Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeGeneration-Augmented Retrieval for Open-domain Question Answering
We propose Generation-Augmented Retrieval (GAR) for answering open-domain questions, which augments a query through text generation of heuristically discovered relevant contexts without external resources as supervision. We demonstrate that the generated contexts substantially enrich the semantics of the queries and GAR with sparse representations (BM25) achieves comparable or better performance than state-of-the-art dense retrieval methods such as DPR. We show that generating diverse contexts for a query is beneficial as fusing their results consistently yields better retrieval accuracy. Moreover, as sparse and dense representations are often complementary, GAR can be easily combined with DPR to achieve even better performance. GAR achieves state-of-the-art performance on Natural Questions and TriviaQA datasets under the extractive QA setup when equipped with an extractive reader, and consistently outperforms other retrieval methods when the same generative reader is used.
End-to-End Entity Detection with Proposer and Regressor
Named entity recognition is a traditional task in natural language processing. In particular, nested entity recognition receives extensive attention for the widespread existence of the nesting scenario. The latest research migrates the well-established paradigm of set prediction in object detection to cope with entity nesting. However, the manual creation of query vectors, which fail to adapt to the rich semantic information in the context, limits these approaches. An end-to-end entity detection approach with proposer and regressor is presented in this paper to tackle the issues. First, the proposer utilizes the feature pyramid network to generate high-quality entity proposals. Then, the regressor refines the proposals for generating the final prediction. The model adopts encoder-only architecture and thus obtains the advantages of the richness of query semantics, high precision of entity localization, and easiness of model training. Moreover, we introduce the novel spatially modulated attention and progressive refinement for further improvement. Extensive experiments demonstrate that our model achieves advanced performance in flat and nested NER, achieving a new state-of-the-art F1 score of 80.74 on the GENIA dataset and 72.38 on the WeiboNER dataset.
TAP4LLM: Table Provider on Sampling, Augmenting, and Packing Semi-structured Data for Large Language Model Reasoning
Table reasoning tasks have shown remarkable progress with the development of large language models (LLMs), which involve interpreting and drawing conclusions from tabular data based on natural language (NL) questions. Existing solutions mainly tested on smaller tables face scalability issues and struggle with complex queries due to incomplete or dispersed data across different table sections. To alleviate these challenges, we propose TAP4LLM as a versatile pre-processor suite for leveraging LLMs in table-based tasks effectively. It covers several distinct components: (1) table sampling to decompose large tables into manageable sub-tables based on query semantics, (2) table augmentation to enhance tables with additional knowledge from external sources or models, and (3) table packing & serialization to convert tables into various formats suitable for LLMs' understanding. In each module, we design and compare several common methods under various usage scenarios, aiming to shed light on the best practices for leveraging LLMs for table-reasoning tasks. Our experiments show that our method improves LLMs' reasoning capabilities in various tabular tasks and enhances the interaction between LLMs and tabular data by employing effective pre-processing.
Disentangling Dense Embeddings with Sparse Autoencoders
Sparse autoencoders (SAEs) have shown promise in extracting interpretable features from complex neural networks. We present one of the first applications of SAEs to dense text embeddings from large language models, demonstrating their effectiveness in disentangling semantic concepts. By training SAEs on embeddings of over 420,000 scientific paper abstracts from computer science and astronomy, we show that the resulting sparse representations maintain semantic fidelity while offering interpretability. We analyse these learned features, exploring their behaviour across different model capacities and introducing a novel method for identifying ``feature families'' that represent related concepts at varying levels of abstraction. To demonstrate the practical utility of our approach, we show how these interpretable features can be used to precisely steer semantic search, allowing for fine-grained control over query semantics. This work bridges the gap between the semantic richness of dense embeddings and the interpretability of sparse representations. We open source our embeddings, trained sparse autoencoders, and interpreted features, as well as a web app for exploring them.
UFineBench: Towards Text-based Person Retrieval with Ultra-fine Granularity
Existing text-based person retrieval datasets often have relatively coarse-grained text annotations. This hinders the model to comprehend the fine-grained semantics of query texts in real scenarios. To address this problem, we contribute a new benchmark named UFineBench for text-based person retrieval with ultra-fine granularity. Firstly, we construct a new dataset named UFine6926. We collect a large number of person images and manually annotate each image with two detailed textual descriptions, averaging 80.8 words each. The average word count is three to four times that of the previous datasets. In addition of standard in-domain evaluation, we also propose a special evaluation paradigm more representative of real scenarios. It contains a new evaluation set with cross domains, cross textual granularity and cross textual styles, named UFine3C, and a new evaluation metric for accurately measuring retrieval ability, named mean Similarity Distribution (mSD). Moreover, we propose CFAM, a more efficient algorithm especially designed for text-based person retrieval with ultra fine-grained texts. It achieves fine granularity mining by adopting a shared cross-modal granularity decoder and hard negative match mechanism. With standard in-domain evaluation, CFAM establishes competitive performance across various datasets, especially on our ultra fine-grained UFine6926. Furthermore, by evaluating on UFine3C, we demonstrate that training on our UFine6926 significantly improves generalization to real scenarios compared with other coarse-grained datasets. The dataset and code will be made publicly available at https://github.com/Zplusdragon/UFineBench.
