new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 3

BAM! Just Like That: Simple and Efficient Parameter Upcycling for Mixture of Experts

The Mixture of Experts (MoE) framework has become a popular architecture for large language models due to its superior performance over dense models. However, training MoEs from scratch in a large-scale regime is prohibitively expensive. Existing methods mitigate this by pre-training multiple dense expert models independently and using them to initialize an MoE. This is done by using experts' feed-forward network (FFN) to initialize the MoE's experts while merging other parameters. However, this method limits the reuse of dense model parameters to only the FFN layers, thereby constraining the advantages when "upcycling" these models into MoEs. We propose BAM (Branch-Attend-Mix), a simple yet effective method that addresses this shortcoming. BAM makes full use of specialized dense models by not only using their FFN to initialize the MoE layers but also leveraging experts' attention parameters fully by initializing them into a soft-variant of Mixture of Attention (MoA) layers. We explore two methods for upcycling attention parameters: 1) initializing separate attention experts from dense models including all attention parameters for the best model performance; and 2) sharing key and value parameters across all experts to facilitate for better inference efficiency. To further improve efficiency, we adopt a parallel attention transformer architecture to MoEs, which allows the attention experts and FFN experts to be computed concurrently. Our experiments on seed models ranging from 590 million to 2 billion parameters demonstrate that BAM surpasses baselines in both perplexity and downstream task performance, within the same computational and data constraints.

  • 11 authors
·
Aug 15, 2024 3

Little By Little: Continual Learning via Self-Activated Sparse Mixture-of-Rank Adaptive Learning

Continual learning (CL) with large pre-trained models is challenged by catastrophic forgetting and task interference. Existing LoRA-based Mixture-of-Experts (MoE) approaches mitigate forgetting by assigning and freezing task-specific adapters, but suffer from interference, redundancy, and ambiguous routing due to coarse adapter-level selection. However, this design introduces three key challenges: 1) Interference: Activating full LoRA experts per input leads to subspace interference and prevents selective reuse of useful components across tasks. 2) Redundancy: Newly added experts often duplicate or contradict existing knowledge due to unnecessary activation of unrelated ranks and insufficient reuse of relevant ones. 3) Ambiguity: Overlapping features across tasks confuse the router, resulting in unstable expert assignments. As more experts accumulate, earlier task routing degrades, accelerating forgetting. We propose MoRA, a Mixture-of-Rank Adaptive learning approach with self-activated and sparse rank activation for CL. Unlike mixing multiple low-rank matrices, MoRA decomposes each rank-r update into r rank-1 components, each treated as an independent expert, enabling fine-grained mixture of rank-1 expert utilization while mitigating interference and redundancy. To avoid ambiguous routing, we propose that each rank-1 expert can infer its own relevance via intermediate activations. Coupled with our proposed rank pruning and activation budgets, MoRA adaptively selects a sparse mixture of ranks per input. We validate MoRA on continual learning tasks with CLIP and large language models (LLMs), analyzing both in-domain learning and out-of-domain forgetting/generalization during fine-tuning. MoRA shows significant effectiveness on enhancing CL with PTMs, and improving generalization while mitigating forgetting.

  • 6 authors
·
Jun 26

ElasticMoE: An Efficient Auto Scaling Method for Mixture-of-Experts Models

Mixture-of-Experts (MoE) models promise efficient scaling of large language models (LLMs) by activating only a small subset of experts per token, but their parallelized inference pipelines make elastic serving challenging. Existing strategies fall short: horizontal scaling provisions entire replicas of the current configuration, often tens to hundreds of accelerators, leading to coarse granularity, long provisioning delays, and costly overprovisioning. Vertical scaling offers finer adjustments but typically requires instance restarts, incurring downtime. These limitations make current approaches ill-suited for the bursty, short-lived traffic patterns common in cloud deployments. We present ElasticMoE, an elastic scaling framework for MoE LLMs that achieves fine-grained, low-latency, and zero-downtime scaling. ElasticMoE decouples inference execution from memory operations, enabling scaling steps to proceed concurrently with serving. An HBM Management Module (HMM) reuses weights and KV caches via zero-copy remapping, while high-bandwidth peer-to-peer transfers bring newly added accelerators online without interrupting service. A virtual memory based expert redistribution mechanism migrates MoE experts without costly buffer reallocations, reducing peak memory usage during expert parallelism reconfiguration. Our evaluation on Ascend NPUs with three popular MoE LLMs shows that ElasticMoE achieves up to 9x lower scale-up latency, up to 2x better throughput during scaling, and significantly improves SLO attainment compared to baselines. By enabling fine-grained, concurrent scaling with minimal disruption, ElasticMoE advances the practicality of deploying massive MoE LLMs in dynamic cloud environments.

  • 10 authors
·
Oct 2

VITA-VLA: Efficiently Teaching Vision-Language Models to Act via Action Expert Distillation

Vision-Language Action (VLA) models significantly advance robotic manipulation by leveraging the strong perception capabilities of pretrained vision-language models (VLMs). By integrating action modules into these pretrained models, VLA methods exhibit improved generalization. However, training them from scratch is costly. In this work, we propose a simple yet effective distillation-based framework that equips VLMs with action-execution capability by transferring knowledge from pretrained small action models. Our architecture retains the original VLM structure, adding only an action token and a state encoder to incorporate physical inputs. To distill action knowledge, we adopt a two-stage training strategy. First, we perform lightweight alignment by mapping VLM hidden states into the action space of the small action model, enabling effective reuse of its pretrained action decoder and avoiding expensive pretraining. Second, we selectively fine-tune the language model, state encoder, and action modules, enabling the system to integrate multimodal inputs with precise action generation. Specifically, the action token provides the VLM with a direct handle for predicting future actions, while the state encoder allows the model to incorporate robot dynamics not captured by vision alone. This design yields substantial efficiency gains over training large VLA models from scratch. Compared with previous state-of-the-art methods, our method achieves 97.3% average success rate on LIBERO (11.8% improvement) and 93.5% on LIBERO-LONG (24.5% improvement). In real-world experiments across five manipulation tasks, our method consistently outperforms the teacher model, achieving 82.0% success rate (17% improvement), which demonstrate that action distillation effectively enables VLMs to generate precise actions while substantially reducing training costs.

  • 15 authors
·
Oct 10

Efficient Diffusion Transformer Policies with Mixture of Expert Denoisers for Multitask Learning

Diffusion Policies have become widely used in Imitation Learning, offering several appealing properties, such as generating multimodal and discontinuous behavior. As models are becoming larger to capture more complex capabilities, their computational demands increase, as shown by recent scaling laws. Therefore, continuing with the current architectures will present a computational roadblock. To address this gap, we propose Mixture-of-Denoising Experts (MoDE) as a novel policy for Imitation Learning. MoDE surpasses current state-of-the-art Transformer-based Diffusion Policies while enabling parameter-efficient scaling through sparse experts and noise-conditioned routing, reducing both active parameters by 40% and inference costs by 90% via expert caching. Our architecture combines this efficient scaling with noise-conditioned self-attention mechanism, enabling more effective denoising across different noise levels. MoDE achieves state-of-the-art performance on 134 tasks in four established imitation learning benchmarks (CALVIN and LIBERO). Notably, by pretraining MoDE on diverse robotics data, we achieve 4.01 on CALVIN ABC and 0.95 on LIBERO-90. It surpasses both CNN-based and Transformer Diffusion Policies by an average of 57% across 4 benchmarks, while using 90% fewer FLOPs and fewer active parameters compared to default Diffusion Transformer architectures. Furthermore, we conduct comprehensive ablations on MoDE's components, providing insights for designing efficient and scalable Transformer architectures for Diffusion Policies. Code and demonstrations are available at https://mbreuss.github.io/MoDE_Diffusion_Policy/.

  • 4 authors
·
Dec 17, 2024 2

Harder Tasks Need More Experts: Dynamic Routing in MoE Models

In this paper, we introduce a novel dynamic expert selection framework for Mixture of Experts (MoE) models, aiming to enhance computational efficiency and model performance by adjusting the number of activated experts based on input difficulty. Unlike traditional MoE approaches that rely on fixed Top-K routing, which activates a predetermined number of experts regardless of the input's complexity, our method dynamically selects experts based on the confidence level in expert selection for each input. This allows for a more efficient utilization of computational resources, activating more experts for complex tasks requiring advanced reasoning and fewer for simpler tasks. Through extensive evaluations, our dynamic routing method demonstrates substantial improvements over conventional Top-2 routing across various benchmarks, achieving an average improvement of 0.7% with less than 90% activated parameters. Further analysis shows our model dispatches more experts to tasks requiring complex reasoning skills, like BBH, confirming its ability to dynamically allocate computational resources in alignment with the input's complexity. Our findings also highlight a variation in the number of experts needed across different layers of the transformer model, offering insights into the potential for designing heterogeneous MoE frameworks. The code and models are available at https://github.com/ZhenweiAn/Dynamic_MoE.

  • 11 authors
·
Mar 12, 2024

Efficiently Editing Mixture-of-Experts Models with Compressed Experts

Mixture-of-Experts (MoE) models have become a key approach for scaling large language models efficiently by activating only a subset of experts during training and inference. Typically, the number of activated experts presents a trade-off: fewer experts reduce computational costs, while more experts improve performance. Recent studies reveal that not all activated experts contribute equally to model performance, with some providing minimal utility, particularly when finetuning pretrained MoE models for specialized downstream tasks. The co-existence of significant and redundant parameters in experts provides us an opportunity to reduce the number of activated experts while maintaining model performance. In this work, we propose the concept of compressed experts, lightweight modules that serve as compact representations of full experts. Our approach preserves the most important experts while replacing other auxiliary activated experts with compressed experts. The reduction of active parameters significantly lowers inference costs while achieving comparable performance. Extensive experiments on models including Phi-MoE and OLMoE demonstrate that compressed experts recover over 90% of full expert performance across various tasks while reducing more than 30% active parameters and saving 20% in inference costs. This approach enables efficient deployment of MoE models in resource-constrained settings and facilitates scaling to larger models with manageable overhead. Our code is available at https://github.com/yifei-he/Compressed-Experts.

  • 4 authors
·
Mar 1

Chain-of-Experts: Unlocking the Communication Power of Mixture-of-Experts Models

We propose Chain-of-Experts (CoE), a new Mixture-of-Experts (MoE) architecture that introduces sequential expert communication within each layer. Unlike traditional MoE models, where experts operate independently in parallel, CoE processes tokens iteratively across a chain of experts inside a layer. To support dynamic expert selection across iterations, CoE employs a dedicated router at each iteration step within a layer. This design allows tokens to re-evaluate and select different experts during each iteration, rather than being statically assigned. As a result, CoE introduces a flexible routing mechanism that increases the diversity of expert combinations and enriches the model's representational capacity. CoE demonstrates improved performance under fixed compute: on math reasoning tasks, it reduces validation loss from 1.20 to 1.12 compared to a standard MoE. Beyond performance, CoE offers a new scaling axis: depth through expert iteration, which complements conventional width/depth scaling. For example, using 2x iterations matches the performance of 3x expert selections (in width), while reducing memory usage by 17.6-42% relative to other scaling strategies. Our analysis reveals that CoE's benefits stem from its iterative residual structure and enhanced expert specialization empowered by iterative routing, which together unlock more expressive representations. Code is available at https://github.com/ZihanWang314/coe.

X-LoRA: Mixture of Low-Rank Adapter Experts, a Flexible Framework for Large Language Models with Applications in Protein Mechanics and Design

We report a mixture of expert strategy to create fine-tuned large language models using a deep layer-wise token-level approach based on low-rank adaptation (LoRA). Starting with a set of pre-trained LoRA adapters, we propose a gating strategy that uses the hidden states to dynamically mix adapted layers, allowing the resulting X-LoRA model to draw upon different capabilities and create never-before-used deep layer-wise combinations of adaptations are established to solve specific tasks. The design is inspired by the biological principles of universality and diversity, where neural network building blocks are reused in different hierarchical manifestations. Hence, the X-LoRA model can be easily implemented for any existing large language model (LLM) without a need for modifications of the underlying structure. We develop a tailored X-LoRA model that offers scientific capabilities including forward/inverse analysis tasks and enhanced reasoning capability, focused on biomaterial analysis, protein mechanics and design. The impact of this work include access to readily expandable, adaptable and changeable models with strong domain knowledge and the capability to integrate across areas of knowledge. With the X-LoRA model featuring experts in biology, mathematics, reasoning, bio-inspired materials, mechanics and materials, chemistry, and protein mechanics we conduct a series of physics-focused case studies. We examine knowledge recall, protein mechanics forward/inverse tasks, protein design, and adversarial agentic modeling including ontological knowledge graphs. The model is capable not only of making quantitative predictions of nanomechanical properties of proteins, but also reasons over the results and correctly predicts likely mechanisms that explain distinct molecular behaviors.

