new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 3

One-connection rule for structural equation models

Linear structural equation models are multivariate statistical models encoded by mixed graphs. In particular, the set of covariance matrices for distributions belonging to a linear structural equation model for a fixed mixed graph G=(V, D,B) is parameterized by a rational function with parameters for each vertex and edge in G. This rational parametrization naturally allows for the study of these models from an algebraic and combinatorial point of view. Indeed, this point of view has led to a collection of results in the literature, mainly focusing on questions related to identifiability and determining relationships between covariances (i.e., finding polynomials in the Gaussian vanishing ideal). So far, a large proportion of these results has focused on the case when D, the directed part of the mixed graph G, is acyclic. This is due to the fact that in the acyclic case, the parametrization becomes polynomial and there is a description of the entries of the covariance matrices in terms of a finite sum. We move beyond the acyclic case and give a closed form expression for the entries of the covariance matrices in terms of the one-connections in a graph obtained from D through some small operations. This closed form expression then allows us to show that if G is simple, then the parametrization map is generically finite-to-one. Finally, having a closed form expression for the covariance matrices allows for the development of an algorithm for systematically exploring possible polynomials in the Gaussian vanishing ideal.

  • 4 authors
·
Oct 1, 2022

A catalog of ringed galaxies in the TNG50 simulation: Analysis of their properties and structure

The catalog of ringed galaxies was compiled through visual classification of synthetic images from the TNG50 simulation. Galaxies were selected based on specific criteria: a redshift range of 0.01 < z < 0.1, stellar mass M_star >10^9 M_odot, stellar half-mass radius r_{50} > 1 kpc, and specific star formation rate (sSFR), log(sSFR/yr^{-1}) > -13. Our classification allowed for differentiation between inner rings, outer rings, combinations of rings, and partial rings (pseudo-rings), including barred and non-barred ringed galaxies. We constructed a control sample of non-ringed galaxies with similar redshift, stellar mass, and environmental density distributions. We identified 807 ringed galaxies. Approximately 59% possess an inner ring, 22% a partial ring, 12% an outer ring, and 7% have i+o rings. Our statistical analysis reveals that 64% (507 galaxies) exhibit bars. Ringed galaxies exhibit lower efficiency for star formation, reduced gas fractions, redder colors, and higher metallicities compared to non-ringed disk objects. They also show greater variability in metallicity for a given stellar mass. From the analysis of radial profiles, galaxies with outer rings exhibit a r_{50} similar to or slightly larger than their control group, while those with inner or partial rings tend to have smaller sizes. A deeper exploration of radial density profiles revealed a pronounced central mass deficit preceding the ring structures, with inner and outer rings located at r_{50} and 1.5 , r_{50}, respectively. Galaxies with both i+o rings have inner rings that are more compact and massive. Additionally, galaxies with partial rings exhibit deeper mass profiles than their controls, particularly in central areas. These findings improve our understanding of galactic evolution and the complex interplay between mass distribution and morphology.

  • 4 authors
·
Nov 23, 2024

Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution

Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.

Categorical semiotics: Foundations for Knowledge Integration

The integration of knowledge extracted from diverse models, whether described by domain experts or generated by machine learning algorithms, has historically been challenged by the absence of a suitable framework for specifying and integrating structures, learning processes, data transformations, and data models or rules. In this work, we extend algebraic specification methods to address these challenges within such a framework. In our work, we tackle the challenging task of developing a comprehensive framework for defining and analyzing deep learning architectures. We believe that previous efforts have fallen short by failing to establish a clear connection between the constraints a model must adhere to and its actual implementation. Our methodology employs graphical structures that resemble Ehresmann's sketches, interpreted within a universe of fuzzy sets. This approach offers a unified theory that elegantly encompasses both deterministic and non-deterministic neural network designs. Furthermore, we highlight how this theory naturally incorporates fundamental concepts from computer science and automata theory. Our extended algebraic specification framework, grounded in graphical structures akin to Ehresmann's sketches, offers a promising solution for integrating knowledge across disparate models and domains. By bridging the gap between domain-specific expertise and machine-generated insights, we pave the way for more comprehensive, collaborative, and effective approaches to knowledge integration and modeling.

  • 1 authors
·
Apr 1, 2024