Semantics Meets Temporal Correspondence: Self-supervised Object-centric Learning in Videos
Self-supervised methods have shown remarkable progress in learning high-level semantics and low-level temporal correspondence. Building on these results, we take one step further and explore the possibility of integrating these two features to enhance object-centric representations. Our preliminary experiments indicate that query slot attention can extract different semantic components from the RGB feature map, while random sampling based slot attention can exploit temporal correspondence cues between frames to assist instance identification. Motivated by this, we propose a novel semantic-aware masked slot attention on top of the fused semantic features and correspondence maps. It comprises two slot attention stages with a set of shared learnable Gaussian distributions. In the first stage, we use the mean vectors as slot initialization to decompose potential semantics and generate semantic segmentation masks through iterative attention. In the second stage, for each semantics, we randomly sample slots from the corresponding Gaussian distribution and perform masked feature aggregation within the semantic area to exploit temporal correspondence patterns for instance identification. We adopt semantic- and instance-level temporal consistency as self-supervision to encourage temporally coherent object-centric representations. Our model effectively identifies multiple object instances with semantic structure, reaching promising results on unsupervised video object discovery. Furthermore, we achieve state-of-the-art performance on dense label propagation tasks, demonstrating the potential for object-centric analysis. The code is released at https://github.com/shvdiwnkozbw/SMTC.
Structure and Semantics Preserving Document Representations
Retrieving relevant documents from a corpus is typically based on the semantic similarity between the document content and query text. The inclusion of structural relationship between documents can benefit the retrieval mechanism by addressing semantic gaps. However, incorporating these relationships requires tractable mechanisms that balance structure with semantics and take advantage of the prevalent pre-train/fine-tune paradigm. We propose here a holistic approach to learning document representations by integrating intra-document content with inter-document relations. Our deep metric learning solution analyzes the complex neighborhood structure in the relationship network to efficiently sample similar/dissimilar document pairs and defines a novel quintuplet loss function that simultaneously encourages document pairs that are semantically relevant to be closer and structurally unrelated to be far apart in the representation space. Furthermore, the separation margins between the documents are varied flexibly to encode the heterogeneity in relationship strengths. The model is fully fine-tunable and natively supports query projection during inference. We demonstrate that it outperforms competing methods on multiple datasets for document retrieval tasks.
Improving Query Representations for Dense Retrieval with Pseudo Relevance Feedback
Dense retrieval systems conduct first-stage retrieval using embedded representations and simple similarity metrics to match a query to documents. Its effectiveness depends on encoded embeddings to capture the semantics of queries and documents, a challenging task due to the shortness and ambiguity of search queries. This paper proposes ANCE-PRF, a new query encoder that uses pseudo relevance feedback (PRF) to improve query representations for dense retrieval. ANCE-PRF uses a BERT encoder that consumes the query and the top retrieved documents from a dense retrieval model, ANCE, and it learns to produce better query embeddings directly from relevance labels. It also keeps the document index unchanged to reduce overhead. ANCE-PRF significantly outperforms ANCE and other recent dense retrieval systems on several datasets. Analysis shows that the PRF encoder effectively captures the relevant and complementary information from PRF documents, while ignoring the noise with its learned attention mechanism.
3D Scene Graph: A Structure for Unified Semantics, 3D Space, and Camera
A comprehensive semantic understanding of a scene is important for many applications - but in what space should diverse semantic information (e.g., objects, scene categories, material types, texture, etc.) be grounded and what should be its structure? Aspiring to have one unified structure that hosts diverse types of semantics, we follow the Scene Graph paradigm in 3D, generating a 3D Scene Graph. Given a 3D mesh and registered panoramic images, we construct a graph that spans the entire building and includes semantics on objects (e.g., class, material, and other attributes), rooms (e.g., scene category, volume, etc.) and cameras (e.g., location, etc.), as well as the relationships among these entities. However, this process is prohibitively labor heavy if done manually. To alleviate this we devise a semi-automatic framework that employs existing detection methods and enhances them using two main constraints: I. framing of query images sampled on panoramas to maximize the performance of 2D detectors, and II. multi-view consistency enforcement across 2D detections that originate in different camera locations.