  • 2 authors
·
Feb 11, 2024

Merge, Then Compress: Demystify Efficient SMoE with Hints from Its Routing Policy

Sparsely activated Mixture-of-Experts (SMoE) has shown promise to scale up the learning capacity of neural networks, however, they have issues like (a) High Memory Usage, due to duplication of the network layers into multiple copies as experts; and (b) Redundancy in Experts, as common learning-based routing policies suffer from representational collapse. Therefore, vanilla SMoE models are memory inefficient and non-scalable, especially for resource-constrained downstream scenarios. In this paper, we ask: Can we craft a compact SMoE model by consolidating expert information? What is the best recipe to merge multiple experts into fewer but more knowledgeable experts? Our pilot investigation reveals that conventional model merging methods fail to be effective in such expert merging for SMoE. The potential reasons are: (1) redundant information overshadows critical experts; (2) appropriate neuron permutation for each expert is missing to bring all of them in alignment. To address this, we propose M-SMoE, which leverages routing statistics to guide expert merging. Specifically, it starts with neuron permutation alignment for experts; then, dominant experts and their "group members" are formed; lastly, every expert group is merged into a single expert by utilizing each expert's activation frequency as their weight for merging, thus diminishing the impact of insignificant experts. Moreover, we observed that our proposed merging promotes a low dimensionality in the merged expert's weight space, naturally paving the way for additional compression. Hence, our final method, MC-SMoE (i.e., Merge, then Compress SMoE), further decomposes the merged experts into low-rank and structural sparse alternatives. Extensive experiments across 8 benchmarks validate the effectiveness of MC-SMoE. For instance, our MC-SMoE achieves up to 80% memory and a 20% FLOPs reduction, with virtually no loss in performance.

  • 7 authors
·
Oct 2, 2023

ExpertRAG: Efficient RAG with Mixture of Experts -- Optimizing Context Retrieval for Adaptive LLM Responses

ExpertRAG is a novel theoretical framework that integrates Mixture-of-Experts (MoE) architectures with Retrieval Augmented Generation (RAG) to advance the efficiency and accuracy of knowledge-intensive language modeling. We propose a dynamic retrieval gating mechanism coupled with expert routing, enabling the model to selectively consult an external knowledge store or rely on specialized internal experts based on the query's needs. The paper lays out the theoretical foundations of ExpertRAG, including a probabilistic formulation that treats retrieval and expert selection as latent decisions, and mathematical justifications for its efficiency in both computation and knowledge utilization. We derive formulae to quantify the expected computational cost savings from selective retrieval and the capacity gains from sparse expert utilization. A comparative analysis positions ExpertRAG against standard RAG (with always-on retrieval) and pure MoE models (e.g., Switch Transformer, Mixtral) to highlight its unique balance between parametric knowledge and non-parametric retrieval. We also outline an experimental validation strategy, proposing benchmarks and evaluation protocols to test ExpertRAG's performance on factual recall, generalization, and inference efficiency. The proposed framework, although presented theoretically, is supported by insights from prior work in RAG and MoE, and is poised to provide more factual, efficient, and adaptive generation by leveraging the best of both paradigms. In summary, ExpertRAG contributes a new perspective on scaling and augmenting language models, backed by a thorough analysis and a roadmap for empirical validation.

  • 1 authors
·
Mar 23

HoME: Hierarchy of Multi-Gate Experts for Multi-Task Learning at Kuaishou

In this paper, we present the practical problems and the lessons learned at short-video services from Kuaishou. In industry, a widely-used multi-task framework is the Mixture-of-Experts (MoE) paradigm, which always introduces some shared and specific experts for each task and then uses gate networks to measure related experts' contributions. Although the MoE achieves remarkable improvements, we still observe three anomalies that seriously affect model performances in our iteration: (1) Expert Collapse: We found that experts' output distributions are significantly different, and some experts have over 90% zero activations with ReLU, making it hard for gate networks to assign fair weights to balance experts. (2) Expert Degradation: Ideally, the shared-expert aims to provide predictive information for all tasks simultaneously. Nevertheless, we find that some shared-experts are occupied by only one task, which indicates that shared-experts lost their ability but degenerated into some specific-experts. (3) Expert Underfitting: In our services, we have dozens of behavior tasks that need to be predicted, but we find that some data-sparse prediction tasks tend to ignore their specific-experts and assign large weights to shared-experts. The reason might be that the shared-experts can perceive more gradient updates and knowledge from dense tasks, while specific-experts easily fall into underfitting due to their sparse behaviors. Motivated by those observations, we propose HoME to achieve a simple, efficient and balanced MoE system for multi-task learning.

  • 5 authors
·
Aug 10, 2024

Dropping Experts, Recombining Neurons: Retraining-Free Pruning for Sparse Mixture-of-Experts LLMs

Sparse Mixture-of-Experts (SMoE) architectures are widely used in large language models (LLMs) due to their computational efficiency. However, though only a few experts are activated for each token, SMoE still requires loading all expert parameters, leading to high memory usage and challenges in deployment. Previous work has tried to reduce the overhead by pruning and merging experts, but primarily focused on expert-level operations, leaving neuron-level structure underexplored. We propose DERN (Dropping Experts, Recombining Neurons), a task-agnostic and retraining-free framework for expert pruning and reconstruction. We observe that experts are often misaligned and contain semantic conflicts at the neuron level, which poses challenges for direct merging. To solve this, DERN works in three steps: it first prunes redundant experts using router statistics; then it decomposes them into neuron-level expert segments, assigning each segment to its most compatible retained expert; and finally, it merges segments within each retained expert to build a compact representation. Experiments on Mixtral, Qwen, and DeepSeek SMoE models show that DERN improves performance by more than 5% on commonsense reasoning and MMLU benchmarks under 50% expert sparsity, without extra training. It also greatly reduces the number of experts and memory usage, making SMoE LLMs easier to deploy in practice.

  • 9 authors
·
Sep 12

Unveiling Super Experts in Mixture-of-Experts Large Language Models

Sparsely activated Mixture-of-Experts (MoE) models have shown promise in enhancing the learning capacity of large language models (LLMs). Leveraging the intrinsic importance differences among experts, recent research has explored expert-level compression techniques to improve the efficiency of MoE LLMs. However, existing approaches often rely on empirical criteria to identify critical experts, lacking a deeper exploration and understanding of the heterogeneous importance of experts. In this study, we present the first discovery and investigation of a distinct subset of experts that play a crucial role in the underlying mechanisms during the model's forward inference. These experts are prevalent in open-source MoE LLMs, and despite their limited number, pruning them leads to a significant decline in model performance (e.g., pruning three causes Qwen3-30B-A3B to produce repetitive and uninformative outputs). We refer to these experts as Super Experts (SEs). Our comprehensive analysis provides progressively deeper insights into SEs. (i) SEs are characterized by rare but extreme activation outliers in the output of the down_proj, which give rise to massive activations in the hidden states between decoder layers. Moreover, the distribution of SEs remains model-specific and is unaffected by post-training processes. (ii) By pruning SEs, we assess their significance across a variety of tasks, revealing their considerable impact on the model's overall performance, particularly in mathematical reasoning. (iii) We further enhance our understanding of the influence of SEs compression. Our findings confirm that MoE LLMs rely on SEs to induce attention sinks, which are crucial for the distribution of attention scores but are significantly disrupted by SE pruning. The code is available at https://github.com/ZunhaiSu/Super-Experts-Profilling.

  • 6 authors
·
Jul 31

Union of Experts: Adapting Hierarchical Routing to Equivalently Decomposed Transformer

Mixture-of-Experts (MoE) enhances model performance while maintaining computational efficiency, making it well-suited for large-scale applications. However, expert in exist MoE paradigm works as an individual, thereby lacking high-quality expert interactions. Moreover, they have not been effectively extended to attention block, which constrains further efficiency improvements. To tackle these issues, we propose Union-of-Experts (UoE), which decomposes transformer into an equitant group of experts, and then implement dynamic routing on input data and experts. Our approach advances MoE design with three key innovations: (1) We conducted equitant expert decomposition on both MLP blocks and attention blocks based on matrix partition in tensor parallelism. (2) We developed two routing paradigms: patch wise data selection and expert selection, to apply routing across different levels. (3) We design the architecture of UoE model, including Selective Multi-Head Attention (SMHA) and Union-of-MLP-Experts (UoME). (4) We develop parallel implementation of UoE's routing and computation operation, and optimize efficiency based on the hardware processing analysis. The experiments demonstrate that the model employed with UoE surpass Full Attention, state-of-art MoEs and efficient transformers in several tasks across image and natural language domains. The source codes are available at https://github.com/YujiaoYang-work/UoE.

  • 3 authors
·
Mar 4 4

RouterRetriever: Exploring the Benefits of Routing over Multiple Expert Embedding Models

Information retrieval methods often rely on a single embedding model trained on large, general-domain datasets like MSMARCO. While this approach can produce a retriever with reasonable overall performance, models trained on domain-specific data often yield better results within their respective domains. While prior work in information retrieval has tackled this through multi-task training, the topic of combining multiple domain-specific expert retrievers remains unexplored, despite its popularity in language model generation. In this work, we introduce RouterRetriever, a retrieval model that leverages multiple domain-specific experts along with a routing mechanism to select the most appropriate expert for each query. It is lightweight and allows easy addition or removal of experts without additional training. Evaluation on the BEIR benchmark demonstrates that RouterRetriever outperforms both MSMARCO-trained (+2.1 absolute nDCG@10) and multi-task trained (+3.2) models. This is achieved by employing our routing mechanism, which surpasses other routing techniques (+1.8 on average) commonly used in language modeling. Furthermore, the benefit generalizes well to other datasets, even in the absence of a specific expert on the dataset. To our knowledge, RouterRetriever is the first work to demonstrate the advantages of using multiple domain-specific expert embedding models with effective routing over a single, general-purpose embedding model in retrieval tasks.

  • 5 authors
·
Sep 4, 2024

Innovator: Scientific Continued Pretraining with Fine-grained MoE Upcycling

A large language model (LLM) with knowledge in both scientific and general tasks is the foundation of science general intelligence. However, directly continued pretraining an LLM using science data usually leads to catastrophic forgetting, which indicates severe degradation in general ability. In this report, we present Innovator, which solves this problem by upcycling a pre-trained dense LLM into a fine-grained Mixtures-of-Experts model during continued pretraining, where different experts are expected to learn science knowledge in different disciplines, and a shared expert is utilized for general tasks. Innovator introduces a four-stage upcycle training paradigm: (1) Scientific Expert Induction on discipline-specific data, (2) Fine-grained Expert Splitting via FFN dimension decomposition, (3) Science-Aware Routing warmup, and (4) Generalist-Scientist Integration training on hybrid datasets. Such a paradigm enables knowledge in the general domain, and different scientific disciplines can be decoupled, avoiding the negative influence among knowledge in different domains. With 53.3B total parameters and 13.3B activated, Innovator extends Qwen2.5-7B using a shared general expert and 64 specialized scientific experts with 8 activated. Trained on 300B tokens with tri-level quality-controlled data, Innovator achieves 25% average improvement across 30 scientific tasks with a win rate as 70%, while retaining 99% performance in general tasks. Furthermore, Innovator-Reason, which is post-trained from Innovator for reasoning boosting, exhibits excellent reasoning performance in solving complex scientific problems with improvements over 30%.

  • 21 authors
·
Jul 24

DeepSeekMoE: Towards Ultimate Expert Specialization in Mixture-of-Experts Language Models

In the era of large language models, Mixture-of-Experts (MoE) is a promising architecture for managing computational costs when scaling up model parameters. However, conventional MoE architectures like GShard, which activate the top-K out of N experts, face challenges in ensuring expert specialization, i.e. each expert acquires non-overlapping and focused knowledge. In response, we propose the DeepSeekMoE architecture towards ultimate expert specialization. It involves two principal strategies: (1) finely segmenting the experts into mN ones and activating mK from them, allowing for a more flexible combination of activated experts; (2) isolating K_s experts as shared ones, aiming at capturing common knowledge and mitigating redundancy in routed experts. Starting from a modest scale with 2B parameters, we demonstrate that DeepSeekMoE 2B achieves comparable performance with GShard 2.9B, which has 1.5 times the expert parameters and computation. In addition, DeepSeekMoE 2B nearly approaches the performance of its dense counterpart with the same number of total parameters, which set the upper bound of MoE models. Subsequently, we scale up DeepSeekMoE to 16B parameters and show that it achieves comparable performance with LLaMA2 7B, with only about 40% of computations. Further, our preliminary efforts to scale up DeepSeekMoE to 145B parameters consistently validate its substantial advantages over the GShard architecture, and show its performance comparable with DeepSeek 67B, using only 28.5% (maybe even 18.2%) of computations.

  • 17 authors
·
Jan 11, 2024 2

SUPER: Evaluating Agents on Setting Up and Executing Tasks from Research Repositories

Given that Large Language Models (LLMs) have made significant progress in writing code, can they now be used to autonomously reproduce results from research repositories? Such a capability would be a boon to the research community, helping researchers validate, understand, and extend prior work. To advance towards this goal, we introduce SUPER, the first benchmark designed to evaluate the capability of LLMs in setting up and executing tasks from research repositories. SUPERaims to capture the realistic challenges faced by researchers working with Machine Learning (ML) and Natural Language Processing (NLP) research repositories. Our benchmark comprises three distinct problem sets: 45 end-to-end problems with annotated expert solutions, 152 sub problems derived from the expert set that focus on specific challenges (e.g., configuring a trainer), and 602 automatically generated problems for larger-scale development. We introduce various evaluation measures to assess both task success and progress, utilizing gold solutions when available or approximations otherwise. We show that state-of-the-art approaches struggle to solve these problems with the best model (GPT-4o) solving only 16.3% of the end-to-end set, and 46.1% of the scenarios. This illustrates the challenge of this task, and suggests that SUPER can serve as a valuable resource for the community to make and measure progress.

