, financial, and governmental text. Our kl3m-004-128k-cased tokenizer uses 9-17% fewer tokens than GPT-4o and Llama3 for domain-specific documents, despite having a smaller vocabulary. For specialized terminology, our cased tokenizer is even more efficient, using up to 83% fewer tokens for legal terms and 39% fewer tokens for financial terms. Second, we develop character-level BPE tokenizers (4K, 8K, and 16K vocabulary sizes) for text correction tasks like OCR post-processing. These tokenizers keep consistent token boundaries between error-containing and correct text, making it easier for models to learn correction patterns. These tokenizers help professional applications by fitting more text in context windows, reducing computational needs, and preserving the meaning of domain-specific terms. Our analysis shows these efficiency gains directly benefit the processing of long legal and financial documents. We release all tokenizers and code through GitHub and Hugging Face to support further research in specialized tokenization.
Hierarchical Autoregressive Transformers: Combining Byte-~and Word-Level Processing for Robust, Adaptable Language Models
Tokenization is a fundamental step in natural language processing, breaking text into units that computational models can process. While learned subword tokenizers have become the de-facto standard, they present challenges such as large vocabularies, limited adaptability to new domains or languages, and sensitivity to spelling errors and variations. To overcome these limitations, we investigate a hierarchical architecture for autoregressive language modelling that combines character-level and word-level processing. It employs a lightweight character-level encoder to convert character sequences into word embeddings, which are then processed by a word-level backbone model and decoded back into characters via a compact character-level decoder. This method retains the sequence compression benefits of word-level tokenization without relying on a rigid, predefined vocabulary. We demonstrate, at scales up to 7 billion parameters, that hierarchical transformers match the downstream task performance of subword-tokenizer-based models while exhibiting significantly greater robustness to input perturbations. Additionally, during continued pretraining on an out-of-domain language, our model trains almost twice as fast, achieves superior performance on the target language, and retains more of its previously learned knowledge. Hierarchical transformers pave the way for NLP systems that are more robust, flexible, and generalizable across languages and domains.
StochasTok: Improving Fine-Grained Subword Understanding in LLMs
Subword-level understanding is integral to numerous tasks, including understanding multi-digit numbers, spelling mistakes, abbreviations, rhyming, and wordplay. Despite this, current large language models (LLMs) still often struggle with seemingly simple subword-level tasks like How many 'r's in 'strawberry'?. A key factor behind these failures is tokenization which obscures the fine-grained structure of words. Current alternatives, such as character-level and dropout tokenization methods, significantly increase computational costs and provide inconsistent improvements. In this paper we revisit tokenization and introduce StochasTok, a simple, efficient stochastic tokenization scheme that randomly splits tokens during training, allowing LLMs to 'see' their internal structure. Our experiments show that pretraining with StochasTok substantially improves LLMs' downstream performance across multiple subword-level language games, including character counting, substring identification, and math tasks. Furthermore, StochasTok's simplicity allows seamless integration at any stage of the training pipeline; and we demonstrate that post-training with StochasTok can instill improved subword understanding into existing pretrained models, thus avoiding costly pretraining from scratch. These dramatic improvements achieved with a minimal change suggest StochasTok holds exciting potential when applied to larger, more capable models. Code open-sourced at: https://github.com/anyasims/stochastok.
WanJuan-CC: A Safe and High-Quality Open-sourced English Webtext Dataset
This paper presents WanJuan-CC, a safe and high-quality open-sourced English webtext dataset derived from Common Crawl data. The study addresses the challenges of constructing large-scale pre-training datasets for language models, which require vast amounts of high-quality data. A comprehensive process was designed to handle Common Crawl data, including extraction, heuristic rule filtering, fuzzy deduplication, content safety filtering, and data quality filtering. From approximately 68 billion original English documents, we obtained 2.22T Tokens of safe data and selected 1.0T Tokens of high-quality data as part of WanJuan-CC. We have open-sourced 300B Tokens from this dataset. The paper also provides statistical information related to data quality, enabling users to select appropriate data according to their needs. To evaluate the quality and utility of the dataset, we trained 1B-parameter and 3B-parameter models using WanJuan-CC and another dataset, RefinedWeb. Results show that WanJuan-CC performs better on validation datasets and downstream tasks.
ReAGent: Towards A Model-agnostic Feature Attribution Method for Generative Language Models
Feature attribution methods (FAs), such as gradients and attention, are widely employed approaches to derive the importance of all input features to the model predictions. Existing work in natural language processing has mostly focused on developing and testing FAs for encoder-only language models (LMs) in classification tasks. However, it is unknown if it is faithful to use these FAs for decoder-only models on text generation, due to the inherent differences between model architectures and task settings respectively. Moreover, previous work has demonstrated that there is no `one-wins-all' FA across models and tasks. This makes the selection of a FA computationally expensive for large LMs since input importance derivation often requires multiple forward and backward passes including gradient computations that might be prohibitive even with access to large compute. To address these issues, we present a model-agnostic FA for generative LMs called Recursive Attribution Generator (ReAGent). Our method updates the token importance distribution in a recursive manner. For each update, we compute the difference in the probability distribution over the vocabulary for predicting the next token between using the original input and using a modified version where a part of the input is replaced with RoBERTa predictions. Our intuition is that replacing an important token in the context should have resulted in a larger change in the model's confidence in predicting the token than replacing an unimportant token. Our method can be universally applied to any generative LM without accessing internal model weights or additional training and fine-tuning, as most other FAs require. We extensively compare the faithfulness of ReAGent with seven popular FAs across six decoder-only LMs of various sizes. The results show that our method consistently provides more faithful token importance distributions.
Learning on LLM Output Signatures for gray-box LLM Behavior Analysis
Large Language Models (LLMs) have achieved widespread adoption, yet our understanding of their behavior remains limited, particularly in detecting data contamination and hallucinations. While recently proposed probing techniques provide insights through activation analysis, they require "white-box" access to model internals, often unavailable. Current "gray-box" approaches typically analyze only the probability of the actual tokens in the sequence with simple task-specific heuristics. Importantly, these methods overlook the rich information contained in the full token distribution at each processing step. To address these limitations, we propose that gray-box analysis should leverage the complete observable output of LLMs, consisting of both the previously used token probabilities as well as the complete token distribution sequences - a unified data type we term LOS (LLM Output Signature). To this end, we develop a transformer-based approach to process LOS that theoretically guarantees approximation of existing techniques while enabling more nuanced analysis. Our approach achieves superior performance on hallucination and data contamination detection in gray-box settings, significantly outperforming existing baselines. Furthermore, it demonstrates strong transfer capabilities across datasets and LLMs, suggesting that LOS captures fundamental patterns in LLM behavior. Our code is available at: https://github.com/BarSGuy/LLM-Output-Signatures-Network.
Object Recognition as Next Token Prediction
We present an approach to pose object recognition as next token prediction. The idea is to apply a language decoder that auto-regressively predicts the text tokens from image embeddings to form labels. To ground this prediction process in auto-regression, we customize a non-causal attention mask for the decoder, incorporating two key features: modeling tokens from different labels to be independent, and treating image tokens as a prefix. This masking mechanism inspires an efficient method - one-shot sampling - to simultaneously sample tokens of multiple labels in parallel and rank generated labels by their probabilities during inference. To further enhance the efficiency, we propose a simple strategy to construct a compact decoder by simply discarding the intermediate blocks of a pretrained language model. This approach yields a decoder that matches the full model's performance while being notably more efficient. The code is available at https://github.com/kaiyuyue/nxtp
Pure Transformers are Powerful Graph Learners
We show that standard Transformers without graph-specific modifications can lead to promising results in graph learning both in theory and practice. Given a graph, we simply treat all nodes and edges as independent tokens, augment them with token embeddings, and feed them to a Transformer. With an appropriate choice of token embeddings, we prove that this approach is theoretically at least as expressive as an invariant graph network (2-IGN) composed of equivariant linear layers, which is already more expressive than all message-passing Graph Neural Networks (GNN). When trained on a large-scale graph dataset (PCQM4Mv2), our method coined Tokenized Graph Transformer (TokenGT) achieves significantly better results compared to GNN baselines and competitive results compared to Transformer variants with sophisticated graph-specific inductive bias. Our implementation is available at https://github.com/jw9730/tokengt.
Ranking LLM-Generated Loop Invariants for Program Verification
Synthesizing inductive loop invariants is fundamental to automating program verification. In this work, we observe that Large Language Models (such as gpt-3.5 or gpt-4) are capable of synthesizing loop invariants for a class of programs in a 0-shot setting, yet require several samples to generate the correct invariants. This can lead to a large number of calls to a program verifier to establish an invariant. To address this issue, we propose a {\it re-ranking} approach for the generated results of LLMs. We have designed a ranker that can distinguish between correct inductive invariants and incorrect attempts based on the problem definition. The ranker is optimized as a contrastive ranker. Experimental results demonstrate that this re-ranking mechanism significantly improves the ranking of correct invariants among the generated candidates, leading to a notable reduction in the number of calls to a verifier.
COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining
We present a self-supervised learning framework, COCO-LM, that pretrains Language Models by COrrecting and COntrasting corrupted text sequences. Following ELECTRA-style pretraining, COCO-LM employs an auxiliary language model to corrupt text sequences, upon which it constructs two new tasks for pretraining the main model. The first token-level task, Corrective Language Modeling, is to detect and correct tokens replaced by the auxiliary model, in order to better capture token-level semantics. The second sequence-level task, Sequence Contrastive Learning, is to align text sequences originated from the same source input while ensuring uniformity in the representation space. Experiments on GLUE and SQuAD demonstrate that COCO-LM not only outperforms recent state-of-the-art pretrained models in accuracy, but also improves pretraining efficiency. It achieves the MNLI accuracy of ELECTRA with 50% of its pretraining GPU hours. With the same pretraining steps of standard base/large-sized models, COCO-LM outperforms the previous best models by 1+ GLUE average points.
Neural Attention Search
We present Neural Attention Search (NAtS), a framework that automatically evaluates the importance of each token within a sequence and determines if the corresponding token can be dropped after several steps. This approach can efficiently reduce the KV cache sizes required by transformer-based models during inference and thus reduce inference costs. In this paper, we design a search space that contains three token types: (i) Global Tokens will be preserved and queried by all the following tokens. (ii) Local Tokens survive until the next global token appears. (iii) Sliding Window Tokens have an impact on the inference of a fixed size of the next following tokens. Similar to the One-Shot Neural Architecture Search approach, this token-type information can be learned jointly with the architecture weights via a learnable attention mask. Experiments on both training a new transformer from scratch and fine-tuning existing large language models show that NAtS can efficiently reduce the KV cache size required for the models while maintaining the models' performance.
zip2zip: Inference-Time Adaptive Vocabularies for Language Models via Token Compression
Tokenization efficiency plays a critical role in the performance and cost of large language models (LLMs), yet most models rely on static tokenizers optimized for general-purpose corpora. These tokenizers' fixed vocabularies often fail to adapt to domain- or language-specific inputs, leading to longer token sequences and higher computational costs. We introduce zip2zip, a framework that enables LLMs to dynamically adjust token vocabulary at inference time, allowing for fewer generated tokens and thus faster inference. zip2zip consists of three key components: (1) a tokenizer based on Lempel-Ziv-Welch (LZW) compression that incrementally compresses tokens into reusable "hypertokens" on the fly; (2) an embedding layer that computes embeddings for newly formed hypertokens at runtime; and (3) a causal language modeling variant that trains the model to operate on hypertokenized, compressed sequences. We show that an existing LLM can be zip2zip-fied in 10 GPU-hours via parameter-efficient finetuning. The resulting zip2zip LLMs effectively learn to use hypertokens at inference time, reducing input and output sequence length by 20-60\%, with significant improvements in inference latency.