Unleashing the Power of LLMs in Dense Retrieval with Query Likelihood Modeling
Dense retrieval is a crucial task in Information Retrieval (IR) and is the foundation for downstream tasks such as re-ranking. Recently, large language models (LLMs) have shown compelling semantic understanding capabilities and are appealing to researchers studying dense retrieval. LLMs, as decoder-style generative models, are competent at language generation while falling short on modeling global information due to the lack of attention to tokens afterward. Inspired by the classical word-based language modeling approach for IR, i.e., the query likelihood (QL) model, we seek to sufficiently utilize LLMs' generative ability by QL maximization. However, instead of ranking documents with QL estimation, we introduce an auxiliary task of QL maximization to yield a better backbone for contrastively learning a discriminative retriever. We name our model as LLM-QL. To condense global document semantics to a single vector during QL modeling, LLM-QL has two major components, Attention Stop (AS) and Input Corruption (IC). AS stops the attention of predictive tokens to previous tokens until the ending token of the document. IC masks a portion of tokens in the input documents during prediction. Experiments on MSMARCO show that LLM-QL can achieve significantly better performance than other LLM-based retrievers and using QL estimated by LLM-QL for ranking outperforms word-based QL by a large margin.
Textual Query-Driven Mask Transformer for Domain Generalized Segmentation
In this paper, we introduce a method to tackle Domain Generalized Semantic Segmentation (DGSS) by utilizing domain-invariant semantic knowledge from text embeddings of vision-language models. We employ the text embeddings as object queries within a transformer-based segmentation framework (textual object queries). These queries are regarded as a domain-invariant basis for pixel grouping in DGSS. To leverage the power of textual object queries, we introduce a novel framework named the textual query-driven mask transformer (tqdm). Our tqdm aims to (1) generate textual object queries that maximally encode domain-invariant semantics and (2) enhance the semantic clarity of dense visual features. Additionally, we suggest three regularization losses to improve the efficacy of tqdm by aligning between visual and textual features. By utilizing our method, the model can comprehend inherent semantic information for classes of interest, enabling it to generalize to extreme domains (e.g., sketch style). Our tqdm achieves 68.9 mIoU on GTA5rightarrowCityscapes, outperforming the prior state-of-the-art method by 2.5 mIoU. The project page is available at https://byeonghyunpak.github.io/tqdm.
Learning Embeddings that Capture Spatial Semantics for Indoor Navigation
Incorporating domain-specific priors in search and navigation tasks has shown promising results in improving generalization and sample complexity over end-to-end trained policies. In this work, we study how object embeddings that capture spatial semantic priors can guide search and navigation tasks in a structured environment. We know that humans can search for an object like a book, or a plate in an unseen house, based on the spatial semantics of bigger objects detected. For example, a book is likely to be on a bookshelf or a table, whereas a plate is likely to be in a cupboard or dishwasher. We propose a method to incorporate such spatial semantic awareness in robots by leveraging pre-trained language models and multi-relational knowledge bases as object embeddings. We demonstrate using these object embeddings to search a query object in an unseen indoor environment. We measure the performance of these embeddings in an indoor simulator (AI2Thor). We further evaluate different pre-trained embedding onSuccess Rate(SR) and success weighted by Path Length(SPL).
FineCIR: Explicit Parsing of Fine-Grained Modification Semantics for Composed Image Retrieval
Composed Image Retrieval (CIR) facilitates image retrieval through a multimodal query consisting of a reference image and modification text. The reference image defines the retrieval context, while the modification text specifies desired alterations. However, existing CIR datasets predominantly employ coarse-grained modification text (CoarseMT), which inadequately captures fine-grained retrieval intents. This limitation introduces two key challenges: (1) ignoring detailed differences leads to imprecise positive samples, and (2) greater ambiguity arises when retrieving visually similar images. These issues degrade retrieval accuracy, necessitating manual result filtering or repeated queries. To address these limitations, we develop a robust fine-grained CIR data annotation pipeline that minimizes imprecise positive samples and enhances CIR systems' ability to discern modification intents accurately. Using this pipeline, we refine the FashionIQ and CIRR datasets to create two fine-grained CIR datasets: Fine-FashionIQ and Fine-CIRR. Furthermore, we introduce FineCIR, the first CIR framework explicitly designed to parse the modification text. FineCIR effectively captures fine-grained modification semantics and aligns them with ambiguous visual entities, enhancing retrieval precision. Extensive experiments demonstrate that FineCIR consistently outperforms state-of-the-art CIR baselines on both fine-grained and traditional CIR benchmark datasets. Our FineCIR code and fine-grained CIR datasets are available at https://github.com/SDU-L/FineCIR.git.