  • 8 authors
·
Sep 11, 2024 2

Leveraging Open Knowledge for Advancing Task Expertise in Large Language Models

The cultivation of expertise for large language models (LLMs) to solve tasks of specific areas often requires special-purpose tuning with calibrated behaviors on the expected stable outputs. To avoid huge cost brought by manual preparation of instruction datasets and training resources up to hundreds of hours, the exploitation of open knowledge including a wealth of low rank adaptation (LoRA) models and instruction datasets serves as a good starting point. However, existing methods on model and data selection focus on the performance of general-purpose capabilities while neglecting the knowledge gap exposed in domain-specific deployment. In the present study, we propose to bridge such gap by introducing few human-annotated samples (i.e., K-shot) for advancing task expertise of LLMs with open knowledge. Specifically, we develop an efficient and scalable pipeline to cost-efficiently produce task experts where K-shot data intervene in selecting the most promising expert candidates and the task-relevant instructions. A mixture-of-expert (MoE) system is built to make the best use of individual-yet-complementary knowledge between multiple experts. We unveil the two keys to the success of a MoE system, 1) the abidance by K-shot, and 2) the insistence on diversity. For the former, we ensure that models that truly possess problem-solving abilities on K-shot are selected rather than those blind guessers. Besides, during data selection, instructions that share task-relevant contexts with K-shot are prioritized. For the latter, we highlight the diversity of constituting experts and that of the fine-tuning instructions throughout the model and data selection process. Extensive experimental results confirm the superiority of our approach over existing methods on utilization of open knowledge across various tasks. Codes and models will be released later.

  • 12 authors
·
Aug 28, 2024 4

A Survey on Mixture of Experts

Large language models (LLMs) have garnered unprecedented advancements across diverse fields, ranging from natural language processing to computer vision and beyond. The prowess of LLMs is underpinned by their substantial model size, extensive and diverse datasets, and the vast computational power harnessed during training, all of which contribute to the emergent abilities of LLMs (e.g., in-context learning) that are not present in small models. Within this context, the mixture of experts (MoE) has emerged as an effective method for substantially scaling up model capacity with minimal computation overhead, gaining significant attention from academia and industry. Despite its growing prevalence, there lacks a systematic and comprehensive review of the literature on MoE. This survey seeks to bridge that gap, serving as an essential resource for researchers delving into the intricacies of MoE. We first briefly introduce the structure of the MoE layer, followed by proposing a new taxonomy of MoE. Next, we overview the core designs for various MoE models including both algorithmic and systemic aspects, alongside collections of available open-source implementations, hyperparameter configurations and empirical evaluations. Furthermore, we delineate the multifaceted applications of MoE in practice, and outline some potential directions for future research. To facilitate ongoing updates and the sharing of cutting-edge developments in MoE research, we have established a resource repository accessible at https://github.com/withinmiaov/A-Survey-on-Mixture-of-Experts.

  • 6 authors
·
Jun 26, 2024

An Empirical Study of Pre-Trained Model Reuse in the Hugging Face Deep Learning Model Registry

Deep Neural Networks (DNNs) are being adopted as components in software systems. Creating and specializing DNNs from scratch has grown increasingly difficult as state-of-the-art architectures grow more complex. Following the path of traditional software engineering, machine learning engineers have begun to reuse large-scale pre-trained models (PTMs) and fine-tune these models for downstream tasks. Prior works have studied reuse practices for traditional software packages to guide software engineers towards better package maintenance and dependency management. We lack a similar foundation of knowledge to guide behaviors in pre-trained model ecosystems. In this work, we present the first empirical investigation of PTM reuse. We interviewed 12 practitioners from the most popular PTM ecosystem, Hugging Face, to learn the practices and challenges of PTM reuse. From this data, we model the decision-making process for PTM reuse. Based on the identified practices, we describe useful attributes for model reuse, including provenance, reproducibility, and portability. Three challenges for PTM reuse are missing attributes, discrepancies between claimed and actual performance, and model risks. We substantiate these identified challenges with systematic measurements in the Hugging Face ecosystem. Our work informs future directions on optimizing deep learning ecosystems by automated measuring useful attributes and potential attacks, and envision future research on infrastructure and standardization for model registries.

  • 8 authors
·
Mar 4, 2023

Unchosen Experts Can Contribute Too: Unleashing MoE Models' Power by Self-Contrast

Mixture-of-Experts (MoE) has emerged as a prominent architecture for scaling model size while maintaining computational efficiency. In MoE, each token in the input sequence activates a different subset of experts determined by a routing mechanism. However, the unchosen experts in MoE models do not contribute to the output, potentially leading to underutilization of the model's capacity. In this work, we first conduct exploratory studies to demonstrate that increasing the number of activated experts does not necessarily improve and can even degrade the output quality. Then, we show that output distributions from an MoE model using different routing strategies substantially differ, indicating that different experts do not always act synergistically. Motivated by these findings, we propose Self-Contrast Mixture-of-Experts (SCMoE), a training-free strategy that utilizes unchosen experts in a self-contrast manner during inference. In SCMoE, the next-token probabilities are determined by contrasting the outputs from strong and weak activation using the same MoE model. Our method is conceptually simple and computationally lightweight, as it incurs minimal latency compared to greedy decoding. Experiments on several benchmarks (GSM8K, StrategyQA, MBPP and HumanEval) demonstrate that SCMoE can consistently enhance Mixtral 8x7B's reasoning capability across various domains. For example, it improves the accuracy on GSM8K from 61.79 to 66.94. Moreover, combining SCMoE with self-consistency yields additional gains, increasing major@20 accuracy from 75.59 to 78.31.

  • 9 authors
·
May 23, 2024

Taming Sparsely Activated Transformer with Stochastic Experts

Sparsely activated models (SAMs), such as Mixture-of-Experts (MoE), can easily scale to have outrageously large amounts of parameters without significant increase in computational cost. However, SAMs are reported to be parameter inefficient such that larger models do not always lead to better performance. While most on-going research focuses on improving SAMs models by exploring methods of routing inputs to experts, our analysis reveals that such research might not lead to the solution we expect, i.e., the commonly-used routing methods based on gating mechanisms do not work better than randomly routing inputs to experts. In this paper, we propose a new expert-based model, THOR (Transformer witH StOchastic ExpeRts). Unlike classic expert-based models, such as the Switch Transformer, experts in THOR are randomly activated for each input during training and inference. THOR models are trained using a consistency regularized loss, where experts learn not only from training data but also from other experts as teachers, such that all the experts make consistent predictions. We validate the effectiveness of THOR on machine translation tasks. Results show that THOR models are more parameter efficient in that they significantly outperform the Transformer and MoE models across various settings. For example, in multilingual translation, THOR outperforms the Switch Transformer by 2 BLEU scores, and obtains the same BLEU score as that of a state-of-the-art MoE model that is 18 times larger. Our code is publicly available at: https://github.com/microsoft/Stochastic-Mixture-of-Experts.

  • 8 authors
·
Oct 8, 2021

A Comprehensive Survey of Mixture-of-Experts: Algorithms, Theory, and Applications

Artificial intelligence (AI) has achieved astonishing successes in many domains, especially with the recent breakthroughs in the development of foundational large models. These large models, leveraging their extensive training data, provide versatile solutions for a wide range of downstream tasks. However, as modern datasets become increasingly diverse and complex, the development of large AI models faces two major challenges: (1) the enormous consumption of computational resources and deployment difficulties, and (2) the difficulty in fitting heterogeneous and complex data, which limits the usability of the models. Mixture of Experts (MoE) models has recently attracted much attention in addressing these challenges, by dynamically selecting and activating the most relevant sub-models to process input data. It has been shown that MoEs can significantly improve model performance and efficiency with fewer resources, particularly excelling in handling large-scale, multimodal data. Given the tremendous potential MoE has demonstrated across various domains, it is urgent to provide a comprehensive summary of recent advancements of MoEs in many important fields. Existing surveys on MoE have their limitations, e.g., being outdated or lacking discussion on certain key areas, and we aim to address these gaps. In this paper, we first introduce the basic design of MoE, including gating functions, expert networks, routing mechanisms, training strategies, and system design. We then explore the algorithm design of MoE in important machine learning paradigms such as continual learning, meta-learning, multi-task learning, and reinforcement learning. Additionally, we summarize theoretical studies aimed at understanding MoE and review its applications in computer vision and natural language processing. Finally, we discuss promising future research directions.

  • 2 authors
·
Mar 10

Rewiring Experts on the Fly:Continuous Rerouting for Better Online Adaptation in Mixture-of-Expert models

Mixture-of-Experts (MoE) models achieve efficient scaling through sparse expert activation, but often suffer from suboptimal routing decisions due to distribution shifts in deployment. While existing test-time adaptation methods could potentially address these issues, they primarily focus on dense models and require access to external data, limiting their practical applicability to MoE architectures. However, we find that, instead of relying on reference data, we can optimize MoE expert selection on-the-fly based only on input context. As such, we propose a data-free, online test-time framework that continuously adapts MoE routing decisions during text generation without external supervision or data. Our method cycles between two phases: During the prefill stage, and later in regular intervals, we optimize the routing decisions of the model using self-supervision based on the already generated sequence. Then, we generate text as normal, maintaining the modified router until the next adaption. We implement this through lightweight additive vectors that only update router logits in selected layers, maintaining computational efficiency while preventing over-adaptation. The experimental results show consistent performance gains on challenging reasoning tasks while maintaining robustness to context shifts. For example, our method achieves a 5.5\% improvement on HumanEval with OLMoE. Furthermore, owing to its plug-and-play property, our method naturally complements existing test-time scaling techniques, e.g., achieving 6\% average gains when incorporated with self-consistency on DeepSeek-V2-Lite.

  • 6 authors
·
Oct 16 3

Composition of Experts: A Modular Compound AI System Leveraging Large Language Models

Large Language Models (LLMs) have achieved remarkable advancements, but their monolithic nature presents challenges in terms of scalability, cost, and customization. This paper introduces the Composition of Experts (CoE), a modular compound AI system leveraging multiple expert LLMs. CoE leverages a router to dynamically select the most appropriate expert for a given input, enabling efficient utilization of resources and improved performance. We formulate the general problem of training a CoE and discuss inherent complexities associated with it. We propose a two-step routing approach to address these complexities that first uses a router to classify the input into distinct categories followed by a category-to-expert mapping to obtain desired experts. CoE offers a flexible and cost-effective solution to build compound AI systems. Our empirical evaluation demonstrates the effectiveness of CoE in achieving superior performance with reduced computational overhead. Given that CoE comprises of many expert LLMs it has unique system requirements for cost-effective serving. We present an efficient implementation of CoE leveraging SambaNova SN40L RDUs unique three-tiered memory architecture. CoEs obtained using open weight LLMs Qwen/Qwen2-7B-Instruct, google/gemma-2-9b-it, google/gemma-2-27b-it, meta-llama/Llama-3.1-70B-Instruct and Qwen/Qwen2-72B-Instruct achieve a score of 59.4 with merely 31 billion average active parameters on Arena-Hard and a score of 9.06 with 54 billion average active parameters on MT-Bench.

  • 11 authors
·
Dec 2, 2024

FAIR Jupyter: a knowledge graph approach to semantic sharing and granular exploration of a computational notebook reproducibility dataset

The way in which data are shared can affect their utility and reusability. Here, we demonstrate how data that we had previously shared in bulk can be mobilized further through a knowledge graph that allows for much more granular exploration and interrogation. The original dataset is about the computational reproducibility of GitHub-hosted Jupyter notebooks associated with biomedical publications. It contains rich metadata about the publications, associated GitHub repositories and Jupyter notebooks, and the notebooks' reproducibility. We took this dataset, converted it into semantic triples and loaded these into a triple store to create a knowledge graph, FAIR Jupyter, that we made accessible via a web service. This enables granular data exploration and analysis through queries that can be tailored to specific use cases. Such queries may provide details about any of the variables from the original dataset, highlight relationships between them or combine some of the graph's content with materials from corresponding external resources. We provide a collection of example queries addressing a range of use cases in research and education. We also outline how sets of such queries can be used to profile specific content types, either individually or by class. We conclude by discussing how such a semantically enhanced sharing of complex datasets can both enhance their FAIRness, i.e., their findability, accessibility, interoperability, and reusability, and help identify and communicate best practices, particularly with regards to data quality, standardization, automation and reproducibility.

  • 2 authors
·
Apr 19, 2024

Each Rank Could be an Expert: Single-Ranked Mixture of Experts LoRA for Multi-Task Learning

Low-Rank Adaptation (LoRA) is widely used for adapting large language models (LLMs) to specific domains due to its efficiency and modularity. Meanwhile, vanilla LoRA struggles with task conflicts in multi-task scenarios. Recent works adopt Mixture of Experts (MoE) by treating each LoRA module as an expert, thereby mitigating task interference through multiple specialized LoRA modules. While effective, these methods often isolate knowledge within individual tasks, failing to fully exploit the shared knowledge across related tasks. In this paper, we establish a connection between single LoRA and multi-LoRA MoE, integrating them into a unified framework. We demonstrate that the dynamic routing of multiple LoRAs is functionally equivalent to rank partitioning and block-level activation within a single LoRA. We further empirically demonstrate that finer-grained LoRA partitioning, within the same total and activated parameter constraints, leads to better performance gains across heterogeneous tasks. Building on these findings, we propose Single-ranked Mixture of Experts LoRA (SMoRA), which embeds MoE into LoRA by treating each rank as an independent expert. With a dynamic rank-wise activation mechanism, SMoRA promotes finer-grained knowledge sharing while mitigating task conflicts. Experiments demonstrate that SMoRA activates fewer parameters yet achieves better performance in multi-task scenarios.