Scaffold-BPE: Enhancing Byte Pair Encoding with Simple and Effective Scaffold Token Removal
Byte Pair Encoding (BPE) serves as a foundation method for text tokenization in the Natural Language Processing (NLP) field. Despite its wide adoption, the original BPE algorithm harbors an inherent flaw: it inadvertently introduces a frequency imbalance for tokens in the text corpus. Since BPE iteratively merges the most frequent token pair in the text corpus while keeping all tokens that have been merged in the vocabulary, it unavoidably holds tokens that primarily represent subwords of complete words and appear infrequently on their own in the text corpus. We term such tokens as Scaffold Tokens. Due to their infrequent appearance in the text corpus, Scaffold Tokens pose a learning imbalance issue for language models. To address that issue, we propose Scaffold-BPE, which incorporates a dynamic scaffold token removal mechanism by parameter-free, computation-light, and easy-to-implement modifications to the original BPE. This novel approach ensures the exclusion of low-frequency Scaffold Tokens from the token representations for the given texts, thereby mitigating the issue of frequency imbalance and facilitating model training. On extensive experiments across language modeling tasks and machine translation tasks, Scaffold-BPE consistently outperforms the original BPE, well demonstrating its effectiveness and superiority.
Uncovering Uncertainty in Transformer Inference
We explore the Iterative Inference Hypothesis (IIH) within the context of transformer-based language models, aiming to understand how a model's latent representations are progressively refined and whether observable differences are present between correct and incorrect generations. Our findings provide empirical support for the IIH, showing that the nth token embedding in the residual stream follows a trajectory of decreasing loss. Additionally, we observe that the rate at which residual embeddings converge to a stable output representation reflects uncertainty in the token generation process. Finally, we introduce a method utilizing cross-entropy to detect this uncertainty and demonstrate its potential to distinguish between correct and incorrect token generations on a dataset of idioms.
The UD-NewsCrawl Treebank: Reflections and Challenges from a Large-scale Tagalog Syntactic Annotation Project
This paper presents UD-NewsCrawl, the largest Tagalog treebank to date, containing 15.6k trees manually annotated according to the Universal Dependencies framework. We detail our treebank development process, including data collection, pre-processing, manual annotation, and quality assurance procedures. We provide baseline evaluations using multiple transformer-based models to assess the performance of state-of-the-art dependency parsers on Tagalog. We also highlight challenges in the syntactic analysis of Tagalog given its distinctive grammatical properties, and discuss its implications for the annotation of this treebank. We anticipate that UD-NewsCrawl and our baseline model implementations will serve as valuable resources for advancing computational linguistics research in underrepresented languages like Tagalog.
HyDRA: A Hybrid-Driven Reasoning Architecture for Verifiable Knowledge Graphs
The synergy between symbolic knowledge, often represented by Knowledge Graphs (KGs), and the generative capabilities of neural networks is central to advancing neurosymbolic AI. A primary bottleneck in realizing this potential is the difficulty of automating KG construction, which faces challenges related to output reliability, consistency, and verifiability. These issues can manifest as structural inconsistencies within the generated graphs, such as the formation of disconnected isolated islands of data or the inaccurate conflation of abstract classes with specific instances. To address these challenges, we propose HyDRA, a Hybrid-Driven Reasoning Architecture designed for verifiable KG automation. Given a domain or an initial set of documents, HyDRA first constructs an ontology via a panel of collaborative neurosymbolic agents. These agents collaboratively agree on a set of competency questions (CQs) that define the scope and requirements the ontology must be able to answer. Given these CQs, we build an ontology graph that subsequently guides the automated extraction of triplets for KG generation from arbitrary documents. Inspired by design-by-contracts (DbC) principles, our method leverages verifiable contracts as the primary control mechanism to steer the generative process of Large Language Models (LLMs). To verify the output of our approach, we extend beyond standard benchmarks and propose an evaluation framework that assesses the functional correctness of the resulting KG by leveraging symbolic verifications as described by the neurosymbolic AI framework, SymbolicAI. This work contributes a hybrid-driven architecture for improving the reliability of automated KG construction and the exploration of evaluation methods for measuring the functional integrity of its output. The code is publicly available.
Assessing Word Importance Using Models Trained for Semantic Tasks
Many NLP tasks require to automatically identify the most significant words in a text. In this work, we derive word significance from models trained to solve semantic task: Natural Language Inference and Paraphrase Identification. Using an attribution method aimed to explain the predictions of these models, we derive importance scores for each input token. We evaluate their relevance using a so-called cross-task evaluation: Analyzing the performance of one model on an input masked according to the other model's weight, we show that our method is robust with respect to the choice of the initial task. Additionally, we investigate the scores from the syntax point of view and observe interesting patterns, e.g. words closer to the root of a syntactic tree receive higher importance scores. Altogether, these observations suggest that our method can be used to identify important words in sentences without any explicit word importance labeling in training.
LS-Tree: Model Interpretation When the Data Are Linguistic
We study the problem of interpreting trained classification models in the setting of linguistic data sets. Leveraging a parse tree, we propose to assign least-squares based importance scores to each word of an instance by exploiting syntactic constituency structure. We establish an axiomatic characterization of these importance scores by relating them to the Banzhaf value in coalitional game theory. Based on these importance scores, we develop a principled method for detecting and quantifying interactions between words in a sentence. We demonstrate that the proposed method can aid in interpretability and diagnostics for several widely-used language models.
Policy Compliance Detection via Expression Tree Inference
Policy Compliance Detection (PCD) is a task we encounter when reasoning over texts, e.g. legal frameworks. Previous work to address PCD relies heavily on modeling the task as a special case of Recognizing Textual Entailment. Entailment is applicable to the problem of PCD, however viewing the policy as a single proposition, as opposed to multiple interlinked propositions, yields poor performance and lacks explainability. To address this challenge, more recent proposals for PCD have argued for decomposing policies into expression trees consisting of questions connected with logic operators. Question answering is used to obtain answers to these questions with respect to a scenario. Finally, the expression tree is evaluated in order to arrive at an overall solution. However, this work assumes expression trees are provided by experts, thus limiting its applicability to new policies. In this work, we learn how to infer expression trees automatically from policy texts. We ensure the validity of the inferred trees by introducing constrained decoding using a finite state automaton to ensure the generation of valid trees. We determine through automatic evaluation that 63% of the expression trees generated by our constrained generation model are logically equivalent to gold trees. Human evaluation shows that 88% of trees generated by our model are correct.
TreeBoN: Enhancing Inference-Time Alignment with Speculative Tree-Search and Best-of-N Sampling
Inference-time alignment enhances the performance of large language models without requiring additional training or fine-tuning but presents challenges due to balancing computational efficiency with high-quality output. Best-of-N (BoN) sampling, as a simple yet powerful approach, generates multiple responses and selects the best one, achieving improved performance but with a high computational cost. We propose TreeBoN, a novel framework that integrates a speculative tree-search strategy into Best-of-N (BoN) Sampling. TreeBoN maintains a set of parent nodes, iteratively branching and pruning low-quality responses, thereby reducing computational overhead while maintaining high output quality. Our approach also leverages token-level rewards from Direct Preference Optimization (DPO) to guide tree expansion and prune low-quality paths. We evaluate TreeBoN using AlpacaFarm, UltraFeedback, GSM8K, HH-RLHF, and TutorEval datasets, demonstrating consistent improvements. Specifically, TreeBoN achieves a 65% win rate at maximum lengths of 192 and 384 tokens, outperforming standard BoN with the same computational cost. Furthermore, TreeBoN achieves around a 60% win rate across longer responses, showcasing its scalability and alignment efficacy.
FastMTP: Accelerating LLM Inference with Enhanced Multi-Token Prediction
As large language models (LLMs) become increasingly powerful, the sequential nature of autoregressive generation creates a fundamental throughput bottleneck that limits the practical deployment. While Multi-Token Prediction (MTP) has demonstrated remarkable benefits for model training efficiency and performance, its inherent potential for inference acceleration remains largely unexplored. This paper introduces FastMTP, a simple yet effective method that improves multi-step draft quality by aligning MTP training with its inference pattern, significantly enhancing speculative decoding performance. Our approach fine-tunes a single MTP head with position-shared weights on self-distilled data, enabling it to capture dependencies among consecutive future tokens and maintain high acceptance rates across multiple recursive draft steps. By integrating language-aware dynamic vocabulary compression into the MTP head, we further reduce computational overhead in the drafting process. Experimental results across seven diverse benchmarks demonstrate that FastMTP achieves an average of 2.03x speedup compared to standard next token prediction with lossless output quality, outperforming vanilla MTP by 82%. FastMTP requires only lightweight training and seamlessly integrates with existing inference frameworks, offering a practical and rapidly deployable solution for accelerating LLM inference.
Qtok: A Comprehensive Framework for Evaluating Multilingual Tokenizer Quality in Large Language Models
In the development of Large Language Models (LLMs), considerable attention has been given to the quality of training datasets. However, the role of tokenizers in the LLM training pipeline, particularly for multilingual models, has received less focus. The quality of tokenization can significantly impact a model's ability to handle diverse languages effectively. We introduce Qtok, a tool designed to assess tokenizer quality with a specific emphasis on their performance in multilingual contexts. Our research proposes a set of metrics for evaluating tokenizer quality, including measures of language coverage, token completeness, and distribution across languages and linguistic categories. Qtok applies these metrics to evaluate 13 distinct tokenizers from 58 publicly available models, analyzing their output across different linguistic contexts. Our analysis revealed significant variations in token distribution across languages and categories, highlighting potential biases and areas for improvement in current tokenization strategies. This research contributes to the field of tokenizer evaluation within multilingual LLM development by providing a systematic approach to assessing tokenizer quality. Our findings highlight the critical role of tokenization in multilingual LLM capability. The Qtok tool and our analysis methodology offer practical means for researchers to evaluate and improve tokenization strategies for multilingual applications. We offer a method to compare tokenizer quality across these metrics, which may be useful when selecting or adjusting tokenizers for specific multilingual LLM applications.
Do Stop Me Now: Detecting Boilerplate Responses with a Single Iteration
Large Language Models (LLMs) often expend significant computational resources generating boilerplate responses, such as refusals, simple acknowledgements and casual greetings, which adds unnecessary cost and latency. To address this inefficiency, we propose a simple yet highly effective method for detecting such responses after only a single generation step. We demonstrate that the log-probability distribution of the first generated token serves as a powerful signal for classifying the nature of the entire subsequent response. Our experiments, conducted across a diverse range of small, large, and reasoning-specialized models, show that the first-token log-probability vectors form distinctly separable clusters for different response types. Using a lightweight k-NN classifier, we achieve high accuracy in predicting whether a response will be a substantive answer or a form of boilerplate response, including user-specified refusals. The primary implication is a practical, computationally trivial technique, optimizing LLM inference by enabling early termination or redirection to a smaller model, thereby yielding significant savings in computational cost. This work presents a direct path toward more efficient and sustainable LLM deployment.
Sticking to the Mean: Detecting Sticky Tokens in Text Embedding Models
Despite the widespread use of Transformer-based text embedding models in NLP tasks, surprising 'sticky tokens' can undermine the reliability of embeddings. These tokens, when repeatedly inserted into sentences, pull sentence similarity toward a certain value, disrupting the normal distribution of embedding distances and degrading downstream performance. In this paper, we systematically investigate such anomalous tokens, formally defining them and introducing an efficient detection method, Sticky Token Detector (STD), based on sentence and token filtering. Applying STD to 40 checkpoints across 14 model families, we discover a total of 868 sticky tokens. Our analysis reveals that these tokens often originate from special or unused entries in the vocabulary, as well as fragmented subwords from multilingual corpora. Notably, their presence does not strictly correlate with model size or vocabulary size. We further evaluate how sticky tokens affect downstream tasks like clustering and retrieval, observing significant performance drops of up to 50%. Through attention-layer analysis, we show that sticky tokens disproportionately dominate the model's internal representations, raising concerns about tokenization robustness. Our findings show the need for better tokenization strategies and model design to mitigate the impact of sticky tokens in future text embedding applications.