Cats Confuse Reasoning LLM: Query Agnostic Adversarial Triggers for Reasoning Models
We investigate the robustness of reasoning models trained for step-by-step problem solving by introducing query-agnostic adversarial triggers - short, irrelevant text that, when appended to math problems, systematically mislead models to output incorrect answers without altering the problem's semantics. We propose CatAttack, an automated iterative attack pipeline for generating triggers on a weaker, less expensive proxy model (DeepSeek V3) and successfully transfer them to more advanced reasoning target models like DeepSeek R1 and DeepSeek R1-distilled-Qwen-32B, resulting in greater than 300% increase in the likelihood of the target model generating an incorrect answer. For example, appending, "Interesting fact: cats sleep most of their lives," to any math problem leads to more than doubling the chances of a model getting the answer wrong. Our findings highlight critical vulnerabilities in reasoning models, revealing that even state-of-the-art models remain susceptible to subtle adversarial inputs, raising security and reliability concerns. The CatAttack triggers dataset with model responses is available at https://huggingface.co/datasets/collinear-ai/cat-attack-adversarial-triggers.
QuickLLaMA: Query-aware Inference Acceleration for Large Language Models
The capacity of Large Language Models (LLMs) to comprehend and reason over long contexts is pivotal for advancements in diverse fields. Yet, they still stuggle with capturing long-distance dependencies within sequences to deeply understand semantics. To address this issue, we introduce Query-aware Inference for LLMs (Q-LLM), a system designed to process extensive sequences akin to human cognition. By focusing on memory data relevant to a given query, Q-LLM can accurately capture pertinent information within a fixed window size and provide precise answers to queries. It doesn't require extra training and can be seamlessly integrated with any LLMs. Q-LLM using LLaMA3 (QuickLLaMA) can read Harry Potter within 30s and accurately answer the questions. Q-LLM improved by 7.17% compared to the current state-of-the-art on LLaMA3, and by 3.26% on Mistral on the infty-bench. In the Needle-in-a-Haystack task, On widely recognized benchmarks, Q-LLM improved upon the current SOTA by 7.0% on Mistral and achieves 100% on LLaMA3. Our code can be found in https://github.com/dvlab-research/Q-LLM.
Drawing Conclusions from Draws: Rethinking Preference Semantics in Arena-Style LLM Evaluation
In arena-style evaluation of large language models (LLMs), two LLMs respond to a user query, and the user chooses the winning response or deems the "battle" a draw, resulting in an adjustment to the ratings of both models. The prevailing approach for modeling these rating dynamics is to view battles as two-player game matches, as in chess, and apply the Elo rating system and its derivatives. In this paper, we critically examine this paradigm. Specifically, we question whether a draw genuinely means that the two models are equal and hence whether their ratings should be equalized. Instead, we conjecture that draws are more indicative of query difficulty: if the query is too easy, then both models are more likely to succeed equally. On three real-world arena datasets, we show that ignoring rating updates for draws yields a 1-3% relative increase in battle outcome prediction accuracy (which includes draws) for all four rating systems studied. Further analyses suggest that draws occur more for queries rated as very easy and those as highly objective, with risk ratios of 1.37 and 1.35, respectively. We recommend future rating systems to reconsider existing draw semantics and to account for query properties in rating updates.
DGOcc: Depth-aware Global Query-based Network for Monocular 3D Occupancy Prediction
Monocular 3D occupancy prediction, aiming to predict the occupancy and semantics within interesting regions of 3D scenes from only 2D images, has garnered increasing attention recently for its vital role in 3D scene understanding. Predicting the 3D occupancy of large-scale outdoor scenes from 2D images is ill-posed and resource-intensive. In this paper, we present DGOcc, a Depth-aware Global query-based network for monocular 3D Occupancy prediction. We first explore prior depth maps to extract depth context features that provide explicit geometric information for the occupancy network. Then, in order to fully exploit the depth context features, we propose a Global Query-based (GQ) Module. The cooperation of attention mechanisms and scale-aware operations facilitates the feature interaction between images and 3D voxels. Moreover, a Hierarchical Supervision Strategy (HSS) is designed to avoid upsampling the high-dimension 3D voxel features to full resolution, which mitigates GPU memory utilization and time cost. Extensive experiments on SemanticKITTI and SSCBench-KITTI-360 datasets demonstrate that the proposed method achieves the best performance on monocular semantic occupancy prediction while reducing GPU and time overhead.