  • 10 authors
·
Jan 25

SMART: Self-Aware Agent for Tool Overuse Mitigation

Current Large Language Model (LLM) agents demonstrate strong reasoning and tool use capabilities, but often lack self-awareness, failing to balance these approaches effectively. This imbalance leads to Tool Overuse, where models unnecessarily rely on external tools for tasks solvable with parametric knowledge, increasing computational overhead. Inspired by human metacognition, we introduce SMART (Strategic Model-Aware Reasoning with Tools), a paradigm that enhances an agent's self-awareness to optimize task handling and reduce tool overuse. To support this paradigm, we introduce SMART-ER, a dataset spanning three domains, where reasoning alternates between parametric knowledge and tool-dependent steps, with each step enriched by rationales explaining when tools are necessary. Through supervised training, we develop SMARTAgent, a family of models that dynamically balance parametric knowledge and tool use. Evaluations show that SMARTAgent reduces tool use by 24% while improving performance by over 37%, enabling 7B-scale models to match its 70B counterpart and GPT-4o. Additionally, SMARTAgent generalizes to out-of-distribution test data like GSM8K and MINTQA, maintaining accuracy with just one-fifth the tool calls. These highlight the potential of strategic tool use to enhance reasoning, mitigate overuse, and bridge the gap between model size and performance, advancing intelligent and resource-efficient agent designs.

  • 8 authors
·
Feb 16

Meta-DMoE: Adapting to Domain Shift by Meta-Distillation from Mixture-of-Experts

In this paper, we tackle the problem of domain shift. Most existing methods perform training on multiple source domains using a single model, and the same trained model is used on all unseen target domains. Such solutions are sub-optimal as each target domain exhibits its own specialty, which is not adapted. Furthermore, expecting single-model training to learn extensive knowledge from multiple source domains is counterintuitive. The model is more biased toward learning only domain-invariant features and may result in negative knowledge transfer. In this work, we propose a novel framework for unsupervised test-time adaptation, which is formulated as a knowledge distillation process to address domain shift. Specifically, we incorporate Mixture-of-Experts (MoE) as teachers, where each expert is separately trained on different source domains to maximize their specialty. Given a test-time target domain, a small set of unlabeled data is sampled to query the knowledge from MoE. As the source domains are correlated to the target domains, a transformer-based aggregator then combines the domain knowledge by examining the interconnection among them. The output is treated as a supervision signal to adapt a student prediction network toward the target domain. We further employ meta-learning to enforce the aggregator to distill positive knowledge and the student network to achieve fast adaptation. Extensive experiments demonstrate that the proposed method outperforms the state-of-the-art and validates the effectiveness of each proposed component. Our code is available at https://github.com/n3il666/Meta-DMoE.

  • 6 authors
·
Oct 7, 2022

BARS: Towards Open Benchmarking for Recommender Systems

The past two decades have witnessed the rapid development of personalized recommendation techniques. Despite significant progress made in both research and practice of recommender systems, to date, there is a lack of a widely-recognized benchmarking standard in this field. Many existing studies perform model evaluations and comparisons in an ad-hoc manner, for example, by employing their own private data splits or using different experimental settings. Such conventions not only increase the difficulty in reproducing existing studies, but also lead to inconsistent experimental results among them. This largely limits the credibility and practical value of research results in this field. To tackle these issues, we present an initiative project (namely BARS) aiming for open benchmarking for recommender systems. In comparison to some earlier attempts towards this goal, we take a further step by setting up a standardized benchmarking pipeline for reproducible research, which integrates all the details about datasets, source code, hyper-parameter settings, running logs, and evaluation results. The benchmark is designed with comprehensiveness and sustainability in mind. It covers both matching and ranking tasks, and also enables researchers to easily follow and contribute to the research in this field. This project will not only reduce the redundant efforts of researchers to re-implement or re-run existing baselines, but also drive more solid and reproducible research on recommender systems. We would like to call upon everyone to use the BARS benchmark for future evaluation, and contribute to the project through the portal at: https://openbenchmark.github.io/BARS.

  • 8 authors
·
May 19, 2022

Self-Specialization: Uncovering Latent Expertise within Large Language Models

Recent works have demonstrated the effectiveness of self-alignment in which a large language model is, by itself, aligned to follow general instructions through the automatic generation of instructional data using a handful of human-written seeds. Instead of general alignment, in this work, we focus on self-alignment for expert domain specialization (e.g., biomedicine), discovering it to be very effective for improving zero-shot and few-shot performance in target domains of interest. As a preliminary, we first present the benchmark results of existing aligned models within a specialized domain, which reveals the marginal effect that "generic" instruction-following training has on downstream expert domains' performance. To remedy this, we explore self-specialization that leverages domain-specific unlabelled data and a few labeled seeds for the self-alignment process. When augmented with retrieval to reduce hallucination and enhance concurrency of the alignment, self-specialization offers an effective (and efficient) way of "carving out" an expert model out of a "generalist", pre-trained LLM where different domains of expertise are originally combined in a form of "superposition". Our experimental results on a biomedical domain show that our self-specialized model (30B) outperforms its base model, MPT-30B by a large margin and even surpasses larger popular models based on LLaMA-65B, highlighting its potential and practicality for specialization, especially considering its efficiency in terms of data and parameters.

  • 8 authors
·
Sep 29, 2023

An Exploratory Literature Study on Sharing and Energy Use of Language Models for Source Code

Large language models trained on source code can support a variety of software development tasks, such as code recommendation and program repair. Large amounts of data for training such models benefit the models' performance. However, the size of the data and models results in long training times and high energy consumption. While publishing source code allows for replicability, users need to repeat the expensive training process if models are not shared. The main goal of the study is to investigate if publications that trained language models for software engineering (SE) tasks share source code and trained artifacts. The second goal is to analyze the transparency on training energy usage. We perform a snowballing-based literature search to find publications on language models for source code, and analyze their reusability from a sustainability standpoint. From 494 unique publications, we identified 293 relevant publications that use language models to address code-related tasks. Among them, 27% (79 out of 293) make artifacts available for reuse. This can be in the form of tools or IDE plugins designed for specific tasks or task-agnostic models that can be fine-tuned for a variety of downstream tasks. Moreover, we collect insights on the hardware used for model training, as well as training time, which together determine the energy consumption of the development process. We find that there are deficiencies in the sharing of information and artifacts for current studies on source code models for software engineering tasks, with 40% of the surveyed papers not sharing source code or trained artifacts. We recommend the sharing of source code as well as trained artifacts, to enable sustainable reproducibility. Moreover, comprehensive information on training times and hardware configurations should be shared for transparency on a model's carbon footprint.

  • 3 authors
·
Jul 5, 2023

Dynamic Experts Search: Enhancing Reasoning in Mixture-of-Experts LLMs at Test Time

Test-Time Scaling (TTS) enhances the reasoning ability of large language models (LLMs) by allocating additional computation during inference. However, existing approaches primarily rely on output-level sampling while overlooking the role of model architecture. In mainstream Mixture-of-Experts (MoE) LLMs, we observe that varying the number of activated experts yields complementary solution sets with stable accuracy, revealing a new and underexplored source of diversity. Motivated by this observation, we propose Dynamic Experts Search (DES), a TTS strategy that elevates expert activation into a controllable dimension of the search space. DES integrates two key components: (1) Dynamic MoE, which enables direct control of expert counts during inference to generate diverse reasoning trajectories without additional cost; and (2) Expert Configuration Inheritance, which preserves consistent expert counts within a reasoning path while varying them across runs, thereby balancing stability and diversity throughout the search. Extensive experiments across MoE architectures, verifiers and reasoning benchmarks (i.e., math, code and knowledge) demonstrate that DES reliably outperforms TTS baselines, enhancing accuracy and stability without additional cost. These results highlight DES as a practical and scalable form of architecture-aware TTS, illustrating how structural flexibility in modern LLMs can advance reasoning.

  • 4 authors
·
Sep 26 1

Dynamic-DINO: Fine-Grained Mixture of Experts Tuning for Real-time Open-Vocabulary Object Detection

The Mixture of Experts (MoE) architecture has excelled in Large Vision-Language Models (LVLMs), yet its potential in real-time open-vocabulary object detectors, which also leverage large-scale vision-language datasets but smaller models, remains unexplored. This work investigates this domain, revealing intriguing insights. In the shallow layers, experts tend to cooperate with diverse peers to expand the search space. While in the deeper layers, fixed collaborative structures emerge, where each expert maintains 2-3 fixed partners and distinct expert combinations are specialized in processing specific patterns. Concretely, we propose Dynamic-DINO, which extends Grounding DINO 1.5 Edge from a dense model to a dynamic inference framework via an efficient MoE-Tuning strategy. Additionally, we design a granularity decomposition mechanism to decompose the Feed-Forward Network (FFN) of base model into multiple smaller expert networks, expanding the subnet search space. To prevent performance degradation at the start of fine-tuning, we further propose a pre-trained weight allocation strategy for the experts, coupled with a specific router initialization. During inference, only the input-relevant experts are activated to form a compact subnet. Experiments show that, pretrained with merely 1.56M open-source data, Dynamic-DINO outperforms Grounding DINO 1.5 Edge, pretrained on the private Grounding20M dataset.

  • 8 authors
·
Jul 23

JiuZhang 2.0: A Unified Chinese Pre-trained Language Model for Multi-task Mathematical Problem Solving

Although pre-trained language models~(PLMs) have recently advanced the research progress in mathematical reasoning, they are not specially designed as a capable multi-task solver, suffering from high cost for multi-task deployment (\eg a model copy for a task) and inferior performance on complex mathematical problems in practical applications. To address these issues, in this paper, we propose JiuZhang~2.0, a unified Chinese PLM specially for multi-task mathematical problem solving. Our idea is to maintain a moderate-sized model and employ the cross-task knowledge sharing to improve the model capacity in a multi-task setting. Specially, we construct a Mixture-of-Experts~(MoE) architecture for modeling mathematical text, so as to capture the common mathematical knowledge across tasks. For optimizing the MoE architecture, we design multi-task continual pre-training and multi-task fine-tuning strategies for multi-task adaptation. These training strategies can effectively decompose the knowledge from the task data and establish the cross-task sharing via expert networks. In order to further improve the general capacity of solving different complex tasks, we leverage large language models~(LLMs) as complementary models to iteratively refine the generated solution by our PLM, via in-context learning. Extensive experiments have demonstrated the effectiveness of our model.

  • 11 authors
·
Jun 19, 2023

STUN: Structured-Then-Unstructured Pruning for Scalable MoE Pruning

Mixture-of-experts (MoEs) have been adopted for reducing inference costs by sparsely activating experts in Large language models (LLMs). Despite this reduction, the massive number of experts in MoEs still makes them expensive to serve. In this paper, we study how to address this, by pruning MoEs. Among pruning methodologies, unstructured pruning has been known to achieve the highest performance for a given pruning ratio, compared to structured pruning, since the latter imposes constraints on the sparsification structure. This is intuitive, as the solution space of unstructured pruning subsumes that of structured pruning. However, our counterintuitive finding reveals that expert pruning, a form of structured pruning, can actually precede unstructured pruning to outperform unstructured-only pruning. As existing expert pruning, requiring O(k^n{n}) forward passes for n experts, cannot scale for recent MoEs, we propose a scalable alternative with O(1) complexity, yet outperforming the more expensive methods. The key idea is leveraging a latent structure between experts, based on behavior similarity, such that the greedy decision of whether to prune closely captures the joint pruning effect. Ours is highly effective -- for Snowflake Arctic, a 480B-sized MoE with 128 experts, our method needs only one H100 and two hours to achieve nearly no loss in performance with 40% sparsity, even in generative tasks such as GSM8K, where state-of-the-art unstructured pruning fails to. The code will be made publicly available.

  • 6 authors
·
Sep 10, 2024

Monet: Mixture of Monosemantic Experts for Transformers

Understanding the internal computations of large language models (LLMs) is crucial for aligning them with human values and preventing undesirable behaviors like toxic content generation. However, mechanistic interpretability is hindered by polysemanticity -- where individual neurons respond to multiple, unrelated concepts. While Sparse Autoencoders (SAEs) have attempted to disentangle these features through sparse dictionary learning, they have compromised LLM performance due to reliance on post-hoc reconstruction loss. To address this issue, we introduce Mixture of Monosemantic Experts for Transformers (Monet) architecture, which incorporates sparse dictionary learning directly into end-to-end Mixture-of-Experts pretraining. Our novel expert decomposition method enables scaling the expert count to 262,144 per layer while total parameters scale proportionally to the square root of the number of experts. Our analyses demonstrate mutual exclusivity of knowledge across experts and showcase the parametric knowledge encapsulated within individual experts. Moreover, Monet allows knowledge manipulation over domains, languages, and toxicity mitigation without degrading general performance. Our pursuit of transparent LLMs highlights the potential of scaling expert counts to enhance} mechanistic interpretability and directly resect the internal knowledge to fundamentally adjust} model behavior. The source code and pretrained checkpoints are available at https://github.com/dmis-lab/Monet.