Tokenization Is More Than Compression
Tokenization is a foundational step in Natural Language Processing (NLP) tasks, bridging raw text and language models. Existing tokenization approaches like Byte-Pair Encoding (BPE) originate from the field of data compression, and it has been suggested that the effectiveness of BPE stems from its ability to condense text into a relatively small number of tokens. We test the hypothesis that fewer tokens lead to better downstream performance by introducing PathPiece, a new tokenizer that segments a document's text into the minimum number of tokens for a given vocabulary. Through extensive experimentation we find this hypothesis not to be the case, casting doubt on the understanding of the reasons for effective tokenization. To examine which other factors play a role, we evaluate design decisions across all three phases of tokenization: pre-tokenization, vocabulary construction, and segmentation, offering new insights into the design of effective tokenizers. Specifically, we illustrate the importance of pre-tokenization and the benefits of using BPE to initialize vocabulary construction. We train 64 language models with varying tokenization, ranging in size from 350M to 2.4B parameters, all of which are made publicly available.
Rethinking Thinking Tokens: Understanding Why They Underperform in Practice
Thinking Tokens (TT) have been proposed as an unsupervised method to facilitate reasoning in language models. However, despite their conceptual appeal, our findings show that TTs marginally improves performance and consistently underperforms compared to Chain-of-Thought (CoT) reasoning across multiple benchmarks. We hypothesize that this underperformance stems from the reliance on a single embedding for TTs, which results in inconsistent learning signals and introduces noisy gradients. This paper provides a comprehensive empirical analysis to validate this hypothesis and discusses the implications for future research on unsupervised reasoning in LLMs.
Model-Agnostic Syntactical Information for Pre-Trained Programming Language Models
Pre-trained Programming Language Models (PPLMs) achieved many recent states of the art results for many code-related software engineering tasks. Though some studies use data flow or propose tree-based models that utilize Abstract Syntax Tree (AST), most PPLMs do not fully utilize the rich syntactical information in source code. Still, the input is considered a sequence of tokens. There are two issues; the first is computational inefficiency due to the quadratic relationship between input length and attention complexity. Second, any syntactical information, when needed as an extra input to the current PPLMs, requires the model to be pre-trained from scratch, wasting all the computational resources already used for pre-training the current models. In this work, we propose Named Entity Recognition (NER) adapters, lightweight modules that can be inserted into Transformer blocks to learn type information extracted from the AST. These adapters can be used with current PPLMs such as CodeBERT, GraphCodeBERT, and CodeT5. We train the NER adapters using a novel Token Type Classification objective function (TTC). We insert our proposed work in CodeBERT, building CodeBERTER, and evaluate the performance on two tasks of code refinement and code summarization. CodeBERTER improves the accuracy of code refinement from 16.4 to 17.8 while using 20% of training parameter budget compared to the fully fine-tuning approach, and the BLEU score of code summarization from 14.75 to 15.90 while reducing 77% of training parameters compared to the fully fine-tuning approach.
R-grams: Unsupervised Learning of Semantic Units in Natural Language
This paper investigates data-driven segmentation using Re-Pair or Byte Pair Encoding-techniques. In contrast to previous work which has primarily been focused on subword units for machine translation, we are interested in the general properties of such segments above the word level. We call these segments r-grams, and discuss their properties and the effect they have on the token frequency distribution. The proposed approach is evaluated by demonstrating its viability in embedding techniques, both in monolingual and multilingual test settings. We also provide a number of qualitative examples of the proposed methodology, demonstrating its viability as a language-invariant segmentation procedure.
Hard2Verify: A Step-Level Verification Benchmark for Open-Ended Frontier Math
Large language model (LLM)-based reasoning systems have recently achieved gold medal-level performance in the IMO 2025 competition, writing mathematical proofs where, to receive full credit, each step must be not only correct but also sufficiently supported. To train LLM-based reasoners in such challenging, open-ended settings, strong verifiers capable of catching step-level mistakes are necessary prerequisites. We introduce Hard2Verify, a human-annotated, step-level verification benchmark produced with over 500 hours of human labor. Hard2Verify is designed to rigorously assess step-level verifiers at the frontier: Verifiers must provide step-level annotations or identify the first error in responses generated by frontier LLMs for very recent, challenging, and open-ended math questions. We evaluate 29 generative critics and process reward models, demonstrating that, beyond a few standouts, open-source verifiers lag closed source models. We subsequently analyze what drives poor performance in step-level verification, the impacts of scaling verifier compute, as well as fundamental questions such as self-verification and verification-generation dynamics.
Fast Controlled Generation from Language Models with Adaptive Weighted Rejection Sampling
The dominant approach to generating from language models subject to some constraint is locally constrained decoding (LCD), incrementally sampling tokens at each time step such that the constraint is never violated. Typically, this is achieved through token masking: looping over the vocabulary and excluding non-conforming tokens. There are two important problems with this approach. (i) Evaluating the constraint on every token can be prohibitively expensive -- LM vocabularies often exceed 100,000 tokens. (ii) LCD can distort the global distribution over strings, sampling tokens based only on local information, even if they lead down dead-end paths. This work introduces a new algorithm that addresses both these problems. First, to avoid evaluating a constraint on the full vocabulary at each step of generation, we propose an adaptive rejection sampling algorithm that typically requires orders of magnitude fewer constraint evaluations. Second, we show how this algorithm can be extended to produce low-variance, unbiased estimates of importance weights at a very small additional cost -- estimates that can be soundly used within previously proposed sequential Monte Carlo algorithms to correct for the myopic behavior of local constraint enforcement. Through extensive empirical evaluation in text-to-SQL, molecular synthesis, goal inference, pattern matching, and JSON domains, we show that our approach is superior to state-of-the-art baselines, supporting a broader class of constraints and improving both runtime and performance. Additional theoretical and empirical analyses show that our method's runtime efficiency is driven by its dynamic use of computation, scaling with the divergence between the unconstrained and constrained LM, and as a consequence, runtime improvements are greater for better models.
A Law of Next-Token Prediction in Large Language Models
Large language models (LLMs) have been widely employed across various application domains, yet their black-box nature poses significant challenges to understanding how these models process input data internally to make predictions. In this paper, we introduce a precise and quantitative law that governs the learning of contextualized token embeddings through intermediate layers in pre-trained LLMs for next-token prediction. Our findings reveal that each layer contributes equally to enhancing prediction accuracy, from the lowest to the highest layer -- a universal phenomenon observed across a diverse array of open-source LLMs, built on architectures such as Transformer, RWKV, and Mamba. We demonstrate that this law offers new perspectives and insights to inform and guide practices in LLM development and applications, including model scaling, pre-training tasks, and information flow. Overall, our law enables more fine-grained approaches to the design, training, and interpretation of LLMs through scrutinizing their internal data processing mechanisms.
An Unforgeable Publicly Verifiable Watermark for Large Language Models
Recently, text watermarking algorithms for large language models (LLMs) have been proposed to mitigate the potential harms of text generated by LLMs, including fake news and copyright issues. However, current watermark detection algorithms require the secret key used in the watermark generation process, making them susceptible to security breaches and counterfeiting during public detection. To address this limitation, we propose an unforgeable publicly verifiable watermark algorithm that uses two different neural networks for watermark generation and detection, instead of using the same key at both stages. Meanwhile, the token embedding parameters are shared between the generation and detection networks, which makes the detection network achieve a high accuracy very efficiently. Experiments demonstrate that our algorithm attains high detection accuracy and computational efficiency through neural networks with a minimized number of parameters. Subsequent analysis confirms the high complexity involved in forging the watermark from the detection network. Our code and data are available at https://github.com/THU-BPM/unforgeable_watermark{https://github.com/THU-BPM/unforgeable\_watermark}.
SDSAT: Accelerating LLM Inference through Speculative Decoding with Semantic Adaptive Tokens
We propose an acceleration scheme for large language models (LLMs) through Speculative Decoding with Semantic Adaptive Tokens (SDSAT). The primary objective of this design is to enhance the LLM model's ability to generate draft tokens more accurately without compromising the model's accuracy. The core strategies involve: 1) Fine-tune the model by incorporating semantic adaptive tokens that possess flexible decoding capabilities without changing its structure, allowing them to generate high-quality draft tokens. 2) By employing a training method that does not affect the standard tokens, the model can acquire parallel decoding abilities atop its original framework with minimal training overhead. 3) We have designed the "two-step-draft-then-verify" generation strategies using both greedy search and nucleus sampling. Experiments conducted on the CodeLlama-13B and 7B models have yielded speed increases of over 3.5X and 3.0X, respectively. Please refer to https://github.com/hasuoshenyun/SDSAT.
Think&Cite: Improving Attributed Text Generation with Self-Guided Tree Search and Progress Reward Modeling
Despite their outstanding capabilities, large language models (LLMs) are prone to hallucination and producing factually incorrect information. This challenge has spurred efforts in attributed text generation, which prompts LLMs to generate content with supporting evidence. In this paper, we propose a novel framework, called Think&Cite, and formulate attributed text generation as a multi-step reasoning problem integrated with search. Specifically, we propose Self-Guided Monte Carlo Tree Search (SG-MCTS), which capitalizes on the self-reflection capability of LLMs to reflect on the intermediate states of MCTS for guiding the tree expansion process. To provide reliable and comprehensive feedback, we introduce Progress Reward Models to measure the progress of tree search from the root to the current state from two aspects, i.e., generation and attribution progress. We conduct extensive experiments on three datasets and the results show that our approach significantly outperforms baseline approaches.
Verifiable by Design: Aligning Language Models to Quote from Pre-Training Data
For humans to trust the fluent generations of large language models (LLMs), they must be able to verify their correctness against trusted, external sources. Recent efforts aim to increase verifiability through citations of retrieved documents or post-hoc provenance. However, such citations are prone to mistakes that further complicate their verifiability. To address these limitations, we tackle the verifiability goal with a different philosophy: we trivialize the verification process by developing models that quote verbatim statements from trusted sources in pre-training data. We propose Quote-Tuning, which demonstrates the feasibility of aligning LLMs to leverage memorized information and quote from pre-training data. Quote-Tuning quantifies quoting against large corpora with efficient membership inference tools, and uses the amount of quotes as an implicit reward signal to construct a synthetic preference dataset for quoting, without any human annotation. Next, the target model is aligned to quote using preference optimization algorithms. Experimental results show that Quote-Tuning significantly increases the percentage of LLM generation quoted verbatim from high-quality pre-training documents by 55% to 130% relative to untuned models while maintaining response quality. Further experiments demonstrate that Quote-Tuning generalizes quoting to out-of-domain data, is applicable in different tasks, and provides additional benefits to truthfulness. Quote-Tuning not only serves as a hassle-free method to increase quoting but also opens up avenues for improving LLM trustworthiness through better verifiability.
Tokenization Standards for Linguistic Integrity: Turkish as a Benchmark
Tokenization is a fundamental preprocessing step in NLP, directly impacting large language models' (LLMs) ability to capture syntactic, morphosyntactic, and semantic structures. This paper introduces a novel framework for systematically evaluating tokenization strategies, addressing challenges in morphologically rich and low-resource languages. Using a Turkish dataset of 6,200 multiple-choice questions from the Massive Multitask Language Understanding (MMLU) benchmark, the framework assesses tokenizers across five key metrics: vocabulary size, token count, processing time, language-specific token percentages (\%TR), and token purity. These metrics provide a structured approach to evaluating how well tokenizers preserve linguistic structures. While \%TR measures the proportion of valid words in the target language, \%Pure assesses the alignment of tokens with meaningful linguistic units, such as roots and valid morphemes, minimizing semantic fragmentation. The findings reveal that \%TR, introduced as a critical metric, exhibits a stronger correlation with downstream performance (e.g., MMLU scores) than token purity, emphasizing its role in improving model accuracy. Additionally, larger model parameters do not necessarily yield better tokenization quality or enhanced results, highlighting the importance of tailored tokenization strategies that prioritize linguistic alignment. This framework sets a new standard for developing robust tokenization methods optimized for morphologically complex and low-resource languages. Future work will refine morphological analysis, explore domain-specific customizations, and conduct cross-linguistic evaluations to further enhance tokenization practices.