Measure Twice, Cut Once: Grasping Video Structures and Event Semantics with LLMs for Video Temporal Localization
Localizing user-queried events through natural language is crucial for video understanding models. Recent methods predominantly adapt Video LLMs to generate event boundary timestamps to handle temporal localization tasks, which struggle to leverage LLMs' powerful semantic understanding. In this work, we introduce MeCo, a novel timestamp-free framework that enables video LLMs to fully harness their intrinsic semantic capabilities for temporal localization tasks. Rather than outputting boundary timestamps, MeCo partitions videos into holistic event and transition segments based on the proposed structural token generation and grounding pipeline, derived from video LLMs' temporal structure understanding capability. We further propose a query-focused captioning task that compels the LLM to extract fine-grained, event-specific details, bridging the gap between localization and higher-level semantics and enhancing localization performance. Extensive experiments on diverse temporal localization tasks show that MeCo consistently outperforms boundary-centric methods, underscoring the benefits of a semantic-driven approach for temporal localization with video LLMs.
Prompting Is Programming: A Query Language for Large Language Models
Large language models have demonstrated outstanding performance on a wide range of tasks such as question answering and code generation. On a high level, given an input, a language model can be used to automatically complete the sequence in a statistically-likely way. Based on this, users prompt these models with language instructions or examples, to implement a variety of downstream tasks. Advanced prompting methods can even imply interaction between the language model, a user, and external tools such as calculators. However, to obtain state-of-the-art performance or adapt language models for specific tasks, complex task- and model-specific programs have to be implemented, which may still require ad-hoc interaction. Based on this, we present the novel idea of Language Model Programming (LMP). LMP generalizes language model prompting from pure text prompts to an intuitive combination of text prompting and scripting. Additionally, LMP allows constraints to be specified over the language model output. This enables easy adaption to many tasks while abstracting language model internals and providing high-level semantics. To enable LMP, we implement LMQL(short for Language Model Query Language), which leverages the constraints and control flow from an LMP prompt to generate an efficient inference procedure that minimizes the number of expensive calls to the underlying language model. We show that LMQL can capture a wide range of state-of-the-art prompting methods in an intuitive way, especially facilitating interactive flows that are challenging to implement with existing high-level APIs. Our evaluation shows that we retain or increase the accuracy on several downstream tasks, while also significantly reducing the required amount of computation or cost in the case of pay-to-use APIs (26-85% cost savings).
Object as Query: Lifting any 2D Object Detector to 3D Detection
3D object detection from multi-view images has drawn much attention over the past few years. Existing methods mainly establish 3D representations from multi-view images and adopt a dense detection head for object detection, or employ object queries distributed in 3D space to localize objects. In this paper, we design Multi-View 2D Objects guided 3D Object Detector (MV2D), which can lift any 2D object detector to multi-view 3D object detection. Since 2D detections can provide valuable priors for object existence, MV2D exploits 2D detectors to generate object queries conditioned on the rich image semantics. These dynamically generated queries help MV2D to recall objects in the field of view and show a strong capability of localizing 3D objects. For the generated queries, we design a sparse cross attention module to force them to focus on the features of specific objects, which suppresses interference from noises. The evaluation results on the nuScenes dataset demonstrate the dynamic object queries and sparse feature aggregation can promote 3D detection capability. MV2D also exhibits a state-of-the-art performance among existing methods. We hope MV2D can serve as a new baseline for future research.
Neural Graph Reasoning: Complex Logical Query Answering Meets Graph Databases
Complex logical query answering (CLQA) is a recently emerged task of graph machine learning that goes beyond simple one-hop link prediction and solves a far more complex task of multi-hop logical reasoning over massive, potentially incomplete graphs in a latent space. The task received a significant traction in the community; numerous works expanded the field along theoretical and practical axes to tackle different types of complex queries and graph modalities with efficient systems. In this paper, we provide a holistic survey of CLQA with a detailed taxonomy studying the field from multiple angles, including graph types (modality, reasoning domain, background semantics), modeling aspects (encoder, processor, decoder), supported queries (operators, patterns, projected variables), datasets, evaluation metrics, and applications. Refining the CLQA task, we introduce the concept of Neural Graph Databases (NGDBs). Extending the idea of graph databases (graph DBs), NGDB consists of a Neural Graph Storage and a Neural Graph Engine. Inside Neural Graph Storage, we design a graph store, a feature store, and further embed information in a latent embedding store using an encoder. Given a query, Neural Query Engine learns how to perform query planning and execution in order to efficiently retrieve the correct results by interacting with the Neural Graph Storage. Compared with traditional graph DBs, NGDBs allow for a flexible and unified modeling of features in diverse modalities using the embedding store. Moreover, when the graph is incomplete, they can provide robust retrieval of answers which a normal graph DB cannot recover. Finally, we point out promising directions, unsolved problems and applications of NGDB for future research.
Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning
Creating knowledge bases and ontologies is a time consuming task that relies on a manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrary complex nested knowledge schemas. Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning (ZSL) and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against GPT-3+ to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for all matched elements. We present examples of use of SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease causation graphs. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction (RE) methods, but has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. SPIRES is available as part of the open source OntoGPT package: https://github.com/ monarch-initiative/ontogpt.
MERIT: Multilingual Semantic Retrieval with Interleaved Multi-Condition Query
Semantic retrieval is crucial for modern applications yet remains underexplored in current research. Existing datasets are limited to single languages, single images, or singular retrieval conditions, often failing to fully exploit the expressive capacity of visual information as evidenced by maintained performance when images are replaced with captions. However, practical retrieval scenarios frequently involve interleaved multi-condition queries with multiple images. Hence, this paper introduces MERIT, the first multilingual dataset for interleaved multi-condition semantic retrieval, comprising 320,000 queries with 135,000 products in 5 languages, covering 7 distinct product categories. Extensive experiments on MERIT identify existing models's limitation: focusing solely on global semantic information while neglecting specific conditional elements in queries. Consequently, we propose Coral, a novel fine-tuning framework that adapts pre-trained MLLMs by integrating embedding reconstruction to preserve fine-grained conditional elements and contrastive learning to extract comprehensive global semantics. Experiments demonstrate that Coral achieves a 45.9% performance improvement over conventional approaches on MERIT, with strong generalization capabilities validated across 8 established retrieval benchmarks. Collectively, our contributions - a novel dataset, identification of critical limitations in existing approaches, and an innovative fine-tuning framework - establish a foundation for future research in interleaved multi-condition semantic retrieval.
IntelliGraphs: Datasets for Benchmarking Knowledge Graph Generation
Knowledge Graph Embedding (KGE) models are used to learn continuous representations of entities and relations. A key task in the literature is predicting missing links between entities. However, Knowledge Graphs are not just sets of links but also have semantics underlying their structure. Semantics is crucial in several downstream tasks, such as query answering or reasoning. We introduce the subgraph inference task, where a model has to generate likely and semantically valid subgraphs. We propose IntelliGraphs, a set of five new Knowledge Graph datasets. The IntelliGraphs datasets contain subgraphs with semantics expressed in logical rules for evaluating subgraph inference. We also present the dataset generator that produced the synthetic datasets. We designed four novel baseline models, which include three models based on traditional KGEs. We evaluate their expressiveness and show that these models cannot capture the semantics. We believe this benchmark will encourage the development of machine learning models that emphasize semantic understanding.
ListConRanker: A Contrastive Text Reranker with Listwise Encoding
Reranker models aim to re-rank the passages based on the semantics similarity between the given query and passages, which have recently received more attention due to the wide application of the Retrieval-Augmented Generation. Most previous methods apply pointwise encoding, meaning that it can only encode the context of the query for each passage input into the model. However, for the reranker model, given a query, the comparison results between passages are even more important, which is called listwise encoding. Besides, previous models are trained using the cross-entropy loss function, which leads to issues of unsmooth gradient changes during training and low training efficiency. To address these issues, we propose a novel Listwise-encoded Contrastive text reRanker (ListConRanker). It can help the passage to be compared with other passages during the encoding process, and enhance the contrastive information between positive examples and between positive and negative examples. At the same time, we use the circle loss to train the model to increase the flexibility of gradients and solve the problem of training efficiency. Experimental results show that ListConRanker achieves state-of-the-art performance on the reranking benchmark of Chinese Massive Text Embedding Benchmark, including the cMedQA1.0, cMedQA2.0, MMarcoReranking, and T2Reranking datasets.