  • 4 authors
·
Dec 5, 2024 2

PreMoe: Lightening MoEs on Constrained Memory by Expert Pruning and Retrieval

Mixture-of-experts (MoE) architectures enable scaling large language models (LLMs) to vast parameter counts without a proportional rise in computational costs. However, the significant memory demands of large MoE models hinder their deployment across various computational environments, from cloud servers to consumer devices. This study first demonstrates pronounced task-specific specialization in expert activation patterns within MoE layers. Building on this, we introduce PreMoe, a novel framework that enables efficient deployment of massive MoE models in memory-constrained environments. PreMoe features two main components: probabilistic expert pruning (PEP) and task-adaptive expert retrieval (TAER). PEP employs a new metric, the task-conditioned expected selection score (TCESS), derived from router logits to quantify expert importance for specific tasks, thereby identifying a minimal set of critical experts. TAER leverages these task-specific expert importance profiles for efficient inference. It pre-computes and stores compact expert patterns for diverse tasks. When a user query is received, TAER rapidly identifies the most relevant stored task pattern and reconstructs the model by loading only the small subset of experts crucial for that task. This approach dramatically reduces the memory footprint across all deployment scenarios. DeepSeek-R1 671B maintains 97.2\% accuracy on MATH500 when pruned to 8/128 configuration (50\% expert reduction), and still achieves 72.0\% with aggressive 8/32 pruning (87.5\% expert reduction). Pangu-Ultra-MoE 718B achieves 97.15\% on MATH500 and 81.3\% on AIME24 with 8/128 pruning, while even more aggressive pruning to 4/64 (390GB memory) preserves 96.95\% accuracy on MATH500. We make our code publicly available at https://github.com/JarvisPei/PreMoe.

  • 8 authors
·
May 23 2

LoRAMoE: Revolutionizing Mixture of Experts for Maintaining World Knowledge in Language Model Alignment

Supervised fine-tuning (SFT) is a crucial step for large language models (LLMs), enabling them to align with human instructions and enhance their capabilities in downstream tasks. When the models are required to align with a broader range of downstream tasks, or there is a desire to notably improve the performance on a specific task, a substantial increase in fine-tuning data often emerges as the solution. However, we find that large-scale increases in instruction data can disrupt the world knowledge previously stored in the LLMs, i.e., world knowledge forgetting. In this paper, we introduce LoRAMoE to address the above challenge. The LoRAMoE is a plugin version of Mixture of Experts (MoE). The plugin form ensures the integrity of world knowledge by freezing the backbone model during the training phase. We then propose the use of localized balancing constraints to coordinate parts of experts for task utilization, meanwhile enabling other experts to fully leverage the world knowledge stored in the models. Experimental results demonstrate that LoRAMoE can reasonably coordinate experts based on data type during inference, and even dramatically increasing instruction data does not result in knowledge forgetting. Moreover, LoRAMoE provides additional benefits for the performance of downstream tasks, indicating the potential of our approach for multi-task learning.

  • 16 authors
·
Dec 15, 2023

MechGPT, a language-based strategy for mechanics and materials modeling that connects knowledge across scales, disciplines and modalities

For centuries, researchers have sought out ways to connect disparate areas of knowledge. While early scholars (Galileo, da Vinci, etc.) were experts across fields, specialization has taken hold later. With the advent of Artificial Intelligence, we can now explore relationships across areas (e.g., mechanics-biology) or disparate domains (e.g., failure mechanics-art). To achieve this, we use a fine-tuned Large Language Model (LLM), here for a subset of knowledge in multiscale materials failure. The approach includes the use of a general-purpose LLM to distill question-answer pairs from raw sources followed by LLM fine-tuning. The resulting MechGPT LLM foundation model is used in a series of computational experiments to explore its capacity for knowledge retrieval, various language tasks, hypothesis generation, and connecting knowledge across disparate areas. While the model has some ability to recall knowledge from training, we find that LLMs are particularly useful to extract structural insights through Ontological Knowledge Graphs. These interpretable graph structures provide explanatory insights, frameworks for new research questions, and visual representations of knowledge that also can be used in retrieval-augmented generation. Three versions of MechGPT are discussed, featuring different sizes from 13 billion to 70 billion parameters, and reaching context lengths of more than 10,000 tokens. This provides ample capacity for sophisticated retrieval augmented strategies, as well as agent-based modeling where multiple LLMs interact collaboratively and/or adversarially, the incorporation of new data from the literature or web searches, as well as multimodality.

  • 1 authors
·
Oct 16, 2023

Bridging the Novice-Expert Gap via Models of Decision-Making: A Case Study on Remediating Math Mistakes

Scaling high-quality tutoring remains a major challenge in education. Due to growing demand, many platforms employ novice tutors who, unlike experienced educators, struggle to address student mistakes and thus fail to seize prime learning opportunities. Our work explores the potential of large language models (LLMs) to close the novice-expert knowledge gap in remediating math mistakes. We contribute Bridge, a method that uses cognitive task analysis to translate an expert's latent thought process into a decision-making model for remediation. This involves an expert identifying (A) the student's error, (B) a remediation strategy, and (C) their intention before generating a response. We construct a dataset of 700 real tutoring conversations, annotated by experts with their decisions. We evaluate state-of-the-art LLMs on our dataset and find that the expert's decision-making model is critical for LLMs to close the gap: responses from GPT4 with expert decisions (e.g., "simplify the problem") are +76% more preferred than without. Additionally, context-sensitive decisions are critical to closing pedagogical gaps: random decisions decrease GPT4's response quality by -97% than expert decisions. Our work shows the potential of embedding expert thought processes in LLM generations to enhance their capability to bridge novice-expert knowledge gaps. Our dataset and code can be found at: https://github.com/rosewang2008/bridge.

  • 5 authors
·
Oct 16, 2023

Establishing Knowledge Preference in Language Models

Language models are known to encode a great amount of factual knowledge through pretraining. However, such knowledge might be insufficient to cater to user requests, requiring the model to integrate external knowledge sources and adhere to user-provided specifications. When answering questions about ongoing events, the model should use recent news articles to update its response; when asked to provide recommendations, the model should prioritize user specifications over retrieved product reviews; when some facts are edited in the model, the updated facts should override all prior knowledge learned by the model even if they are conflicting. In all of the cases above, the model faces a decision between its own parametric knowledge, (retrieved) contextual knowledge, and user instruction knowledge. In this paper, we (1) unify such settings into the problem of knowledge preference and define a three-level preference hierarchy over these knowledge sources; (2) compile a collection of existing datasets IfQA, MQuAKE, and MRQA covering a combination of settings (with/without user specifications, with/without context documents) to systematically evaluate how well models obey the intended knowledge preference; and (3) propose a dataset synthesis method that composes diverse question-answer pairs with user assumptions and related context to directly fine-tune LMs for instilling the hierarchy of knowledge. We demonstrate that a 7B model, fine-tuned on only a few thousand examples automatically generated by our proposed method, effectively achieves superior performance (more than 18% improvement across all evaluation benchmarks) in adhering to the desired knowledge preference hierarchy.

  • 6 authors
·
Jul 17, 2024

UOE: Unlearning One Expert Is Enough For Mixture-of-experts LLMS

Recent advancements in large language model (LLM) unlearning have shown remarkable success in removing unwanted data-model influences while preserving the model's utility for legitimate knowledge. However, despite these strides, sparse Mixture-of-Experts (MoE) LLMs--a key subset of the LLM family--have received little attention and remain largely unexplored in the context of unlearning. As MoE LLMs are celebrated for their exceptional performance and highly efficient inference processes, we ask: How can unlearning be performed effectively and efficiently on MoE LLMs? And will traditional unlearning methods be applicable to MoE architectures? Our pilot study shows that the dynamic routing nature of MoE LLMs introduces unique challenges, leading to substantial utility drops when existing unlearning methods are applied. Specifically, unlearning disrupts the router's expert selection, causing significant selection shift from the most unlearning target-related experts to irrelevant ones. As a result, more experts than necessary are affected, leading to excessive forgetting and loss of control over which knowledge is erased. To address this, we propose a novel single-expert unlearning framework, referred to as UOE, for MoE LLMs. Through expert attribution, unlearning is concentrated on the most actively engaged expert for the specified knowledge. Concurrently, an anchor loss is applied to the router to stabilize the active state of this targeted expert, ensuring focused and controlled unlearning that preserves model utility. The proposed UOE framework is also compatible with various unlearning algorithms. Extensive experiments demonstrate that UOE enhances both forget quality up to 5% and model utility by 35% on MoE LLMs across various benchmarks, LLM architectures, while only unlearning 0.06% of the model parameters.

  • 7 authors
·
Nov 27, 2024

Generating EDU Extracts for Plan-Guided Summary Re-Ranking

Two-step approaches, in which summary candidates are generated-then-reranked to return a single summary, can improve ROUGE scores over the standard single-step approach. Yet, standard decoding methods (i.e., beam search, nucleus sampling, and diverse beam search) produce candidates with redundant, and often low quality, content. In this paper, we design a novel method to generate candidates for re-ranking that addresses these issues. We ground each candidate abstract on its own unique content plan and generate distinct plan-guided abstracts using a model's top beam. More concretely, a standard language model (a BART LM) auto-regressively generates elemental discourse unit (EDU) content plans with an extractive copy mechanism. The top K beams from the content plan generator are then used to guide a separate LM, which produces a single abstractive candidate for each distinct plan. We apply an existing re-ranker (BRIO) to abstractive candidates generated from our method, as well as baseline decoding methods. We show large relevance improvements over previously published methods on widely used single document news article corpora, with ROUGE-2 F1 gains of 0.88, 2.01, and 0.38 on CNN / Dailymail, NYT, and Xsum, respectively. A human evaluation on CNN / DM validates these results. Similarly, on 1k samples from CNN / DM, we show that prompting GPT-3 to follow EDU plans outperforms sampling-based methods by 1.05 ROUGE-2 F1 points. Code to generate and realize plans is available at https://github.com/griff4692/edu-sum.

  • 5 authors
·
May 28, 2023

torchdistill: A Modular, Configuration-Driven Framework for Knowledge Distillation

While knowledge distillation (transfer) has been attracting attentions from the research community, the recent development in the fields has heightened the need for reproducible studies and highly generalized frameworks to lower barriers to such high-quality, reproducible deep learning research. Several researchers voluntarily published frameworks used in their knowledge distillation studies to help other interested researchers reproduce their original work. Such frameworks, however, are usually neither well generalized nor maintained, thus researchers are still required to write a lot of code to refactor/build on the frameworks for introducing new methods, models, datasets and designing experiments. In this paper, we present our developed open-source framework built on PyTorch and dedicated for knowledge distillation studies. The framework is designed to enable users to design experiments by declarative PyYAML configuration files, and helps researchers complete the recently proposed ML Code Completeness Checklist. Using the developed framework, we demonstrate its various efficient training strategies, and implement a variety of knowledge distillation methods. We also reproduce some of their original experimental results on the ImageNet and COCO datasets presented at major machine learning conferences such as ICLR, NeurIPS, CVPR and ECCV, including recent state-of-the-art methods. All the source code, configurations, log files and trained model weights are publicly available at https://github.com/yoshitomo-matsubara/torchdistill .

  • 1 authors
·
Nov 25, 2020

Learning to Route Among Specialized Experts for Zero-Shot Generalization

Recently, there has been a widespread proliferation of "expert" language models that are specialized to a specific task or domain through parameter-efficient fine-tuning. How can we recycle large collections of expert language models to improve zero-shot generalization to unseen tasks? In this work, we propose Post-Hoc Adaptive Tokenwise Gating Over an Ocean of Specialized Experts (PHATGOOSE), which learns to route among specialized modules that were produced through parameter-efficient fine-tuning. Unlike past methods that learn to route among specialized models, PHATGOOSE explores the possibility that zero-shot generalization will be improved if different experts can be adaptively chosen for each token and at each layer in the model. Crucially, our method is post-hoc - it does not require simultaneous access to the datasets used to create the specialized models and only requires a modest amount of additional compute after each expert model is trained. In experiments covering a range of specialized model collections and zero-shot generalization benchmarks, we find that PHATGOOSE outperforms past methods for post-hoc routing and, in some cases, outperforms explicit multitask training (which requires simultaneous data access). To better understand the routing strategy learned by PHATGOOSE, we perform qualitative experiments to validate that PHATGOOSE's performance stems from its ability to make adaptive per-token and per-module expert choices. We release all of our code to support future work on improving zero-shot generalization by recycling specialized experts.

  • 4 authors
·
Feb 8, 2024 2

CooK: Empowering General-Purpose Language Models with Modular and Collaborative Knowledge

Large language models (LLMs) are increasingly adopted for knowledge-intensive tasks and contexts. Existing approaches improve the knowledge capabilities of general-purpose LLMs through retrieval or generated knowledge prompting, but they fall short of reflecting two key properties of knowledge-rich models: knowledge should be modular, ever-growing, sourced from diverse domains; knowledge acquisition and production should be a collaborative process, where diverse stakeholders contribute new information. To this end, we propose CooK, a novel framework to empower general-purpose large language models with modular and collaboratively sourced knowledge. We first introduce specialized language models, autoregressive models trained on corpora from a wide range of domains and sources. These specialized LMs serve as parametric knowledge repositories that are later prompted to generate background knowledge for general-purpose LLMs. We then propose three knowledge filters to dynamically select and retain information in generated documents by controlling for relevance, brevity, and factuality. Finally, we propose bottom-up and top-down knowledge integration approaches to augment general-purpose LLMs with the curated (relevant, factual) knowledge from community-driven specialized LMs that enable multi-domain knowledge synthesis and on-demand knowledge requests. Through extensive experiments, we demonstrate that CooK achieves state-of-the-art performance on six benchmark datasets. Our results highlight the potential of enriching general-purpose LLMs with evolving and modular knowledge -- relevant knowledge that can be continuously updated through the collective efforts of the research community.

  • 6 authors
·
May 17, 2023

LitLLMs, LLMs for Literature Review: Are we there yet?