Judge Decoding: Faster Speculative Sampling Requires Going Beyond Model Alignment
The performance of large language models (LLMs) is closely linked to their underlying size, leading to ever-growing networks and hence slower inference. Speculative decoding has been proposed as a technique to accelerate autoregressive generation, leveraging a fast draft model to propose candidate tokens, which are then verified in parallel based on their likelihood under the target model. While this approach guarantees to reproduce the target output, it incurs a substantial penalty: many high-quality draft tokens are rejected, even when they represent objectively valid continuations. Indeed, we show that even powerful draft models such as GPT-4o, as well as human text cannot achieve high acceptance rates under the standard verification scheme. This severely limits the speedup potential of current speculative decoding methods, as an early rejection becomes overwhelmingly likely when solely relying on alignment of draft and target. We thus ask the following question: Can we adapt verification to recognize correct, but non-aligned replies? To this end, we draw inspiration from the LLM-as-a-judge framework, which demonstrated that LLMs are able to rate answers in a versatile way. We carefully design a dataset to elicit the same capability in the target model by training a compact module on top of the embeddings to produce ``judgements" of the current continuation. We showcase our strategy on the Llama-3.1 family, where our 8b/405B-Judge achieves a speedup of 9x over Llama-405B, while maintaining its quality on a large range of benchmarks. These benefits remain present even in optimized inference frameworks, where our method reaches up to 141 tokens/s for 8B/70B-Judge and 129 tokens/s for 8B/405B on 2 and 8 H100s respectively.
DeFINE: DEep Factorized INput Token Embeddings for Neural Sequence Modeling
For sequence models with large vocabularies, a majority of network parameters lie in the input and output layers. In this work, we describe a new method, DeFINE, for learning deep token representations efficiently. Our architecture uses a hierarchical structure with novel skip-connections which allows for the use of low dimensional input and output layers, reducing total parameters and training time while delivering similar or better performance versus existing methods. DeFINE can be incorporated easily in new or existing sequence models. Compared to state-of-the-art methods including adaptive input representations, this technique results in a 6% to 20% drop in perplexity. On WikiText-103, DeFINE reduces the total parameters of Transformer-XL by half with minimal impact on performance. On the Penn Treebank, DeFINE improves AWD-LSTM by 4 points with a 17% reduction in parameters, achieving comparable performance to state-of-the-art methods with fewer parameters. For machine translation, DeFINE improves the efficiency of the Transformer model by about 1.4 times while delivering similar performance.
Variation in Verification: Understanding Verification Dynamics in Large Language Models
Recent advances have shown that scaling test-time computation enables large language models (LLMs) to solve increasingly complex problems across diverse domains. One effective paradigm for test-time scaling (TTS) involves LLM generators producing multiple solution candidates, with LLM verifiers assessing the correctness of these candidates without reference answers. In this paper, we study generative verifiers, which perform verification by generating chain-of-thought (CoT) reasoning followed by a binary verdict. We systematically analyze verification dynamics across three dimensions - problem difficulty, generator capability, and verifier generation capability - with empirical studies on 12 benchmarks across mathematical reasoning, knowledge, and natural language reasoning tasks using 14 open-source models (2B to 72B parameter range) and GPT-4o. Our experiments reveal three key findings about verification effectiveness: (1) Easy problems allow verifiers to more reliably certify correct responses; (2) Weak generators produce errors that are easier to detect than strong generators; (3) Verification ability is generally correlated with the verifier's own problem-solving capability, but this relationship varies with problem difficulty. These findings reveal opportunities to optimize basic verification strategies in TTS applications. First, given the same verifier, some weak generators can nearly match stronger ones in post-verification TTS performance (e.g., the Gemma2-9B to Gemma2-27B performance gap shrinks by 75.5%). Second, we identify cases where strong verifiers offer limited advantage over weak ones, as both fail to provide meaningful verification gains, suggesting that verifier scaling alone cannot overcome fundamental verification challenges.
TokenButler: Token Importance is Predictable
Large Language Models (LLMs) rely on the Key-Value (KV) Cache to store token history, enabling efficient decoding of tokens. As the KV-Cache grows, it becomes a major memory and computation bottleneck, however, there is an opportunity to alleviate this bottleneck, especially because prior research has shown that only a small subset of tokens contribute meaningfully to each decoding step. A key challenge in finding these critical tokens is that they are dynamic, and heavily input query-dependent. Existing methods either risk quality by evicting tokens permanently, or retain the full KV-Cache but rely on retrieving chunks (pages) of tokens at generation, failing at dense, context-rich tasks. Additionally, many existing KV-Cache sparsity methods rely on inaccurate proxies for token importance. To address these limitations, we introduce TokenButler, a high-granularity, query-aware predictor that learns to identify these critical tokens. By training a light-weight predictor with less than 1.2% parameter overhead, TokenButler prioritizes tokens based on their contextual, predicted importance. This improves perplexity & downstream accuracy by over 8% relative to SoTA methods for estimating token importance. We evaluate TokenButler on a novel synthetic small-context co-referential retrieval task, demonstrating near-oracle accuracy. Code, models and benchmarks: https://github.com/abdelfattah-lab/TokenButler
Selective Risk Certification for LLM Outputs via Information-Lift Statistics: PAC-Bayes, Robustness, and Skeleton Design
Large language models often produce plausible but incorrect outputs. Existing heuristics such as HallBayes lack formal guarantees. We develop the first comprehensive theory of information-lift certificates under selective classification. Our contributions are: (i) a PAC-Bayes sub-gamma analysis extending beyond standard Bernstein bounds; (ii) explicit skeleton sensitivity theorems quantifying robustness to misspecification; (iii) failure-mode guarantees under assumption violations; and (iv) a principled variational method for skeleton construction. Across six datasets and multiple model families, we validate assumptions empirically, reduce abstention by 12--15\% at the same risk, and maintain runtime overhead below 20\% (further reduced via batching).
WikiNER-fr-gold: A Gold-Standard NER Corpus
We address in this article the the quality of the WikiNER corpus, a multilingual Named Entity Recognition corpus, and provide a consolidated version of it. The annotation of WikiNER was produced in a semi-supervised manner i.e. no manual verification has been carried out a posteriori. Such corpus is called silver-standard. In this paper we propose WikiNER-fr-gold which is a revised version of the French proportion of WikiNER. Our corpus consists of randomly sampled 20% of the original French sub-corpus (26,818 sentences with 700k tokens). We start by summarizing the entity types included in each category in order to define an annotation guideline, and then we proceed to revise the corpus. Finally we present an analysis of errors and inconsistency observed in the WikiNER-fr corpus, and we discuss potential future work directions.
Enhancing Character-Level Understanding in LLMs through Token Internal Structure Learning
Tokenization methods like Byte-Pair Encoding (BPE) enhance computational efficiency in large language models (LLMs) but often obscure internal character structures within tokens. This limitation hinders LLMs' ability to predict precise character positions, which is crucial in tasks like Chinese Spelling Correction (CSC) where identifying the positions of misspelled characters accelerates correction processes. We propose Token Internal Position Awareness (TIPA), a method that significantly improves models' ability to capture character positions within tokens by training them on reverse character prediction tasks using the tokenizer's vocabulary. Experiments demonstrate that TIPA enhances position prediction accuracy in LLMs, enabling more precise identification of target characters in original text. Furthermore, when applied to downstream tasks that do not require exact position prediction, TIPA still boosts performance in tasks needing character-level information, validating its versatility and effectiveness.
SynthCypher: A Fully Synthetic Data Generation Framework for Text-to-Cypher Querying in Knowledge Graphs
Cypher, the query language for Neo4j graph databases, plays a critical role in enabling graph-based analytics and data exploration. While substantial research has been dedicated to natural language to SQL query generation (Text2SQL), the analogous problem for graph databases referred to as Text2Cypher remains underexplored. In this work, we introduce SynthCypher, a fully synthetic and automated data generation pipeline designed to address this gap. SynthCypher employs a novel LLMSupervised Generation-Verification framework, ensuring syntactically and semantically correct Cypher queries across diverse domains and query complexities. Using this pipeline, we create SynthCypher Dataset, a large-scale benchmark containing 29.8k Text2Cypher instances. Fine-tuning open-source large language models (LLMs), including LLaMa-3.1- 8B, Mistral-7B, and QWEN-7B, on SynthCypher yields significant performance improvements of up to 40% on the Text2Cypher test set and 30% on the SPIDER benchmark adapted for graph databases. This work demonstrates that high-quality synthetic data can effectively advance the state-of-the-art in Text2Cypher tasks.
A Graph-based Verification Framework for Fact-Checking
Fact-checking plays a crucial role in combating misinformation. Existing methods using large language models (LLMs) for claim decomposition face two key limitations: (1) insufficient decomposition, introducing unnecessary complexity to the verification process, and (2) ambiguity of mentions, leading to incorrect verification results. To address these challenges, we suggest introducing a claim graph consisting of triplets to address the insufficient decomposition problem and reduce mention ambiguity through graph structure. Based on this core idea, we propose a graph-based framework, GraphFC, for fact-checking. The framework features three key components: graph construction, which builds both claim and evidence graphs; graph-guided planning, which prioritizes the triplet verification order; and graph-guided checking, which verifies the triples one by one between claim and evidence graphs. Extensive experiments show that GraphFC enables fine-grained decomposition while resolving referential ambiguities through relational constraints, achieving state-of-the-art performance across three datasets.
Disentangling Reasoning Tokens and Boilerplate Tokens For Language Model Fine-tuning
When using agent-task datasets to enhance agent capabilities for Large Language Models (LLMs), current methodologies often treat all tokens within a sample equally. However, we argue that tokens serving different roles - specifically, reasoning tokens versus boilerplate tokens (e.g., those governing output format) - differ significantly in importance and learning complexity, necessitating their disentanglement and distinct treatment. To address this, we propose a novel Shuffle-Aware Discriminator (SHAD) for adaptive token discrimination. SHAD classifies tokens by exploiting predictability differences observed after shuffling input-output combinations across samples: boilerplate tokens, due to their repetitive nature among samples, maintain predictability, whereas reasoning tokens do not. Using SHAD, we propose the Reasoning-highlighted Fine-Tuning (RFT) method, which adaptively emphasizes reasoning tokens during fine-tuning, yielding notable performance gains over common Supervised Fine-Tuning (SFT).
SemParser: A Semantic Parser for Log Analysis
Logs, being run-time information automatically generated by software, record system events and activities with their timestamps. Before obtaining more insights into the run-time status of the software, a fundamental step of log analysis, called log parsing, is employed to extract structured templates and parameters from the semi-structured raw log messages. However, current log parsers are all syntax-based and regard each message as a character string, ignoring the semantic information included in parameters and templates. Thus, we propose the semantic-based parser SemParser to unlock the critical bottleneck of mining semantics from log messages. It contains two steps, an end-to-end semantic miner and a joint parser. Specifically, the first step aims to identify explicit semantics inside a single log, and the second step is responsible for jointly inferring implicit semantics and computing structural outputs based on the contextual knowledge base. To analyze the effectiveness of our semantic parser, we first demonstrate that it can derive rich semantics from log messages collected from six widely-applied systems with an average F1 score of 0.985. Then, we conduct two representative downstream tasks, showing that current downstream models improve their performance with appropriately extracted semantics by 1.2%-11.7% and 8.65% on two anomaly detection datasets and a failure identification dataset, respectively. We believe these findings provide insights into semantically understanding log messages for the log analysis community.
L-MTP: Leap Multi-Token Prediction Beyond Adjacent Context for Large Language Models
Large language models (LLMs) have achieved notable progress. Despite their success, next-token prediction (NTP), the dominant method for LLM training and inference, is constrained in both contextual coverage and inference efficiency due to its inherently sequential process. To overcome these challenges, we propose leap multi-token prediction~(L-MTP), an innovative token prediction method that extends the capabilities of multi-token prediction (MTP) by introducing a leap-based mechanism. Unlike conventional MTP, which generates multiple tokens at adjacent positions, L-MTP strategically skips over intermediate tokens, predicting non-sequential ones in a single forward pass. This structured leap not only enhances the model's ability to capture long-range dependencies but also enables a decoding strategy specially optimized for non-sequential leap token generation, effectively accelerating inference. We theoretically demonstrate the benefit of L-MTP in improving inference efficiency. Experiments across diverse benchmarks validate its merit in boosting both LLM performance and inference speed. The source code is available at https://github.com/Xiaohao-Liu/L-MTP.