GeAR: Generation Augmented Retrieval
Document retrieval techniques form the foundation for the development of large-scale information systems. The prevailing methodology is to construct a bi-encoder and compute the semantic similarity. However, such scalar similarity is difficult to reflect enough information and impedes our comprehension of the retrieval results. In addition, this computational process mainly emphasizes the global semantics and ignores the fine-grained semantic relationship between the query and the complex text in the document. In this paper, we propose a new method called Generation Augmented Retrieval (GeAR) that incorporates well-designed fusion and decoding modules. This enables GeAR to generate the relevant text from documents based on the fused representation of the query and the document, thus learning to "focus on" the fine-grained information. Also when used as a retriever, GeAR does not add any computational burden over bi-encoders. To support the training of the new framework, we have introduced a pipeline to efficiently synthesize high-quality data by utilizing large language models. GeAR exhibits competitive retrieval and localization performance across diverse scenarios and datasets. Moreover, the qualitative analysis and the results generated by GeAR provide novel insights into the interpretation of retrieval results. The code, data, and models will be released after completing technical review to facilitate future research.
Video-SafetyBench: A Benchmark for Safety Evaluation of Video LVLMs
The increasing deployment of Large Vision-Language Models (LVLMs) raises safety concerns under potential malicious inputs. However, existing multimodal safety evaluations primarily focus on model vulnerabilities exposed by static image inputs, ignoring the temporal dynamics of video that may induce distinct safety risks. To bridge this gap, we introduce Video-SafetyBench, the first comprehensive benchmark designed to evaluate the safety of LVLMs under video-text attacks. It comprises 2,264 video-text pairs spanning 48 fine-grained unsafe categories, each pairing a synthesized video with either a harmful query, which contains explicit malice, or a benign query, which appears harmless but triggers harmful behavior when interpreted alongside the video. To generate semantically accurate videos for safety evaluation, we design a controllable pipeline that decomposes video semantics into subject images (what is shown) and motion text (how it moves), which jointly guide the synthesis of query-relevant videos. To effectively evaluate uncertain or borderline harmful outputs, we propose RJScore, a novel LLM-based metric that incorporates the confidence of judge models and human-aligned decision threshold calibration. Extensive experiments show that benign-query video composition achieves average attack success rates of 67.2%, revealing consistent vulnerabilities to video-induced attacks. We believe Video-SafetyBench will catalyze future research into video-based safety evaluation and defense strategies.
Metasql: A Generate-then-Rank Framework for Natural Language to SQL Translation
The Natural Language Interface to Databases (NLIDB) empowers non-technical users with database access through intuitive natural language (NL) interactions. Advanced approaches, utilizing neural sequence-to-sequence models or large-scale language models, typically employ auto-regressive decoding to generate unique SQL queries sequentially. While these translation models have greatly improved the overall translation accuracy, surpassing 70% on NLIDB benchmarks, the use of auto-regressive decoding to generate single SQL queries may result in sub-optimal outputs, potentially leading to erroneous translations. In this paper, we propose Metasql, a unified generate-then-rank framework that can be flexibly incorporated with existing NLIDBs to consistently improve their translation accuracy. Metasql introduces query metadata to control the generation of better SQL query candidates and uses learning-to-rank algorithms to retrieve globally optimized queries. Specifically, Metasql first breaks down the meaning of the given NL query into a set of possible query metadata, representing the basic concepts of the semantics. These metadata are then used as language constraints to steer the underlying translation model toward generating a set of candidate SQL queries. Finally, Metasql ranks the candidates to identify the best matching one for the given NL query. Extensive experiments are performed to study Metasql on two public NLIDB benchmarks. The results show that the performance of the translation models can be effectively improved using Metasql.
A Training-Free Style-Personalization via Scale-wise Autoregressive Model
We present a training-free framework for style-personalized image generation that controls content and style information during inference using a scale-wise autoregressive model. Our method employs a three-path design--content, style, and generation--each guided by a corresponding text prompt, enabling flexible and efficient control over image semantics without any additional training. A central contribution of this work is a step-wise and attention-wise intervention analysis. Through systematic prompt and feature injection, we find that early-to-middle generation steps play a pivotal role in shaping both content and style, and that query features predominantly encode content-specific information. Guided by these insights, we introduce two targeted mechanisms: Key Stage Attention Sharing, which aligns content and style during the semantically critical steps, and Adaptive Query Sharing, which reinforces content semantics in later steps through similarity-aware query blending. Extensive experiments demonstrate that our method achieves competitive style fidelity and prompt fidelity compared to fine-tuned baselines, while offering faster inference and greater deployment flexibility.