Literature reviews are an essential component of scientific research, but they remain time-intensive and challenging to write, especially due to the recent influx of research papers. This paper explores the zero-shot abilities of recent Large Language Models (LLMs) in assisting with the writing of literature reviews based on an abstract. We decompose the task into two components: 1. Retrieving related works given a query abstract, and 2. Writing a literature review based on the retrieved results. We analyze how effective LLMs are for both components. For retrieval, we introduce a novel two-step search strategy that first uses an LLM to extract meaningful keywords from the abstract of a paper and then retrieves potentially relevant papers by querying an external knowledge base. Additionally, we study a prompting-based re-ranking mechanism with attribution and show that re-ranking doubles the normalized recall compared to naive search methods, while providing insights into the LLM's decision-making process. In the generation phase, we propose a two-step approach that first outlines a plan for the review and then executes steps in the plan to generate the actual review. To evaluate different LLM-based literature review methods, we create test sets from arXiv papers using a protocol designed for rolling use with newly released LLMs to avoid test set contamination in zero-shot evaluations. We release this evaluation protocol to promote additional research and development in this regard. Our empirical results suggest that LLMs show promising potential for writing literature reviews when the task is decomposed into smaller components of retrieval and planning. Our project page including a demonstration system and toolkit can be accessed here: https://litllm.github.io.

  • 8 authors
·
Dec 14, 2024

Experiments with Large Language Models on Retrieval-Augmented Generation for Closed-Source Simulation Software

Large Language Models (LLMs) are increasingly helpful in text generation, even writing code in programming languages based on user prompts written in natural language. They are even applied to generate simulation models for multibody systems from natural language. Research results suggest that LLMs surpass the mere replication of existing code examples, where some LLMs have been trained on an open-source multibody simulation code. However, for closed-source simulation software, such results are not to be expected as their ideas and concepts might differ from other publicly available ones. LLMs can hallucinate for knowledge-intensive tasks, such as model creation, which can lead to wrong responses. This is especially the case for the LLM unknown closed-source simulation software. The same applies to other internal knowledge kept private to protect intellectual property or data privacy. The Retrieval-Augmented Generation (RAG) approach might yield a solution for these knowledge-intensive tasks. This paper explores the application of RAG to closed-source simulation software and presents first experiments. After a brief introduction to LLMs, the RAG approach, and the simulation method applied by the close-source simulation software, several examples are provided to test LLMs' knowledge of the simulation software and the creation of simulation models using two RAG systems. The examples show promising results indicating the benefits of applying RAG systems to closed-source simulation software, helping to access their knowledge. Nevertheless, they also reveal gaps in the applied information and open questions for further research.

  • 2 authors
·
Feb 6

Beyond Standard MoE: Mixture of Latent Experts for Resource-Efficient Language Models

Mixture of Experts (MoE) has emerged as a pivotal architectural paradigm for efficient scaling of Large Language Models (LLMs), operating through selective activation of parameter subsets for each input token. Nevertheless, conventional MoE architectures encounter substantial challenges, including excessive memory utilization and communication overhead during training and inference, primarily attributable to the proliferation of expert modules. In this paper, we introduce Mixture of Latent Experts (MoLE), a novel parameterization methodology that facilitates the mapping of specific experts into a shared latent space. Specifically, all expert operations are systematically decomposed into two principal components: a shared projection into a lower-dimensional latent space, followed by expert-specific transformations with significantly reduced parametric complexity. This factorized approach substantially diminishes parameter count and computational requirements. Beyond the pretraining implementation of the MoLE architecture, we also establish a rigorous mathematical framework for transforming pre-trained MoE models into the MoLE architecture, characterizing the sufficient conditions for optimal factorization and developing a systematic two-phase algorithm for this conversion process. Our comprehensive theoretical analysis demonstrates that MoLE significantly enhances computational efficiency across multiple dimensions while preserving model representational capacity. Empirical evaluations corroborate our theoretical findings, confirming that MoLE achieves performance comparable to standard MoE implementations while substantially reducing resource requirements.

  • 7 authors
·
Mar 29

Deep Learning Model Reuse in the HuggingFace Community: Challenges, Benefit and Trends

The ubiquity of large-scale Pre-Trained Models (PTMs) is on the rise, sparking interest in model hubs, and dedicated platforms for hosting PTMs. Despite this trend, a comprehensive exploration of the challenges that users encounter and how the community leverages PTMs remains lacking. To address this gap, we conducted an extensive mixed-methods empirical study by focusing on discussion forums and the model hub of HuggingFace, the largest public model hub. Based on our qualitative analysis, we present a taxonomy of the challenges and benefits associated with PTM reuse within this community. We then conduct a quantitative study to track model-type trends and model documentation evolution over time. Our findings highlight prevalent challenges such as limited guidance for beginner users, struggles with model output comprehensibility in training or inference, and a lack of model understanding. We also identified interesting trends among models where some models maintain high upload rates despite a decline in topics related to them. Additionally, we found that despite the introduction of model documentation tools, its quantity has not increased over time, leading to difficulties in model comprehension and selection among users. Our study sheds light on new challenges in reusing PTMs that were not reported before and we provide recommendations for various stakeholders involved in PTM reuse.

  • 5 authors
·
Jan 23, 2024 1

CollabStory: Multi-LLM Collaborative Story Generation and Authorship Analysis

The rise of unifying frameworks that enable seamless interoperability of Large Language Models (LLMs) has made LLM-LLM collaboration for open-ended tasks a possibility. Despite this, there have not been efforts to explore such collaborative writing. We take the next step beyond human-LLM collaboration to explore this multi-LLM scenario by generating the first exclusively LLM-generated collaborative stories dataset called CollabStory. We focus on single-author (N=1) to multi-author (up to N=5) scenarios, where multiple LLMs co-author stories. We generate over 32k stories using open-source instruction-tuned LLMs. Further, we take inspiration from the PAN tasks that have set the standard for human-human multi-author writing tasks and analysis. We extend their authorship-related tasks for multi-LLM settings and present baselines for LLM-LLM collaboration. We find that current baselines are not able to handle this emerging scenario. Thus, CollabStory is a resource that could help propel an understanding as well as the development of techniques to discern the use of multiple LLMs. This is crucial to study in the context of writing tasks since LLM-LLM collaboration could potentially overwhelm ongoing challenges related to plagiarism detection, credit assignment, maintaining academic integrity in educational settings, and addressing copyright infringement concerns. We make our dataset and code available at \url{https://github.com/saranya-venkatraman/multi_llm_story_writing}.

  • 3 authors
·
Jun 18, 2024

Toolshed: Scale Tool-Equipped Agents with Advanced RAG-Tool Fusion and Tool Knowledge Bases

Recent advancements in tool-equipped Agents (LLMs) have enabled complex tasks like secure database interactions and multi-agent code development. However, scaling tool capacity beyond agent reasoning or model limits remains a challenge. In this paper, we address these challenges by introducing Toolshed Knowledge Bases, a tool knowledge base (vector database) designed to store enhanced tool representations and optimize tool selection for large-scale tool-equipped Agents. Additionally, we propose Advanced RAG-Tool Fusion, a novel ensemble of tool-applied advanced retrieval-augmented generation (RAG) techniques across the pre-retrieval, intra-retrieval, and post-retrieval phases, without requiring model fine-tuning. During pre-retrieval, tool documents are enhanced with key information and stored in the Toolshed Knowledge Base. Intra-retrieval focuses on query planning and transformation to increase retrieval accuracy. Post-retrieval refines the retrieved tool documents and enables self-reflection. Furthermore, by varying both the total number of tools (tool-M) an Agent has access to and the tool selection threshold (top-k), we address trade-offs between retrieval accuracy, agent performance, and token cost. Our approach achieves 46%, 56%, and 47% absolute improvements on the ToolE single-tool, ToolE multi-tool and Seal-Tools benchmark datasets, respectively (Recall@5).

  • 5 authors
·
Oct 18, 2024

MoTE: Mixture of Ternary Experts for Memory-efficient Large Multimodal Models

Large multimodal Mixture-of-Experts (MoEs) effectively scale the model size to boost performance while maintaining fixed active parameters. However, previous works primarily utilized full-precision experts during sparse up-cycling. Despite they show superior performance on end tasks, the large amount of experts introduces higher memory footprint, which poses significant challenges for the deployment on edge devices. In this work, we propose MoTE, a scalable and memory-efficient approach to train Mixture-of-Ternary-Experts models from dense checkpoint. Instead of training fewer high-precision experts, we propose to train more low-precision experts during up-cycling. Specifically, we use the pre-trained FFN as a shared expert and train ternary routed experts with parameters in {-1, 0, 1}. Extensive experiments show that our approach has promising scaling trend along model size. MoTE achieves comparable performance to full-precision baseline MoE-LLaVA while offering lower memory footprint. Furthermore, our approach is compatible with post-training quantization methods and the advantage further amplifies when memory-constraint goes lower. Given the same amount of expert memory footprint of 3.4GB and combined with post-training quantization, MoTE outperforms MoE-LLaVA by a gain of 4.3% average accuracy on end tasks, demonstrating its effectiveness and potential for memory-constrained devices.

  • 8 authors
·
Jun 17 2

Layerwise Recurrent Router for Mixture-of-Experts

The scaling of large language models (LLMs) has revolutionized their capabilities in various tasks, yet this growth must be matched with efficient computational strategies. The Mixture-of-Experts (MoE) architecture stands out for its ability to scale model size without significantly increasing training costs. Despite their advantages, current MoE models often display parameter inefficiency. For instance, a pre-trained MoE-based LLM with 52 billion parameters might perform comparably to a standard model with 6.7 billion parameters. Being a crucial part of MoE, current routers in different layers independently assign tokens without leveraging historical routing information, potentially leading to suboptimal token-expert combinations and the parameter inefficiency problem. To alleviate this issue, we introduce the Layerwise Recurrent Router for Mixture-of-Experts (RMoE). RMoE leverages a Gated Recurrent Unit (GRU) to establish dependencies between routing decisions across consecutive layers. Such layerwise recurrence can be efficiently parallelly computed for input tokens and introduces negotiable costs. Our extensive empirical evaluations demonstrate that RMoE-based language models consistently outperform a spectrum of baseline models. Furthermore, RMoE integrates a novel computation stage orthogonal to existing methods, allowing seamless compatibility with other MoE architectures. Our analyses attribute RMoE's gains to its effective cross-layer information sharing, which also improves expert selection and diversity. Our code is at https://github.com/qiuzh20/RMoE

  • 7 authors
·
Aug 13, 2024 2

C3PO: Critical-Layer, Core-Expert, Collaborative Pathway Optimization for Test-Time Expert Re-Mixing

Mixture-of-Experts (MoE) Large Language Models (LLMs) suffer from severely sub-optimal expert pathways-our study reveals that naive expert selection learned from pretraining leaves a surprising 10-20% accuracy gap for improvement. Motivated by this observation, we develop a novel class of test-time optimization methods to re-weight or "re-mixing" the experts in different layers jointly for each test sample. Since the test sample's ground truth is unknown, we propose to optimize a surrogate objective defined by the sample's "successful neighbors" from a reference set of samples. We introduce three surrogates and algorithms based on mode-finding, kernel regression, and the average loss of similar reference samples/tasks. To reduce the cost of optimizing whole pathways, we apply our algorithms merely to the core experts' mixing weights in critical layers, which enjoy similar performance but save significant computation. This leads to "Critical-Layer, Core-Expert, Collaborative Pathway Optimization (C3PO)". We apply C3PO to two recent MoE LLMs and examine it on six widely-used benchmarks. It consistently improves the base model by 7-15% in accuracy and outperforms widely used test-time learning baselines, e.g., in-context learning and prompt/prefix tuning, by a large margin. Moreover, C3PO enables MoE LLMs with 1-3B active parameters to outperform LLMs of 7-9B parameters, hence improving MoE's advantages on efficiency. Our thorough ablation study further sheds novel insights on achieving test-time improvement on MoE.

  • 3 authors
·
Apr 10 3

Mixture of Thoughts: Learning to Aggregate What Experts Think, Not Just What They Say

Open-source Large Language Models (LLMs) increasingly specialize by domain (e.g., math, code, general reasoning), motivating systems that leverage complementary strengths across models. Prior multi-LLM approaches either (i) route a query to one or a few experts and generate independently, (ii) aggregate outputs from each model via costly multi-turn exchanges, or (iii) fuse weights into a single model-typically requiring architectural homogeneity. We introduce Mixture of Thoughts (MoT), a simple method for latent-level collaboration among heterogeneous experts under a global routing scheme. For each query, a lightweight router selects top-K experts and designates a primary expert; uniformly placed interaction layers project hidden states into a shared latent space where the primary expert performs cross-attention over its active (selected) peers. Pre-trained experts remain frozen; only the router and the lightweight interaction layers are trained with a novel joint training objective that improves both the expert selection and inter-expert collaboration. Across five in-distribution (ID) and three out-of-distribution (OOD) benchmarks, MoT surpasses the current routing and aggregation-based state-of-the-art, Avengers, by +0.38% and +2.92%, respectively. Further, MoT significantly outperforms the best-performing single model. It achieves this with single-pass inference, runtime comparable to routing baselines, and none of the overheads of iterative aggregation. MoT offers a simple latent-space mechanism for combining heterogeneous LLMs, a practical step toward broader multi-LLM collaboration. Our code is publicly available at https://github.com/jacobfa/mot.