On the Effect of Token Merging on Pre-trained Models for Code
Tokenization is a fundamental component of language models for code. It involves breaking down the input into units that are later passed to the language model stack to learn high-dimensional representations used in various contexts, from classification to generation. However, the output of these tokenizers is often longer than that traditionally used in compilers and interpreters. This could result in undesirable effects, such as increased computational overhead. In this work, we investigate the effect of merging the hidden representations of subtokens that belong to the same semantic unit, such as subtokens that form a single identifier. We propose two strategies: one based on averaging the representations and another that leverages a learning-based approach. Both methods can be seamlessly integrated with existing language models for code. We conduct experiments using six language models for code: CodeBERT, GraphCodeBERT, UniXCoder, CdoeT5, CodeT5+ (220M), and CodeT5+ (770M), across three software engineering tasks: vulnerability detection, code classification, and code translation. Results show that these strategies can reduce the number of floating-point operations by 1% to 19%. Regarding downstream performance, the most significant degradation was observed in the vulnerability detection task, where the F1 score decreased by 1.82 points compared to the baseline. In contrast, for code translation, we observed an improvement of 2.47 points in CodeBLEU. This work contributes to the broader effort of improving language models for code across multiple dimensions, including both computational efficiency and downstream performance.
Tokenization Impacts Multilingual Language Modeling: Assessing Vocabulary Allocation and Overlap Across Languages
Multilingual language models have recently gained attention as a promising solution for representing multiple languages in a single model. In this paper, we propose new criteria to evaluate the quality of lexical representation and vocabulary overlap observed in sub-word tokenizers. Our findings show that the overlap of vocabulary across languages can be actually detrimental to certain downstream tasks (POS, dependency tree labeling). In contrast, NER and sentence-level tasks (cross-lingual retrieval, NLI) benefit from sharing vocabulary. We also observe that the coverage of the language-specific tokens in the multilingual vocabulary significantly impacts the word-level tasks. Our study offers a deeper understanding of the role of tokenizers in multilingual language models and guidelines for future model developers to choose the most suitable tokenizer for their specific application before undertaking costly model pre-training
Scaling Flaws of Verifier-Guided Search in Mathematical Reasoning
Large language models (LLMs) struggle with multi-step reasoning, where inference-time scaling has emerged as a promising strategy for performance improvement. Verifier-guided search outperforms repeated sampling when sample size is limited by selecting and prioritizing valid reasoning paths. However, we identify a critical limitation: scaling flaws, prevalent across different models (Mistral 7B and DeepSeekMath 7B), benchmarks (GSM8K and MATH), and verifiers (outcome value models and process reward models). As sample size increases, verifier-guided search exhibits diminishing advantages and eventually underperforms repeated sampling. Our analysis attributes this to verifier failures, where imperfect verifiers misrank candidates and erroneously prune all valid paths. These issues are further exacerbated in challenging and out-of-distribution problems, restricting search effectiveness. To mitigate verifier failures, we explore reducing reliance on verifiers and conduct preliminary investigations using two simple methods. Our findings reveal fundamental limitations in verifier-guided search and suggest future directions.
Towards Optimal Multi-draft Speculative Decoding
Large Language Models (LLMs) have become an indispensable part of natural language processing tasks. However, autoregressive sampling has become an efficiency bottleneck. Multi-Draft Speculative Decoding (MDSD) is a recent approach where, when generating each token, a small draft model generates multiple drafts, and the target LLM verifies them in parallel, ensuring that the final output conforms to the target model distribution. The two main design choices in MDSD are the draft sampling method and the verification algorithm. For a fixed draft sampling method, the optimal acceptance rate is a solution to an optimal transport problem, but the complexity of this problem makes it difficult to solve for the optimal acceptance rate and measure the gap between existing verification algorithms and the theoretical upper bound. This paper discusses the dual of the optimal transport problem, providing a way to efficiently compute the optimal acceptance rate. For the first time, we measure the theoretical upper bound of MDSD efficiency for vocabulary sizes in the thousands and quantify the gap between existing verification algorithms and this bound. We also compare different draft sampling methods based on their optimal acceptance rates. Our results show that the draft sampling method strongly influences the optimal acceptance rate, with sampling without replacement outperforming sampling with replacement. Additionally, existing verification algorithms do not reach the theoretical upper bound for both without replacement and with replacement sampling. Our findings suggest that carefully designed draft sampling methods can potentially improve the optimal acceptance rate and enable the development of verification algorithms that closely match the theoretical upper bound.
Towards Automatic Translation of Machine Learning Visual Insights to Analytical Assertions
We present our vision for developing an automated tool capable of translating visual properties observed in Machine Learning (ML) visualisations into Python assertions. The tool aims to streamline the process of manually verifying these visualisations in the ML development cycle, which is critical as real-world data and assumptions often change post-deployment. In a prior study, we mined 54,070 Jupyter notebooks from Github and created a catalogue of 269 semantically related visualisation-assertion (VA) pairs. Building on this catalogue, we propose to build a taxonomy that organises the VA pairs based on ML verification tasks. The input feature space comprises of a rich source of information mined from the Jupyter notebooks -- visualisations, Python source code, and associated markdown text. The effectiveness of various AI models, including traditional NLP4Code models and modern Large Language Models, will be compared using established machine translation metrics and evaluated through a qualitative study with human participants. The paper also plans to address the challenge of extending the existing VA pair dataset with additional pairs from Kaggle and to compare the tool's effectiveness with commercial generative AI models like ChatGPT. This research not only contributes to the field of ML system validation but also explores novel ways to leverage AI for automating and enhancing software engineering practices in ML.
Splintering Nonconcatenative Languages for Better Tokenization
Common subword tokenization algorithms like BPE and UnigramLM assume that text can be split into meaningful units by concatenative measures alone. This is not true for languages such as Hebrew and Arabic, where morphology is encoded in root-template patterns, or Malay and Georgian, where split affixes are common. We present SPLINTER, a pre-processing step which rearranges text into a linear form that better represents such nonconcatenative morphologies, enabling meaningful contiguous segments to be found by the tokenizer. We demonstrate SPLINTER's merit using both intrinsic measures evaluating token vocabularies in Hebrew, Arabic, and Malay; as well as on downstream tasks using BERT-architecture models trained for Hebrew.
A Context-Driven Training-Free Network for Lightweight Scene Text Segmentation and Recognition
Modern scene text recognition systems often depend on large end-to-end architectures that require extensive training and are prohibitively expensive for real-time scenarios. In such cases, the deployment of heavy models becomes impractical due to constraints on memory, computational resources, and latency. To address these challenges, we propose a novel, training-free plug-and-play framework that leverages the strengths of pre-trained text recognizers while minimizing redundant computations. Our approach uses context-based understanding and introduces an attention-based segmentation stage, which refines candidate text regions at the pixel level, improving downstream recognition. Instead of performing traditional text detection that follows a block-level comparison between feature map and source image and harnesses contextual information using pretrained captioners, allowing the framework to generate word predictions directly from scene context.Candidate texts are semantically and lexically evaluated to get a final score. Predictions that meet or exceed a pre-defined confidence threshold bypass the heavier process of end-to-end text STR profiling, ensuring faster inference and cutting down on unnecessary computations. Experiments on public benchmarks demonstrate that our paradigm achieves performance on par with state-of-the-art systems, yet requires substantially fewer resources.
Detecting Pretraining Data from Large Language Models
Although large language models (LLMs) are widely deployed, the data used to train them is rarely disclosed. Given the incredible scale of this data, up to trillions of tokens, it is all but certain that it includes potentially problematic text such as copyrighted materials, personally identifiable information, and test data for widely reported reference benchmarks. However, we currently have no way to know which data of these types is included or in what proportions. In this paper, we study the pretraining data detection problem: given a piece of text and black-box access to an LLM without knowing the pretraining data, can we determine if the model was trained on the provided text? To facilitate this study, we introduce a dynamic benchmark WIKIMIA that uses data created before and after model training to support gold truth detection. We also introduce a new detection method Min-K% Prob based on a simple hypothesis: an unseen example is likely to contain a few outlier words with low probabilities under the LLM, while a seen example is less likely to have words with such low probabilities. Min-K% Prob can be applied without any knowledge about the pretraining corpus or any additional training, departing from previous detection methods that require training a reference model on data that is similar to the pretraining data. Moreover, our experiments demonstrate that Min-K% Prob achieves a 7.4% improvement on WIKIMIA over these previous methods. We apply Min-K% Prob to two real-world scenarios, copyrighted book detection, and contaminated downstream example detection, and find it a consistently effective solution.
Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs
The proliferation of Large Language Models (LLMs) accessed via black-box APIs introduces a significant trust challenge: users pay for services based on advertised model capabilities (e.g., size, performance), but providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs. This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking. Detecting such substitutions is difficult due to the black-box nature, typically limiting interaction to input-output queries. This paper formalizes the problem of model substitution detection in LLM APIs. We systematically evaluate existing verification techniques, including output-based statistical tests, benchmark evaluations, and log probability analysis, under various realistic attack scenarios like model quantization, randomized substitution, and benchmark evasion. Our findings reveal the limitations of methods relying solely on text outputs, especially against subtle or adaptive attacks. While log probability analysis offers stronger guarantees when available, its accessibility is often limited. We conclude by discussing the potential of hardware-based solutions like Trusted Execution Environments (TEEs) as a pathway towards provable model integrity, highlighting the trade-offs between security, performance, and provider adoption. Code is available at https://github.com/sunblaze-ucb/llm-api-audit
SkipDecode: Autoregressive Skip Decoding with Batching and Caching for Efficient LLM Inference
Autoregressive large language models (LLMs) have made remarkable progress in various natural language generation tasks. However, they incur high computation cost and latency resulting from the autoregressive token-by-token generation. To address this issue, several approaches have been proposed to reduce computational cost using early-exit strategies. These strategies enable faster text generation using reduced computation without applying the full computation graph to each token. While existing token-level early exit methods show promising results for online inference, they cannot be readily applied for batch inferencing and Key-Value caching. This is because they have to wait until the last token in a batch exits before they can stop computing. This severely limits the practical application of such techniques. In this paper, we propose a simple and effective token-level early exit method, SkipDecode, designed to work seamlessly with batch inferencing and KV caching. It overcomes prior constraints by setting up a singular exit point for every token in a batch at each sequence position. It also guarantees a monotonic decrease in exit points, thereby eliminating the need to recompute KV Caches for preceding tokens. Rather than terminating computation prematurely as in prior works, our approach bypasses lower to middle layers, devoting most of the computational resources to upper layers, allowing later tokens to benefit from the compute expenditure by earlier tokens. Our experimental results show that SkipDecode can obtain 2x to 5x inference speedups with negligible regression across a variety of tasks. This is achieved using OPT models of 1.3 billion and 6.7 billion parameters, all the while being directly compatible with batching and KV caching optimization techniques.
Between words and characters: A Brief History of Open-Vocabulary Modeling and Tokenization in NLP
What are the units of text that we want to model? From bytes to multi-word expressions, text can be analyzed and generated at many granularities. Until recently, most natural language processing (NLP) models operated over words, treating those as discrete and atomic tokens, but starting with byte-pair encoding (BPE), subword-based approaches have become dominant in many areas, enabling small vocabularies while still allowing for fast inference. Is the end of the road character-level model or byte-level processing? In this survey, we connect several lines of work from the pre-neural and neural era, by showing how hybrid approaches of words and characters as well as subword-based approaches based on learned segmentation have been proposed and evaluated. We conclude that there is and likely will never be a silver bullet singular solution for all applications and that thinking seriously about tokenization remains important for many applications.
The Surprising Effectiveness of Membership Inference with Simple N-Gram Coverage
Membership inference attacks serves as useful tool for fair use of language models, such as detecting potential copyright infringement and auditing data leakage. However, many current state-of-the-art attacks require access to models' hidden states or probability distribution, which prevents investigation into more widely-used, API-access only models like GPT-4. In this work, we introduce N-Gram Coverage Attack, a membership inference attack that relies solely on text outputs from the target model, enabling attacks on completely black-box models. We leverage the observation that models are more likely to memorize and subsequently generate text patterns that were commonly observed in their training data. Specifically, to make a prediction on a candidate member, N-Gram Coverage Attack first obtains multiple model generations conditioned on a prefix of the candidate. It then uses n-gram overlap metrics to compute and aggregate the similarities of these outputs with the ground truth suffix; high similarities indicate likely membership. We first demonstrate on a diverse set of existing benchmarks that N-Gram Coverage Attack outperforms other black-box methods while also impressively achieving comparable or even better performance to state-of-the-art white-box attacks - despite having access to only text outputs. Interestingly, we find that the success rate of our method scales with the attack compute budget - as we increase the number of sequences generated from the target model conditioned on the prefix, attack performance tends to improve. Having verified the accuracy of our method, we use it to investigate previously unstudied closed OpenAI models on multiple domains. We find that more recent models, such as GPT-4o, exhibit increased robustness to membership inference, suggesting an evolving trend toward improved privacy protections.
Counting Ability of Large Language Models and Impact of Tokenization
Transformers, the backbone of modern large language models (LLMs), face inherent architectural limitations that impede their reasoning capabilities. Unlike recurrent networks, Transformers lack recurrent connections, confining them to constant-depth computation. This restriction places them in the complexity class TC^0, making them theoretically incapable of solving tasks that demand increasingly deep reasoning as input length grows. Counting, a fundamental component of many reasoning tasks, also requires reasoning depth to grow linearly to be performed inductively. While previous studies have established the upper limits of counting ability in Transformer-based expert models (i.e., models specifically trained for counting tasks), these findings do not directly extend to general-purpose LLMs due to differences in reasoning mechanisms. Recent work has highlighted how Chain of Thought (CoT) reasoning can help alleviate some of the architectural limitations of Transformers in counting tasks. However, little attention has been paid to the role of tokenization in these models. Unlike expert models that often use character-level tokenization, LLMs typically rely on byte-level (BPE) tokenizers, which fundamentally alters the way reasoning is processed. Our work investigates the impact of tokenization on the counting abilities of LLMs, uncovering substantial performance variations based on input tokenization differences. We provide both theoretical and experimental analyses, offering insights into how tokenization choices can undermine models' theoretical computability, thereby inspiring the design of new tokenization methods to enhance reasoning in LLMs.
HUNYUANPROVER: A Scalable Data Synthesis Framework and Guided Tree Search for Automated Theorem Proving
We introduce HunyuanProver, an language model finetuned from the Hunyuan 7B for interactive automatic theorem proving with LEAN4. To alleviate the data sparsity issue, we design a scalable framework to iterative synthesize data with low cost. Besides, guided tree search algorithms are designed to enable effective ``system 2 thinking`` of the prover. HunyuanProver achieves state-of-the-art (SOTA) performances on major benchmarks. Specifically, it achieves a pass of 68.4% on the miniF2F-test compared to 65.9%, the current SOTA results. It proves 4 IMO statements (imo_1960_p2, imo_1962_p2}, imo_1964_p2 and imo_1983_p6) in miniF2F-test. To benefit the community, we will open-source a dataset of 30k synthesized instances, where each instance contains the original question in natural language, the converted statement by autoformalization, and the proof by HunyuanProver.
AST-Probe: Recovering abstract syntax trees from hidden representations of pre-trained language models
The objective of pre-trained language models is to learn contextual representations of textual data. Pre-trained language models have become mainstream in natural language processing and code modeling. Using probes, a technique to study the linguistic properties of hidden vector spaces, previous works have shown that these pre-trained language models encode simple linguistic properties in their hidden representations. However, none of the previous work assessed whether these models encode the whole grammatical structure of a programming language. In this paper, we prove the existence of a syntactic subspace, lying in the hidden representations of pre-trained language models, which contain the syntactic information of the programming language. We show that this subspace can be extracted from the models' representations and define a novel probing method, the AST-Probe, that enables recovering the whole abstract syntax tree (AST) of an input code snippet. In our experimentations, we show that this syntactic subspace exists in five state-of-the-art pre-trained language models. In addition, we highlight that the middle layers of the models are the ones that encode most of the AST information. Finally, we estimate the optimal size of this syntactic subspace and show that its dimension is substantially lower than those of the models' representation spaces. This suggests that pre-trained language models use a small part of their representation spaces to encode syntactic information of the programming languages.
TokenVerse: Towards Unifying Speech and NLP Tasks via Transducer-based ASR
In traditional conversational intelligence from speech, a cascaded pipeline is used, involving tasks such as voice activity detection, diarization, transcription, and subsequent processing with different NLP models for tasks like semantic endpointing and named entity recognition (NER). Our paper introduces TokenVerse, a single Transducer-based model designed to handle multiple tasks. This is achieved by integrating task-specific tokens into the reference text during ASR model training, streamlining the inference and eliminating the need for separate NLP models. In addition to ASR, we conduct experiments on 3 different tasks: speaker change detection, endpointing, and NER. Our experiments on a public and a private dataset show that the proposed method improves ASR by up to 7.7% in relative WER while outperforming the cascaded pipeline approach in individual task performance. Our code is publicly available: https://github.com/idiap/tokenverse-unifying-speech-nlp
Proving Test Set Contamination in Black Box Language Models
Large language models are trained on vast amounts of internet data, prompting concerns and speculation that they have memorized public benchmarks. Going from speculation to proof of contamination is challenging, as the pretraining data used by proprietary models are often not publicly accessible. We show that it is possible to provide provable guarantees of test set contamination in language models without access to pretraining data or model weights. Our approach leverages the fact that when there is no data contamination, all orderings of an exchangeable benchmark should be equally likely. In contrast, the tendency for language models to memorize example order means that a contaminated language model will find certain canonical orderings to be much more likely than others. Our test flags potential contamination whenever the likelihood of a canonically ordered benchmark dataset is significantly higher than the likelihood after shuffling the examples. We demonstrate that our procedure is sensitive enough to reliably prove test set contamination in challenging situations, including models as small as 1.4 billion parameters, on small test sets of only 1000 examples, and datasets that appear only a few times in the pretraining corpus. Using our test, we audit five popular publicly accessible language models for test set contamination and find little evidence for pervasive contamination.
Incorporating Domain Knowledge into Materials Tokenization
While language models are increasingly utilized in materials science, typical models rely on frequency-centric tokenization methods originally developed for natural language processing. However, these methods frequently produce excessive fragmentation and semantic loss, failing to maintain the structural and semantic integrity of material concepts. To address this issue, we propose MATTER, a novel tokenization approach that integrates material knowledge into tokenization. Based on MatDetector trained on our materials knowledge base and a re-ranking method prioritizing material concepts in token merging, MATTER maintains the structural integrity of identified material concepts and prevents fragmentation during tokenization, ensuring their semantic meaning remains intact. The experimental results demonstrate that MATTER outperforms existing tokenization methods, achieving an average performance gain of 4% and 2% in the generation and classification tasks, respectively. These results underscore the importance of domain knowledge for tokenization strategies in scientific text processing. Our code is available at https://github.com/yerimoh/MATTER
If We May De-Presuppose: Robustly Verifying Claims through Presupposition-Free Question Decomposition
Prior work has shown that presupposition in generated questions can introduce unverified assumptions, leading to inconsistencies in claim verification. Additionally, prompt sensitivity remains a significant challenge for large language models (LLMs), resulting in performance variance as high as 3-6%. While recent advancements have reduced this gap, our study demonstrates that prompt sensitivity remains a persistent issue. To address this, we propose a structured and robust claim verification framework that reasons through presupposition-free, decomposed questions. Extensive experiments across multiple prompts, datasets, and LLMs reveal that even state-of-the-art models remain susceptible to prompt variance and presupposition. Our method consistently mitigates these issues, achieving up to a 2-5% improvement.
STAB: Speech Tokenizer Assessment Benchmark
Representing speech as discrete tokens provides a framework for transforming speech into a format that closely resembles text, thus enabling the use of speech as an input to the widely successful large language models (LLMs). Currently, while several speech tokenizers have been proposed, there is ambiguity regarding the properties that are desired from a tokenizer for specific downstream tasks and its overall generalizability. Evaluating the performance of tokenizers across different downstream tasks is a computationally intensive effort that poses challenges for scalability. To circumvent this requirement, we present STAB (Speech Tokenizer Assessment Benchmark), a systematic evaluation framework designed to assess speech tokenizers comprehensively and shed light on their inherent characteristics. This framework provides a deeper understanding of the underlying mechanisms of speech tokenization, thereby offering a valuable resource for expediting the advancement of future tokenizer models and enabling comparative analysis using a standardized benchmark. We evaluate the STAB metrics and correlate this with downstream task performance across a range of speech tasks and tokenizer choices.
Order-agnostic Identifier for Large Language Model-based Generative Recommendation
Leveraging Large Language Models (LLMs) for generative recommendation has attracted significant research interest, where item tokenization is a critical step. It involves assigning item identifiers for LLMs to encode user history and generate the next item. Existing approaches leverage either token-sequence identifiers, representing items as discrete token sequences, or single-token identifiers, using ID or semantic embeddings. Token-sequence identifiers face issues such as the local optima problem in beam search and low generation efficiency due to step-by-step generation. In contrast, single-token identifiers fail to capture rich semantics or encode Collaborative Filtering (CF) information, resulting in suboptimal performance. To address these issues, we propose two fundamental principles for item identifier design: 1) integrating both CF and semantic information to fully capture multi-dimensional item information, and 2) designing order-agnostic identifiers without token dependency, mitigating the local optima issue and achieving simultaneous generation for generation efficiency. Accordingly, we introduce a novel set identifier paradigm for LLM-based generative recommendation, representing each item as a set of order-agnostic tokens. To implement this paradigm, we propose SETRec, which leverages CF and semantic tokenizers to obtain order-agnostic multi-dimensional tokens. To eliminate token dependency, SETRec uses a sparse attention mask for user history encoding and a query-guided generation mechanism for simultaneous token generation. We instantiate SETRec on T5 and Qwen (from 1.5B to 7B). Extensive experiments demonstrate its effectiveness under various scenarios (e.g., full ranking, warm- and cold-start ranking, and various item popularity groups). Moreover, results validate SETRec's superior efficiency and show promising scalability on cold-start items as model sizes increase.
Token Highlighter: Inspecting and Mitigating Jailbreak Prompts for Large Language Models
Large Language Models (LLMs) are increasingly being integrated into services such as ChatGPT to provide responses to user queries. To mitigate potential harm and prevent misuse, there have been concerted efforts to align the LLMs with human values and legal compliance by incorporating various techniques, such as Reinforcement Learning from Human Feedback (RLHF), into the training of the LLMs. However, recent research has exposed that even aligned LLMs are susceptible to adversarial manipulations known as Jailbreak Attacks. To address this challenge, this paper proposes a method called Token Highlighter to inspect and mitigate the potential jailbreak threats in the user query. Token Highlighter introduced a concept called Affirmation Loss to measure the LLM's willingness to answer the user query. It then uses the gradient of Affirmation Loss for each token in the user query to locate the jailbreak-critical tokens. Further, Token Highlighter exploits our proposed Soft Removal technique to mitigate the jailbreak effects of critical tokens via shrinking their token embeddings. Experimental results on two aligned LLMs (LLaMA-2 and Vicuna-V1.5) demonstrate that the proposed method can effectively defend against a variety of Jailbreak Attacks while maintaining competent performance on benign questions of the AlpacaEval benchmark. In addition, Token Highlighter is a cost-effective and interpretable defense because it only needs to query the protected LLM once to compute the Affirmation Loss and can highlight the critical tokens upon refusal.