  • 4 authors
·
Sep 25 2

What do we know about Hugging Face? A systematic literature review and quantitative validation of qualitative claims

Background: Collaborative Software Package Registries (SPRs) are an integral part of the software supply chain. Much engineering work synthesizes SPR package into applications. Prior research has examined SPRs for traditional software, such as NPM (JavaScript) and PyPI (Python). Pre-Trained Model (PTM) Registries are an emerging class of SPR of increasing importance, because they support the deep learning supply chain. Aims: Recent empirical research has examined PTM registries in ways such as vulnerabilities, reuse processes, and evolution. However, no existing research synthesizes them to provide a systematic understanding of the current knowledge. Some of the existing research includes qualitative claims lacking quantitative analysis. Our research fills these gaps by providing a knowledge synthesis and quantitative analyses. Methods: We first conduct a systematic literature review (SLR). We then observe that some of the claims are qualitative. We identify quantifiable metrics associated with those claims, and measure in order to substantiate these claims. Results: From our SLR, we identify 12 claims about PTM reuse on the HuggingFace platform, 4 of which lack quantitative validation. We successfully test 3 of these claims through a quantitative analysis, and directly compare one with traditional software. Our findings corroborate qualitative claims with quantitative measurements. Our findings are: (1) PTMs have a much higher turnover rate than traditional software, indicating a dynamic and rapidly evolving reuse environment within the PTM ecosystem; and (2) There is a strong correlation between documentation quality and PTM popularity. Conclusions: We confirm qualitative research claims with concrete metrics, supporting prior qualitative and case study research. Our measures show further dynamics of PTM reuse, inspiring research infrastructure and new measures.

  • 5 authors
·
Jun 12, 2024

RE-Bench: Evaluating frontier AI R&D capabilities of language model agents against human experts

Frontier AI safety policies highlight automation of AI research and development (R&D) by AI agents as an important capability to anticipate. However, there exist few evaluations for AI R&D capabilities, and none that are highly realistic and have a direct comparison to human performance. We introduce RE-Bench (Research Engineering Benchmark, v1), which consists of 7 challenging, open-ended ML research engineering environments and data from 71 8-hour attempts by 61 distinct human experts. We confirm that our experts make progress in the environments given 8 hours, with 82% of expert attempts achieving a non-zero score and 24% matching or exceeding our strong reference solutions. We compare humans to several public frontier models through best-of-k with varying time budgets and agent designs, and find that the best AI agents achieve a score 4x higher than human experts when both are given a total time budget of 2 hours per environment. However, humans currently display better returns to increasing time budgets, narrowly exceeding the top AI agent scores given an 8-hour budget, and achieving 2x the score of the top AI agent when both are given 32 total hours (across different attempts). Qualitatively, we find that modern AI agents possess significant expertise in many ML topics -- e.g. an agent wrote a faster custom Triton kernel than any of our human experts' -- and can generate and test solutions over ten times faster than humans, at much lower cost. We open-source the evaluation environments, human expert data, analysis code and agent trajectories to facilitate future research.

  • 22 authors
·
Nov 22, 2024

SambaNova SN40L: Scaling the AI Memory Wall with Dataflow and Composition of Experts

Monolithic large language models (LLMs) like GPT-4 have paved the way for modern generative AI applications. Training, serving, and maintaining monolithic LLMs at scale, however, remains prohibitively expensive and challenging. The disproportionate increase in compute-to-memory ratio of modern AI accelerators have created a memory wall, necessitating new methods to deploy AI. Composition of Experts (CoE) is an alternative modular approach that lowers the cost and complexity of training and serving. However, this approach presents two key challenges when using conventional hardware: (1) without fused operations, smaller models have lower operational intensity, which makes high utilization more challenging to achieve; and (2) hosting a large number of models can be either prohibitively expensive or slow when dynamically switching between them. In this paper, we describe how combining CoE, streaming dataflow, and a three-tier memory system scales the AI memory wall. We describe Samba-CoE, a CoE system with 150 experts and a trillion total parameters. We deploy Samba-CoE on the SambaNova SN40L Reconfigurable Dataflow Unit (RDU) - a commercial dataflow accelerator architecture that has been co-designed for enterprise inference and training applications. The chip introduces a new three-tier memory system with on-chip distributed SRAM, on-package HBM, and off-package DDR DRAM. A dedicated inter-RDU network enables scaling up and out over multiple sockets. We demonstrate speedups ranging from 2x to 13x on various benchmarks running on eight RDU sockets compared with an unfused baseline. We show that for CoE inference deployments, the 8-socket RDU Node reduces machine footprint by up to 19x, speeds up model switching time by 15x to 31x, and achieves an overall speedup of 3.7x over a DGX H100 and 6.6x over a DGX A100.

  • 30 authors
·
May 13, 2024

What Matters for Model Merging at Scale?

Model merging aims to combine multiple expert models into a more capable single model, offering benefits such as reduced storage and serving costs, improved generalization, and support for decentralized model development. Despite its promise, previous studies have primarily focused on merging a few small models. This leaves many unanswered questions about the effect of scaling model size and how it interplays with other key factors -- like the base model quality and number of expert models -- , to affect the merged model's performance. This work systematically evaluates the utility of model merging at scale, examining the impact of these different factors. We experiment with merging fully fine-tuned models using 4 popular merging methods -- Averaging, Task~Arithmetic, Dare, and TIES -- across model sizes ranging from 1B-64B parameters and merging up to 8 different expert models. We evaluate the merged models on both held-in tasks, i.e., the expert's training tasks, and zero-shot generalization to unseen held-out tasks. Our experiments provide several new insights about model merging at scale and the interplay between different factors. First, we find that merging is more effective when experts are created from strong base models, i.e., models with good zero-shot performance. Second, larger models facilitate easier merging. Third merging consistently improves generalization capabilities. Notably, when merging 8 large expert models, the merged models often generalize better compared to the multitask trained models. Fourth, we can better merge more expert models when working with larger models. Fifth, different merging methods behave very similarly at larger scales. Overall, our findings shed light on some interesting properties of model merging while also highlighting some limitations. We hope that this study will serve as a reference point on large-scale merging for upcoming research.

  • 7 authors
·
Oct 4, 2024 2

Two Experts Are All You Need for Steering Thinking: Reinforcing Cognitive Effort in MoE Reasoning Models Without Additional Training

Mixture-of-Experts (MoE) architectures within Large Reasoning Models (LRMs) have achieved impressive reasoning capabilities by selectively activating experts to facilitate structured cognitive processes. Despite notable advances, existing reasoning models often suffer from cognitive inefficiencies like overthinking and underthinking. To address these limitations, we introduce a novel inference-time steering methodology called Reinforcing Cognitive Experts (RICE), designed to improve reasoning performance without additional training or complex heuristics. Leveraging normalized Pointwise Mutual Information (nPMI), we systematically identify specialized experts, termed ''cognitive experts'' that orchestrate meta-level reasoning operations characterized by tokens like ''<think>''. Empirical evaluations with leading MoE-based LRMs (DeepSeek-R1 and Qwen3-235B) on rigorous quantitative and scientific reasoning benchmarks demonstrate noticeable and consistent improvements in reasoning accuracy, cognitive efficiency, and cross-domain generalization. Crucially, our lightweight approach substantially outperforms prevalent reasoning-steering techniques, such as prompt design and decoding constraints, while preserving the model's general instruction-following skills. These results highlight reinforcing cognitive experts as a promising, practical, and interpretable direction to enhance cognitive efficiency within advanced reasoning models.

  • 15 authors
·
May 20 2

Foundation Models and Fair Use

Existing foundation models are trained on copyrighted material. Deploying these models can pose both legal and ethical risks when data creators fail to receive appropriate attribution or compensation. In the United States and several other countries, copyrighted content may be used to build foundation models without incurring liability due to the fair use doctrine. However, there is a caveat: If the model produces output that is similar to copyrighted data, particularly in scenarios that affect the market of that data, fair use may no longer apply to the output of the model. In this work, we emphasize that fair use is not guaranteed, and additional work may be necessary to keep model development and deployment squarely in the realm of fair use. First, we survey the potential risks of developing and deploying foundation models based on copyrighted content. We review relevant U.S. case law, drawing parallels to existing and potential applications for generating text, source code, and visual art. Experiments confirm that popular foundation models can generate content considerably similar to copyrighted material. Second, we discuss technical mitigations that can help foundation models stay in line with fair use. We argue that more research is needed to align mitigation strategies with the current state of the law. Lastly, we suggest that the law and technical mitigations should co-evolve. For example, coupled with other policy mechanisms, the law could more explicitly consider safe harbors when strong technical tools are used to mitigate infringement harms. This co-evolution may help strike a balance between intellectual property and innovation, which speaks to the original goal of fair use. But we emphasize that the strategies we describe here are not a panacea and more work is needed to develop policies that address the potential harms of foundation models.

  • 6 authors
·
Mar 27, 2023 1

P-Adapters: Robustly Extracting Factual Information from Language Models with Diverse Prompts

Recent work (e.g. LAMA (Petroni et al., 2019)) has found that the quality of the factual information extracted from Large Language Models (LLMs) depends on the prompts used to query them. This inconsistency is problematic because different users will query LLMs for the same information using different wording, but should receive the same, accurate responses regardless. In this work we aim to address this shortcoming by introducing P-Adapters: lightweight models that sit between the embedding layer and first attention layer of LLMs. They take LLM embeddings as input and output continuous prompts that are used to query the LLM. Additionally, we investigate Mixture of Experts (MoE) models that learn a set of continuous prompts ("experts") and select one to query the LLM. They require a separate classifier trained on human-annotated data to map natural language prompts to the continuous ones. P-Adapters perform comparably to the more complex MoE models in extracting factual information from BERT and RoBERTa while eliminating the need for additional annotations. P-Adapters show between 12-26% absolute improvement in precision and 36-50% absolute improvement in consistency over a baseline of only using natural language queries. Finally, we investigate what makes P-Adapters successful and conclude that a significant factor is access to the LLM's embeddings of the original natural language prompt, particularly the subject of the entity pair being queried.

  • 3 authors
·
Oct 14, 2021

Improving Wikipedia Verifiability with AI

Verifiability is a core content policy of Wikipedia: claims that are likely to be challenged need to be backed by citations. There are millions of articles available online and thousands of new articles are released each month. For this reason, finding relevant sources is a difficult task: many claims do not have any references that support them. Furthermore, even existing citations might not support a given claim or become obsolete once the original source is updated or deleted. Hence, maintaining and improving the quality of Wikipedia references is an important challenge and there is a pressing need for better tools to assist humans in this effort. Here, we show that the process of improving references can be tackled with the help of artificial intelligence (AI). We develop a neural network based system, called Side, to identify Wikipedia citations that are unlikely to support their claims, and subsequently recommend better ones from the web. We train this model on existing Wikipedia references, therefore learning from the contributions and combined wisdom of thousands of Wikipedia editors. Using crowd-sourcing, we observe that for the top 10% most likely citations to be tagged as unverifiable by our system, humans prefer our system's suggested alternatives compared to the originally cited reference 70% of the time. To validate the applicability of our system, we built a demo to engage with the English-speaking Wikipedia community and find that Side's first citation recommendation collects over 60% more preferences than existing Wikipedia citations for the same top 10% most likely unverifiable claims according to Side. Our results indicate that an AI-based system could be used, in tandem with humans, to improve the verifiability of Wikipedia. More generally, we hope that our work can be used to assist fact checking efforts and increase the general trustworthiness of information online.

  • 13 authors
·
Jul 8, 2022

DomainRAG: A Chinese Benchmark for Evaluating Domain-specific Retrieval-Augmented Generation

Retrieval-Augmented Generation (RAG) offers a promising solution to address various limitations of Large Language Models (LLMs), such as hallucination and difficulties in keeping up with real-time updates. This approach is particularly critical in expert and domain-specific applications where LLMs struggle to cover expert knowledge. Therefore, evaluating RAG models in such scenarios is crucial, yet current studies often rely on general knowledge sources like Wikipedia to assess the models' abilities in solving common-sense problems. In this paper, we evaluated LLMs by RAG settings in a domain-specific context, college enrollment. We identified six required abilities for RAG models, including the ability in conversational RAG, analyzing structural information, faithfulness to external knowledge, denoising, solving time-sensitive problems, and understanding multi-document interactions. Each ability has an associated dataset with shared corpora to evaluate the RAG models' performance. We evaluated popular LLMs such as Llama, Baichuan, ChatGLM, and GPT models. Experimental results indicate that existing closed-book LLMs struggle with domain-specific questions, highlighting the need for RAG models to solve expert problems. Moreover, there is room for RAG models to improve their abilities in comprehending conversational history, analyzing structural information, denoising, processing multi-document interactions, and faithfulness in expert knowledge. We expect future studies could solve these problems better.

  • 9 authors
·
Jun 9, 2024

A Comprehensive Study of Knowledge Editing for Large Language Models

Large Language Models (LLMs) have shown extraordinary capabilities in understanding and generating text that closely mirrors human communication. However, a primary limitation lies in the significant computational demands during training, arising from their extensive parameterization. This challenge is further intensified by the dynamic nature of the world, necessitating frequent updates to LLMs to correct outdated information or integrate new knowledge, thereby ensuring their continued relevance. Note that many applications demand continual model adjustments post-training to address deficiencies or undesirable behaviors. There is an increasing interest in efficient, lightweight methods for on-the-fly model modifications. To this end, recent years have seen a burgeoning in the techniques of knowledge editing for LLMs, which aim to efficiently modify LLMs' behaviors within specific domains while preserving overall performance across various inputs. In this paper, we first define the knowledge editing problem and then provide a comprehensive review of cutting-edge approaches. Drawing inspiration from educational and cognitive research theories, we propose a unified categorization criterion that classifies knowledge editing methods into three groups: resorting to external knowledge, merging knowledge into the model, and editing intrinsic knowledge. Furthermore, we introduce a new benchmark, KnowEdit, for a comprehensive empirical evaluation of representative knowledge editing approaches. Additionally, we provide an in-depth analysis of knowledge location, which can provide a deeper understanding of the knowledge structures inherent within LLMs. Finally, we discuss several potential applications of knowledge editing, outlining its broad and impactful implications.