Fact-Checking the Output of Large Language Models via Token-Level Uncertainty Quantification
Large language models (LLMs) are notorious for hallucinating, i.e., producing erroneous claims in their output. Such hallucinations can be dangerous, as occasional factual inaccuracies in the generated text might be obscured by the rest of the output being generally factual, making it extremely hard for the users to spot them. Current services that leverage LLMs usually do not provide any means for detecting unreliable generations. Here, we aim to bridge this gap. In particular, we propose a novel fact-checking and hallucination detection pipeline based on token-level uncertainty quantification. Uncertainty scores leverage information encapsulated in the output of a neural network or its layers to detect unreliable predictions, and we show that they can be used to fact-check the atomic claims in the LLM output. Moreover, we present a novel token-level uncertainty quantification method that removes the impact of uncertainty about what claim to generate on the current step and what surface form to use. Our method Claim Conditioned Probability (CCP) measures only the uncertainty of particular claim value expressed by the model. Experiments on the task of biography generation demonstrate strong improvements for CCP compared to the baselines for six different LLMs and three languages. Human evaluation reveals that the fact-checking pipeline based on uncertainty quantification is competitive with a fact-checking tool that leverages external knowledge.
AttributionBench: How Hard is Automatic Attribution Evaluation?
Modern generative search engines enhance the reliability of large language model (LLM) responses by providing cited evidence. However, evaluating the answer's attribution, i.e., whether every claim within the generated responses is fully supported by its cited evidence, remains an open problem. This verification, traditionally dependent on costly human evaluation, underscores the urgent need for automatic attribution evaluation methods. To bridge the gap in the absence of standardized benchmarks for these methods, we present AttributionBench, a comprehensive benchmark compiled from various existing attribution datasets. Our extensive experiments on AttributionBench reveal the challenges of automatic attribution evaluation, even for state-of-the-art LLMs. Specifically, our findings show that even a fine-tuned GPT-3.5 only achieves around 80% macro-F1 under a binary classification formulation. A detailed analysis of more than 300 error cases indicates that a majority of failures stem from the model's inability to process nuanced information, and the discrepancy between the information the model has access to and that human annotators do.
TabFact: A Large-scale Dataset for Table-based Fact Verification
The problem of verifying whether a textual hypothesis holds based on the given evidence, also known as fact verification, plays an important role in the study of natural language understanding and semantic representation. However, existing studies are mainly restricted to dealing with unstructured evidence (e.g., natural language sentences and documents, news, etc), while verification under structured evidence, such as tables, graphs, and databases, remains under-explored. This paper specifically aims to study the fact verification given semi-structured data as evidence. To this end, we construct a large-scale dataset called TabFact with 16k Wikipedia tables as the evidence for 118k human-annotated natural language statements, which are labeled as either ENTAILED or REFUTED. TabFact is challenging since it involves both soft linguistic reasoning and hard symbolic reasoning. To address these reasoning challenges, we design two different models: Table-BERT and Latent Program Algorithm (LPA). Table-BERT leverages the state-of-the-art pre-trained language model to encode the linearized tables and statements into continuous vectors for verification. LPA parses statements into programs and executes them against the tables to obtain the returned binary value for verification. Both methods achieve similar accuracy but still lag far behind human performance. We also perform a comprehensive analysis to demonstrate great future opportunities. The data and code of the dataset are provided in https://github.com/wenhuchen/Table-Fact-Checking.
Language Model Tokenizers Introduce Unfairness Between Languages
Recent language models have shown impressive multilingual performance, even when not explicitly trained for it. Despite this, there are concerns about the quality of their outputs across different languages. In this paper, we show how disparity in the treatment of different languages arises at the tokenization stage, well before a model is even invoked. The same text translated into different languages can have drastically different tokenization lengths, with differences up to 15 times in some cases. These disparities persist even for tokenizers that are intentionally trained for multilingual support. Character-level and byte-level models also exhibit over 4 times the difference in the encoding length for some language pairs. This induces unfair treatment for some language communities in regard to the cost of accessing commercial language services, the processing time and latency, as well as the amount of content that can be provided as context to the models. Therefore, we make the case that we should train future language models using multilingually fair subword tokenizers.
Toward a Theory of Tokenization in LLMs
While there has been a large body of research attempting to circumvent tokenization for language modeling (Clark et al., 2022; Xue et al., 2022), the current consensus is that it is a necessary initial step for designing state-of-the-art performant language models. In this paper, we investigate tokenization from a theoretical point of view by studying the behavior of transformers on simple data generating processes. When trained on data drawn from certain simple k^{th}-order Markov processes for k > 1, transformers exhibit a surprising phenomenon - in the absence of tokenization, they empirically fail to learn the right distribution and predict characters according to a unigram model (Makkuva et al., 2024). With the addition of tokenization, however, we empirically observe that transformers break through this barrier and are able to model the probabilities of sequences drawn from the source near-optimally, achieving small cross-entropy loss. With this observation as starting point, we study the end-to-end cross-entropy loss achieved by transformers with and without tokenization. With the appropriate tokenization, we show that even the simplest unigram models (over tokens) learnt by transformers are able to model the probability of sequences drawn from k^{th}-order Markov sources near optimally. Our analysis provides a justification for the use of tokenization in practice through studying the behavior of transformers on Markovian data.
Next Token Prediction Towards Multimodal Intelligence: A Comprehensive Survey
Building on the foundations of language modeling in natural language processing, Next Token Prediction (NTP) has evolved into a versatile training objective for machine learning tasks across various modalities, achieving considerable success. As Large Language Models (LLMs) have advanced to unify understanding and generation tasks within the textual modality, recent research has shown that tasks from different modalities can also be effectively encapsulated within the NTP framework, transforming the multimodal information into tokens and predict the next one given the context. This survey introduces a comprehensive taxonomy that unifies both understanding and generation within multimodal learning through the lens of NTP. The proposed taxonomy covers five key aspects: Multimodal tokenization, MMNTP model architectures, unified task representation, datasets \& evaluation, and open challenges. This new taxonomy aims to aid researchers in their exploration of multimodal intelligence. An associated GitHub repository collecting the latest papers and repos is available at https://github.com/LMM101/Awesome-Multimodal-Next-Token-Prediction
Let's Think Dot by Dot: Hidden Computation in Transformer Language Models
Chain-of-thought responses from language models improve performance across most benchmarks. However, it remains unclear to what extent these performance gains can be attributed to human-like task decomposition or simply the greater computation that additional tokens allow. We show that transformers can use meaningless filler tokens (e.g., '......') in place of a chain of thought to solve two hard algorithmic tasks they could not solve when responding without intermediate tokens. However, we find empirically that learning to use filler tokens is difficult and requires specific, dense supervision to converge. We also provide a theoretical characterization of the class of problems where filler tokens are useful in terms of the quantifier depth of a first-order formula. For problems satisfying this characterization, chain-of-thought tokens need not provide information about the intermediate computational steps involved in multi-token computations. In summary, our results show that additional tokens can provide computational benefits independent of token choice. The fact that intermediate tokens can act as filler tokens raises concerns about large language models engaging in unauditable, hidden computations that are increasingly detached from the observed chain-of-thought tokens.
A Multi-dimensional Evaluation of Tokenizer-free Multilingual Pretrained Models
Recent work on tokenizer-free multilingual pretrained models show promising results in improving cross-lingual transfer and reducing engineering overhead (Clark et al., 2022; Xue et al., 2022). However, these works mainly focus on reporting accuracy on a limited set of tasks and data settings, placing less emphasis on other important factors when tuning and deploying the models in practice, such as memory usage, inference speed, and fine-tuning data robustness. We attempt to fill this gap by performing a comprehensive empirical comparison of multilingual tokenizer-free and subword-based models considering these various dimensions. Surprisingly, we find that subword-based models might still be the most practical choice in many settings, achieving better performance for lower inference latency and memory usage. Based on these results, we encourage future work in tokenizer-free methods to consider these factors when designing and evaluating new models.
Analyzing Cognitive Plausibility of Subword Tokenization
Subword tokenization has become the de-facto standard for tokenization, although comparative evaluations of subword vocabulary quality across languages are scarce. Existing evaluation studies focus on the effect of a tokenization algorithm on the performance in downstream tasks, or on engineering criteria such as the compression rate. We present a new evaluation paradigm that focuses on the cognitive plausibility of subword tokenization. We analyze the correlation of the tokenizer output with the response time and accuracy of human performance on a lexical decision task. We compare three tokenization algorithms across several languages and vocabulary sizes. Our results indicate that the UnigramLM algorithm yields less cognitively plausible tokenization behavior and a worse coverage of derivational morphemes, in contrast with prior work.
Token Turing Machines
We propose Token Turing Machines (TTM), a sequential, autoregressive Transformer model with memory for real-world sequential visual understanding. Our model is inspired by the seminal Neural Turing Machine, and has an external memory consisting of a set of tokens which summarise the previous history (i.e., frames). This memory is efficiently addressed, read and written using a Transformer as the processing unit/controller at each step. The model's memory module ensures that a new observation will only be processed with the contents of the memory (and not the entire history), meaning that it can efficiently process long sequences with a bounded computational cost at each step. We show that TTM outperforms other alternatives, such as other Transformer models designed for long sequences and recurrent neural networks, on two real-world sequential visual understanding tasks: online temporal activity detection from videos and vision-based robot action policy learning. Code is publicly available at: https://github.com/google-research/scenic/tree/main/scenic/projects/token_turing
VerifiNER: Verification-augmented NER via Knowledge-grounded Reasoning with Large Language Models
Recent approaches in domain-specific named entity recognition (NER), such as biomedical NER, have shown remarkable advances. However, they still lack of faithfulness, producing erroneous predictions. We assume that knowledge of entities can be useful in verifying the correctness of the predictions. Despite the usefulness of knowledge, resolving such errors with knowledge is nontrivial, since the knowledge itself does not directly indicate the ground-truth label. To this end, we propose VerifiNER, a post-hoc verification framework that identifies errors from existing NER methods using knowledge and revises them into more faithful predictions. Our framework leverages the reasoning abilities of large language models to adequately ground on knowledge and the contextual information in the verification process. We validate effectiveness of VerifiNER through extensive experiments on biomedical datasets. The results suggest that VerifiNER can successfully verify errors from existing models as a model-agnostic approach. Further analyses on out-of-domain and low-resource settings show the usefulness of VerifiNER on real-world applications.
Deep Biaffine Attention for Neural Dependency Parsing
This paper builds off recent work from Kiperwasser & Goldberg (2016) using neural attention in a simple graph-based dependency parser. We use a larger but more thoroughly regularized parser than other recent BiLSTM-based approaches, with biaffine classifiers to predict arcs and labels. Our parser gets state of the art or near state of the art performance on standard treebanks for six different languages, achieving 95.7% UAS and 94.1% LAS on the most popular English PTB dataset. This makes it the highest-performing graph-based parser on this benchmark---outperforming Kiperwasser Goldberg (2016) by 1.8% and 2.2%---and comparable to the highest performing transition-based parser (Kuncoro et al., 2016), which achieves 95.8% UAS and 94.6% LAS. We also show which hyperparameter choices had a significant effect on parsing accuracy, allowing us to achieve large gains over other graph-based approaches.
TokenSelect: Efficient Long-Context Inference and Length Extrapolation for LLMs via Dynamic Token-Level KV Cache Selection
With the development of large language models (LLMs), the ability to handle longer contexts has become a key capability for Web applications such as cross-document understanding and LLM-powered search systems. However, this progress faces two major challenges: performance degradation due to sequence lengths out-of-distribution, and excessively long inference times caused by the quadratic computational complexity of attention. These issues hinder the application of LLMs in long-context scenarios. In this paper, we propose Dynamic Token-Level KV Cache Selection (TokenSelect), a model-agnostic, training-free method for efficient and accurate long-context inference. TokenSelect builds upon the observation of non-contiguous attention sparsity, using Query-Key dot products to measure per-head KV Cache criticality at token-level. By per-head soft voting mechanism, TokenSelect selectively involves a small number of critical KV cache tokens in the attention calculation without sacrificing accuracy. To further accelerate TokenSelect, we designed the Selection Cache based on observations of consecutive Query similarity and implemented efficient dot product kernel, significantly reducing the overhead of token selection. A comprehensive evaluation of TokenSelect demonstrates up to 23.84x speedup in attention computation and up to 2.28x acceleration in end-to-end latency, while providing superior performance compared to state-of-the-art long-context inference methods.
FactBench: A Dynamic Benchmark for In-the-Wild Language Model Factuality Evaluation
Language models (LMs) are widely used by an increasing number of users, underscoring the challenge of maintaining factuality across a broad range of topics. We first present VERIFY (Verification and Evidence RetrIeval for FactualitY evaluation), a pipeline to evaluate LMs' factuality in real-world user interactions. VERIFY considers the verifiability of LM-generated content and categorizes content units as supported, unsupported, or undecidable based on the retrieved evidence from the Web. Importantly, factuality judgment by VERIFY correlates better with human evaluations than existing methods. Using VERIFY, we identify "hallucination prompts" across diverse topics, i.e., those eliciting the highest rates of incorrect and inconclusive LM responses. These prompts form FactBench, a dataset of 1K prompts across 150 fine-grained topics. Our dataset captures emerging factuality challenges in real-world LM interactions and can be regularly updated with new prompts. We benchmark widely-used LMs from GPT, Gemini, and Llama3.1 family on FactBench, yielding the following key findings: (i) Proprietary models exhibit better factuality, with performance declining from Easy to Hard hallucination prompts. (ii) Llama3.1-405B-Instruct shows comparable or lower factual accuracy than Llama3.1-70B-Instruct across all evaluation methods due to its higher subjectivity that leads to more content labeled as undecidable. (iii) Gemini1.5-Pro shows a significantly higher refusal rate, with over-refusal in 25% of cases. Our code and data are publicly available at https://huggingface.co/spaces/launch/factbench.
Sparsity Meets Similarity: Leveraging Long-Tail Distribution for Dynamic Optimized Token Representation in Multimodal Large Language Models
Recently, multimodal large language models (MM-LLMs) have achieved significant success in various tasks, but their high computational costs limit widespread application. The main computational burden arises from processing concatenated text and visual tokens in the LLM layer, where input token length directly affects efficiency. Our analysis of visual tokens reveals that their similarity to the CLS token follows a long-tail distribution, with only a few showing high similarity. To address this, we propose a dynamic pruning algorithm that identifies the inflection point in the visual CLS token similarity curve, enabling effective trimming of visual markers to accelerate model performance. Additionally, we perform a second round of pruning in the LLM layer, filtering out low-correlation tokens through the interaction between visual and textual features. Experimental results demonstrate that our method achieves performance comparable to the original while utilizing only 22% of the original token quantity. Our source code will be made publicly available upon acceptance.
Parallel Decoding via Hidden Transfer for Lossless Large Language Model Acceleration
Large language models (LLMs) have recently shown remarkable performance across a wide range of tasks. However, the substantial number of parameters in LLMs contributes to significant latency during model inference. This is particularly evident when utilizing autoregressive decoding methods, which generate one token in a single forward process, thereby not fully capitalizing on the parallel computing capabilities of GPUs. In this paper, we propose a novel parallel decoding approach, namely hidden transfer, which decodes multiple successive tokens simultaneously in a single forward pass. The idea is to transfer the intermediate hidden states of the previous context to the pseudo hidden states of the future tokens to be generated, and then the pseudo hidden states will pass the following transformer layers thereby assimilating more semantic information and achieving superior predictive accuracy of the future tokens. Besides, we use the novel tree attention mechanism to simultaneously generate and verify multiple candidates of output sequences, which ensure the lossless generation and further improves the generation efficiency of our method. Experiments demonstrate the effectiveness of our method. We conduct a lot of analytic experiments to prove our motivation. In terms of acceleration metrics, we outperform all the single-model acceleration techniques, including Medusa and Self-Speculative decoding.
Knowledge-Augmented Language Model Verification
Recent Language Models (LMs) have shown impressive capabilities in generating texts with the knowledge internalized in parameters. Yet, LMs often generate the factually incorrect responses to the given queries, since their knowledge may be inaccurate, incomplete, and outdated. To address this problem, previous works propose to augment LMs with the knowledge retrieved from an external knowledge source. However, such approaches often show suboptimal text generation performance due to two reasons: 1) the model may fail to retrieve the knowledge relevant to the given query, or 2) the model may not faithfully reflect the retrieved knowledge in the generated text. To overcome these, we propose to verify the output and the knowledge of the knowledge-augmented LMs with a separate verifier, which is a small LM that is trained to detect those two types of errors through instruction-finetuning. Then, when the verifier recognizes an error, we can rectify it by either retrieving new knowledge or generating new text. Further, we use an ensemble of the outputs from different instructions with a single verifier to enhance the reliability of the verification processes. We validate the effectiveness of the proposed verification steps on multiple question answering benchmarks, whose results show that the proposed verifier effectively identifies retrieval and generation errors, allowing LMs to provide more factually correct outputs. Our code is available at https://github.com/JinheonBaek/KALMV.
CODEPROMPTZIP: Code-specific Prompt Compression for Retrieval-Augmented Generation in Coding Tasks with LMs
Retrieval-Augmented Generation (RAG) enhances coding tasks by incorporating retrieved code examples into prompts. However, lengthy prompts, often exceeding tens of thousands of tokens, introduce challenges related to limited context windows of language models (LMs) and high computational costs. Existing prompt compression techniques focus on natural language, lacking tailored solutions for code. To address the gap, we propose CodePromptZip, a framework that compresses code examples before integrating into RAG workflows. Our framework employs a type-aware, priority-driven strategy to construct training samples for training code compression model. By using program analysis, we identify token types (e.g., Identifier) and perform ablation analysis to rank their removal priorities based on their impact on task performance. We then train a small LM as the compressor on these samples, enabling flexible compression conditioned on specified ratios while minimizing performance degradation. Specially, the compressor is augmented with a copy mechanism, allowing tokens to be directly copied from the original code snippets. Evaluation results show that CodePromptZip surpasses SOTA entropy-based and distillation-based baselines, improving by 23.4%, 28.7%, and 8.7% over the best baseline for Assertion Generation, Bugs2Fix, and Code Suggestion, respectively.
Supervised Graph Contrastive Pretraining for Text Classification
Contrastive pretraining techniques for text classification has been largely studied in an unsupervised setting. However, oftentimes labeled data from related tasks which share label semantics with current task is available. We hypothesize that using this labeled data effectively can lead to better generalization on current task. In this paper, we propose a novel way to effectively utilize labeled data from related tasks with a graph based supervised contrastive learning approach. We formulate a token-graph by extrapolating the supervised information from examples to tokens. Our formulation results in an embedding space where tokens with high/low probability of belonging to same class are near/further-away from one another. We also develop detailed theoretical insights which serve as a motivation for our method. In our experiments with 13 datasets, we show our method outperforms pretraining schemes by 2.5% and also example-level contrastive learning based formulation by 1.8% on average. In addition, we show cross-domain effectiveness of our method in a zero-shot setting by 3.91% on average. Lastly, we also demonstrate our method can be used as a noisy teacher in a knowledge distillation setting to significantly improve performance of transformer based models in low labeled data regime by 4.57% on average.
Parameter-Efficient Transformer Embeddings
Embedding layers in transformer-based NLP models typically account for the largest share of model parameters, scaling with vocabulary size but not yielding performance gains proportional to scale. We propose an alternative approach in which token embedding vectors are first generated deterministically, directly from the token IDs using a Fourier expansion of their normalized values, followed by a lightweight multilayer perceptron (MLP) that captures higher-order interactions. We train standard transformers and our architecture on natural language inference tasks (SNLI and MNLI), and evaluate zero-shot performance on sentence textual similarity (STS-B). Our results demonstrate that the proposed method achieves competitive performance using significantly fewer parameters, trains faster, and operates effectively without the need for dropout. This proof-of-concept study highlights the potential for scalable, memory-efficient language models and motivates further large-scale experimentation based on our findings.
Dafny as Verification-Aware Intermediate Language for Code Generation
Using large language models (LLMs) to generate source code from natural language prompts is a popular and promising idea with a wide range of applications. One of its limitations is that the generated code can be faulty at times, often in a subtle way, despite being presented to the user as correct. In this paper, we explore ways in which formal methods can assist with increasing the quality of code generated by an LLM. Instead of emitting code in a target language directly, we propose that the user guides the LLM to first generate an opaque intermediate representation, in the verification-aware language Dafny, that can be automatically validated for correctness against agreed on specifications. The correct Dafny program is then compiled to the target language and returned to the user. All user-system interactions throughout the procedure occur via natural language; Dafny code is never exposed. We describe our current prototype and report on its performance on the HumanEval Python code generation benchmarks.
Don't Classify, Translate: Multi-Level E-Commerce Product Categorization Via Machine Translation
E-commerce platforms categorize their products into a multi-level taxonomy tree with thousands of leaf categories. Conventional methods for product categorization are typically based on machine learning classification algorithms. These algorithms take product information as input (e.g., titles and descriptions) to classify a product into a leaf category. In this paper, we propose a new paradigm based on machine translation. In our approach, we translate a product's natural language description into a sequence of tokens representing a root-to-leaf path in a product taxonomy. In our experiments on two large real-world datasets, we show that our approach achieves better predictive accuracy than a state-of-the-art classification system for product categorization. In addition, we demonstrate that our machine translation models can propose meaningful new paths between previously unconnected nodes in a taxonomy tree, thereby transforming the taxonomy into a directed acyclic graph (DAG). We discuss how the resultant taxonomy DAG promotes user-friendly navigation, and how it is more adaptable to new products.
Information Flow Routes: Automatically Interpreting Language Models at Scale
Information flows by routes inside the network via mechanisms implemented in the model. These routes can be represented as graphs where nodes correspond to token representations and edges to operations inside the network. We automatically build these graphs in a top-down manner, for each prediction leaving only the most important nodes and edges. In contrast to the existing workflows relying on activation patching, we do this through attribution: this allows us to efficiently uncover existing circuits with just a single forward pass. Additionally, the applicability of our method is far beyond patching: we do not need a human to carefully design prediction templates, and we can extract information flow routes for any prediction (not just the ones among the allowed templates). As a result, we can talk about model behavior in general, for specific types of predictions, or different domains. We experiment with Llama 2 and show that the role of some attention heads is overall important, e.g. previous token heads and subword merging heads. Next, we find similarities in Llama 2 behavior when handling tokens of the same part of speech. Finally, we show that some model components can be specialized on domains such as coding or multilingual texts.
LLM-Microscope: Uncovering the Hidden Role of Punctuation in Context Memory of Transformers
We introduce methods to quantify how Large Language Models (LLMs) encode and store contextual information, revealing that tokens often seen as minor (e.g., determiners, punctuation) carry surprisingly high context. Notably, removing these tokens -- especially stopwords, articles, and commas -- consistently degrades performance on MMLU and BABILong-4k, even if removing only irrelevant tokens. Our analysis also shows a strong correlation between contextualization and linearity, where linearity measures how closely the transformation from one layer's embeddings to the next can be approximated by a single linear mapping. These findings underscore the hidden importance of filler tokens in maintaining context. For further exploration, we present LLM-Microscope, an open-source toolkit that assesses token-level nonlinearity, evaluates contextual memory, visualizes intermediate layer contributions (via an adapted Logit Lens), and measures the intrinsic dimensionality of representations. This toolkit illuminates how seemingly trivial tokens can be critical for long-range understanding.
HYPEROFA: Expanding LLM Vocabulary to New Languages via Hypernetwork-Based Embedding Initialization
Many pre-trained language models (PLMs) exhibit suboptimal performance on mid- and low-resource languages, largely due to limited exposure to these languages during pre-training. A common strategy to address this is to introduce new tokens specific to the target languages, initialize their embeddings, and apply continual pre-training on target-language data. Among such methods, OFA (Liu et al., 2024a) proposes a similarity-based subword embedding initialization heuristic that is both effective and efficient. However, OFA restricts target-language token embeddings to be convex combinations of a fixed number of source-language embeddings, which may limit expressiveness. To overcome this limitation, we propose HYPEROFA, a hypernetwork-based approach for more adaptive token embedding initialization. The hypernetwork is trained to map from an external multilingual word vector space to the PLMs token embedding space using source-language tokens. Once trained, it can generate flexible embeddings for target-language tokens, serving as a good starting point for continual pretraining. Experiments demonstrate that HYPEROFA consistently outperforms random initialization baseline and matches or exceeds the performance of OFA in both continual pre-training convergence and downstream task performance. We make the code publicly available.