  • 22 authors
·
Jan 2, 2024

Enhancing Retrieval and Managing Retrieval: A Four-Module Synergy for Improved Quality and Efficiency in RAG Systems

Retrieval-augmented generation (RAG) techniques leverage the in-context learning capabilities of large language models (LLMs) to produce more accurate and relevant responses. Originating from the simple 'retrieve-then-read' approach, the RAG framework has evolved into a highly flexible and modular paradigm. A critical component, the Query Rewriter module, enhances knowledge retrieval by generating a search-friendly query. This method aligns input questions more closely with the knowledge base. Our research identifies opportunities to enhance the Query Rewriter module to Query Rewriter+ by generating multiple queries to overcome the Information Plateaus associated with a single query and by rewriting questions to eliminate Ambiguity, thereby clarifying the underlying intent. We also find that current RAG systems exhibit issues with Irrelevant Knowledge; to overcome this, we propose the Knowledge Filter. These two modules are both based on the instruction-tuned Gemma-2B model, which together enhance response quality. The final identified issue is Redundant Retrieval; we introduce the Memory Knowledge Reservoir and the Retriever Trigger to solve this. The former supports the dynamic expansion of the RAG system's knowledge base in a parameter-free manner, while the latter optimizes the cost for accessing external knowledge, thereby improving resource utilization and response efficiency. These four RAG modules synergistically improve the response quality and efficiency of the RAG system. The effectiveness of these modules has been validated through experiments and ablation studies across six common QA datasets. The source code can be accessed at https://github.com/Ancientshi/ERM4.

  • 6 authors
·
Jul 15, 2024

MedKGent: A Large Language Model Agent Framework for Constructing Temporally Evolving Medical Knowledge Graph

The rapid expansion of medical literature presents growing challenges for structuring and integrating domain knowledge at scale. Knowledge Graphs (KGs) offer a promising solution by enabling efficient retrieval, automated reasoning, and knowledge discovery. However, current KG construction methods often rely on supervised pipelines with limited generalizability or naively aggregate outputs from Large Language Models (LLMs), treating biomedical corpora as static and ignoring the temporal dynamics and contextual uncertainty of evolving knowledge. To address these limitations, we introduce MedKGent, a LLM agent framework for constructing temporally evolving medical KGs. Leveraging over 10 million PubMed abstracts published between 1975 and 2023, we simulate the emergence of biomedical knowledge via a fine-grained daily time series. MedKGent incrementally builds the KG in a day-by-day manner using two specialized agents powered by the Qwen2.5-32B-Instruct model. The Extractor Agent identifies knowledge triples and assigns confidence scores via sampling-based estimation, which are used to filter low-confidence extractions and inform downstream processing. The Constructor Agent incrementally integrates the retained triples into a temporally evolving graph, guided by confidence scores and timestamps to reinforce recurring knowledge and resolve conflicts. The resulting KG contains 156,275 entities and 2,971,384 relational triples. Quality assessments by two SOTA LLMs and three domain experts demonstrate an accuracy approaching 90%, with strong inter-rater agreement. To evaluate downstream utility, we conduct RAG across seven medical question answering benchmarks using five leading LLMs, consistently observing significant improvements over non-augmented baselines. Case studies further demonstrate the KG's value in literature-based drug repurposing via confidence-aware causal inference.

  • 13 authors
·
Aug 17

Glider: Global and Local Instruction-Driven Expert Router

The availability of performant pre-trained models has led to a proliferation of fine-tuned expert models that are specialized to particular domains. This has enabled the creation of powerful and adaptive routing-based "Model MoErging" methods with the goal of using expert modules to create an aggregate system with improved performance or generalization. However, existing MoErging methods often prioritize generalization to unseen tasks at the expense of performance on held-in tasks, which limits its practical applicability in real-world deployment scenarios. We observe that current token-level routing mechanisms neglect the global semantic context of the input task. This token-wise independence hinders effective expert selection for held-in tasks, as routing decisions fail to incorporate the semantic properties of the task. To address this, we propose, Global and Local Instruction Driven Expert Router (GLIDER) that integrates a multi-scale routing mechanism, encompassing a semantic global router and a learned local router. The global router leverages LLM's advanced reasoning capabilities for semantic-related contexts to enhance expert selection. Given the input query and LLM, the router generates semantic task instructions that guide the retrieval of the most relevant experts across all layers. This global guidance is complemented by a local router that facilitates token-level routing decisions within each module, enabling finer control and enhanced performance on unseen tasks. Our experiments using T5-based models for T0 and FLAN tasks demonstrate that GLIDER achieves substantially improved held-in performance while maintaining strong generalization on held-out tasks. We also perform ablations experiments to dive deeper into the components of GLIDER. Our experiments highlight the importance of our multi-scale routing that leverages LLM-driven semantic reasoning for MoErging methods.

  • 7 authors
·
Oct 9, 2024

HOBBIT: A Mixed Precision Expert Offloading System for Fast MoE Inference

The Mixture-of-Experts (MoE) architecture has demonstrated significant advantages in the era of Large Language Models (LLMs), offering enhanced capabilities with reduced inference costs. However, deploying MoE-based LLMs on memoryconstrained edge devices remains challenging due to their substantial memory requirements. While existing expertoffloading methods alleviate the memory requirements, they often incur significant expert-loading costs or compromise model accuracy. We present HOBBIT, a mixed precision expert offloading system to enable flexible and efficient MoE inference. Our key insight is that dynamically replacing less critical cache-miss experts with low precision versions can substantially reduce expert-loading latency while preserving model accuracy. HOBBIT introduces three innovative techniques that map the natural hierarchy of MoE computation: (1) a token-level dynamic expert loading mechanism, (2) a layer-level adaptive expert prefetching technique, and (3) a sequence-level multidimensional expert caching policy. These innovations fully leverage the benefits of mixedprecision expert inference. By implementing HOBBIT on top of the renowned LLM inference framework Llama.cpp, we evaluate its performance across different edge devices with representative MoE models. The results demonstrate that HOBBIT achieves up to a 9.93x speedup in decoding compared to state-of-the-art MoE offloading systems.

  • 8 authors
·
Nov 3, 2024

Routing Matters in MoE: Scaling Diffusion Transformers with Explicit Routing Guidance

Mixture-of-Experts (MoE) has emerged as a powerful paradigm for scaling model capacity while preserving computational efficiency. Despite its notable success in large language models (LLMs), existing attempts to apply MoE to Diffusion Transformers (DiTs) have yielded limited gains. We attribute this gap to fundamental differences between language and visual tokens. Language tokens are semantically dense with pronounced inter-token variation, while visual tokens exhibit spatial redundancy and functional heterogeneity, hindering expert specialization in vision MoE. To this end, we present ProMoE, an MoE framework featuring a two-step router with explicit routing guidance that promotes expert specialization. Specifically, this guidance encourages the router to partition image tokens into conditional and unconditional sets via conditional routing according to their functional roles, and refine the assignments of conditional image tokens through prototypical routing with learnable prototypes based on semantic content. Moreover, the similarity-based expert allocation in latent space enabled by prototypical routing offers a natural mechanism for incorporating explicit semantic guidance, and we validate that such guidance is crucial for vision MoE. Building on this, we propose a routing contrastive loss that explicitly enhances the prototypical routing process, promoting intra-expert coherence and inter-expert diversity. Extensive experiments on ImageNet benchmark demonstrate that ProMoE surpasses state-of-the-art methods under both Rectified Flow and DDPM training objectives. Code and models will be made publicly available.

Sparse MoE as the New Dropout: Scaling Dense and Self-Slimmable Transformers

Despite their remarkable achievement, gigantic transformers encounter significant drawbacks, including exorbitant computational and memory footprints during training, as well as severe collapse evidenced by a high degree of parameter redundancy. Sparsely-activated Mixture-of-Experts (SMoEs) have shown promise to mitigate the issue of training efficiency, yet they are prone to (1) redundant experts due to representational collapse; and (2) poor expert scalability for inference and downstream fine-tuning, primarily due to overfitting of the learned routing policy to the number of activated experts during training. As recent research efforts are predominantly focused on improving routing policies to encourage expert specializations, this work focuses on exploring the overlooked scalability bottleneck of SMoEs and leveraging it to effectively scale dense transformers. To this end, we propose a new plug-and-play training framework, SMoE-Dropout, to enable scaling transformers to better accuracy in their full capacity without collapse. Specifically, SMoE-Dropout consists of a randomly initialized and fixed router network to activate experts and gradually increases the activated expert number as training progresses over time. Transformers trained by SMoE-Dropout naturally exhibit a self-slimmable property subject to resource availability, offering smooth and consistent performance boosts with an increase in activated experts during inference or fine-tuning. Our extensive experiments demonstrate the superior performance and substantial computation savings of SMoE-Dropout, compared to dense training baselines with equivalent parameter counts. In particular, our trained BERT outperforms its densely trained counterpart with consistent improvements of {1.03%, 0.78%, 1.09%} on challenging reasoning tasks {ASDiv-A, MAWPS, SVAMP}, respectively.

  • 5 authors
·
Mar 2, 2023

Duplicate Question Retrieval and Confirmation Time Prediction in Software Communities

Community Question Answering (CQA) in different domains is growing at a large scale because of the availability of several platforms and huge shareable information among users. With the rapid growth of such online platforms, a massive amount of archived data makes it difficult for moderators to retrieve possible duplicates for a new question and identify and confirm existing question pairs as duplicates at the right time. This problem is even more critical in CQAs corresponding to large software systems like askubuntu where moderators need to be experts to comprehend something as a duplicate. Note that the prime challenge in such CQA platforms is that the moderators are themselves experts and are therefore usually extremely busy with their time being extraordinarily expensive. To facilitate the task of the moderators, in this work, we have tackled two significant issues for the askubuntu CQA platform: (1) retrieval of duplicate questions given a new question and (2) duplicate question confirmation time prediction. In the first task, we focus on retrieving duplicate questions from a question pool for a particular newly posted question. In the second task, we solve a regression problem to rank a pair of questions that could potentially take a long time to get confirmed as duplicates. For duplicate question retrieval, we propose a Siamese neural network based approach by exploiting both text and network-based features, which outperforms several state-of-the-art baseline techniques. Our method outperforms DupPredictor and DUPE by 5% and 7% respectively. For duplicate confirmation time prediction, we have used both the standard machine learning models and neural network along with the text and graph-based features. We obtain Spearman's rank correlation of 0.20 and 0.213 (statistically significant) for text and graph based features respectively.

  • 5 authors
·
Sep 10, 2023

Thought Propagation: An Analogical Approach to Complex Reasoning with Large Language Models

Large Language Models (LLMs) have achieved remarkable success in reasoning tasks with the development of prompting methods. However, existing prompting approaches cannot reuse insights of solving similar problems and suffer from accumulated errors in multi-step reasoning, since they prompt LLMs to reason from scratch. To address these issues, we propose \textit{Thought Propagation (TP)}, which explores the analogous problems and leverages their solutions to enhance the complex reasoning ability of LLMs. These analogous problems are related to the input one, with reusable solutions and problem-solving strategies. Thus, it is promising to propagate insights of solving previous analogous problems to inspire new problem-solving. To achieve this, TP first prompts LLMs to propose and solve a set of analogous problems that are related to the input one. Then, TP reuses the results of analogous problems to directly yield a new solution or derive a knowledge-intensive plan for execution to amend the initial solution obtained from scratch. TP is compatible with existing prompting approaches, allowing plug-and-play generalization and enhancement in a wide range of tasks without much labor in task-specific prompt engineering. Experiments across three challenging tasks demonstrate TP enjoys a substantial improvement over the baselines by an average of 12\% absolute increase in finding the optimal solutions in Shortest-path Reasoning, 13\% improvement of human preference in Creative Writing, and 15\% enhancement in the task completion rate of LLM-Agent Planning.

  • 3 authors
·
Oct 5, 2023

Toward a traceable, explainable, and fairJD/Resume recommendation system

In the last few decades, companies are interested to adopt an online automated recruitment process in an international recruitment environment. The problem is that the recruitment of employees through the manual procedure is a time and money consuming process. As a result, processing a significant number of applications through conventional methods can lead to the recruitment of clumsy individuals. Different JD/Resume matching model architectures have been proposed and reveal a high accuracy level in selecting relevant candidatesfor the required job positions. However, the development of an automatic recruitment system is still one of the main challenges. The reason is that the development of a fully automated recruitment system is a difficult task and poses different challenges. For example, providing a detailed matching explanation for the targeted stakeholders is needed to ensure a transparent recommendation. There are several knowledge bases that represent skills and competencies (e.g, ESCO, O*NET) that are used to identify the candidate and the required job skills for a matching purpose. Besides, modernpre-trained language models are fine-tuned for this context such as identifying lines where a specific feature was introduced. Typically, pre-trained language models use transfer-based machine learning models to be fine-tuned for a specific field. In this proposal, our aim is to explore how modern language models (based on transformers) can be combined with knowledge bases and ontologies to enhance the JD/Resume matching process. Our system aims at using knowledge bases and features to support the explainability of the JD/Resume matching. Finally, given that multiple software components, datasets, ontology, andmachine learning models will be explored, we aim at proposing a fair, ex-plainable, and traceable architecture for a Resume/JD matching purpose.

  • 3 authors
·
Feb 2, 2022