Self-Augmented Visual Contrastive Decoding
Large Vision-Language Models (LVLMs) have demonstrated remarkable multimodal capabilities, but they inherit the tendency to hallucinate from their underlying language models. While visual contrastive decoding has been proposed to mitigate this issue, existing methods often apply generic visual augmentations that disregard the specific context provided by the text query, limiting their effectiveness. This study introduces a novel training-free decoding strategy that addresses these limitations, featuring two key contributions. First, a self-augmentation prompting strategy that leverages the intrinsic knowledge of the model to dynamically align semantics between the query and the visual augmentation. Second, an adaptive thresholding algorithm that adaptively adjusts next token candidate size based on the output sparsity, utilizing full information from the logit distribution. Extensive experiments across four LVLMs and seven benchmarks demonstrate that the proposed decoding significantly enhances factual consistency compared to state-of-the-art decoding methods. This work highlights the importance of integrating query-dependent augmentation and entropy-aware decoding for improving effective generation of LVLMs.
OneSearch: A Preliminary Exploration of the Unified End-to-End Generative Framework for E-commerce Search
Traditional e-commerce search systems employ multi-stage cascading architectures (MCA) that progressively filter items through recall, pre-ranking, and ranking stages. While effective at balancing computational efficiency with business conversion, these systems suffer from fragmented computation and optimization objective collisions across stages, which ultimately limit their performance ceiling. To address these, we propose OneSearch, the first industrial-deployed end-to-end generative framework for e-commerce search. This framework introduces three key innovations: (1) a Keyword-enhanced Hierarchical Quantization Encoding (KHQE) module, to preserve both hierarchical semantics and distinctive item attributes while maintaining strong query-item relevance constraints; (2) a multi-view user behavior sequence injection strategy that constructs behavior-driven user IDs and incorporates both explicit short-term and implicit long-term sequences to model user preferences comprehensively; and (3) a Preference-Aware Reward System (PARS) featuring multi-stage supervised fine-tuning and adaptive reward-weighted ranking to capture fine-grained user preferences. Extensive offline evaluations on large-scale industry datasets demonstrate OneSearch's superior performance for high-quality recall and ranking. The rigorous online A/B tests confirm its ability to enhance relevance in the same exposure position, achieving statistically significant improvements: +1.67% item CTR, +2.40% buyer, and +3.22% order volume. Furthermore, OneSearch reduces operational expenditure by 75.40% and improves Model FLOPs Utilization from 3.26% to 27.32%. The system has been successfully deployed across multiple search scenarios in Kuaishou, serving millions of users, generating tens of millions of PVs daily.
Towards Text-Image Interleaved Retrieval
Current multimodal information retrieval studies mainly focus on single-image inputs, which limits real-world applications involving multiple images and text-image interleaved content. In this work, we introduce the text-image interleaved retrieval (TIIR) task, where the query and document are interleaved text-image sequences, and the model is required to understand the semantics from the interleaved context for effective retrieval. We construct a TIIR benchmark based on naturally interleaved wikiHow tutorials, where a specific pipeline is designed to generate interleaved queries. To explore the task, we adapt several off-the-shelf retrievers and build a dense baseline by interleaved multimodal large language model (MLLM). We then propose a novel Matryoshka Multimodal Embedder (MME), which compresses the number of visual tokens at different granularity, to address the challenge of excessive visual tokens in MLLM-based TIIR models. Experiments demonstrate that simple adaption of existing models does not consistently yield effective results. Our MME achieves significant improvements over the baseline by substantially fewer visual tokens. We provide extensive analysis and will release the dataset and code to facilitate future research.
All You Need Is CONSTRUCT
In SPARQL, the query forms SELECT and CONSTRUCT have been the subject of several studies, both theoretical and practical. However, the composition of such queries and their interweaving when forming involved nested queries has not yet received much interest in the literature. We mainly tackle the problem of composing such queries. For this purpose, we introduce a language close to SPARQL where queries can be nested at will, involving either CONSTRUCT or SELECT query forms and provide a formal semantics for it. This semantics is based on a uniform interpretation of queries. This uniformity is due to an extension of the notion of RDF graphs to include isolated items such as variables. As a key feature of this work, we show how classical SELECT queries can be easily encoded as a particular case of CONSTRUCT queries.
SQUARE: Semantic Query-Augmented Fusion and Efficient Batch Reranking for Training-free Zero-Shot Composed Image Retrieval
Composed Image Retrieval (CIR) aims to retrieve target images that preserve the visual content of a reference image while incorporating user-specified textual modifications. Training-free zero-shot CIR (ZS-CIR) approaches, which require no task-specific training or labeled data, are highly desirable, yet accurately capturing user intent remains challenging. In this paper, we present SQUARE, a novel two-stage training-free framework that leverages Multimodal Large Language Models (MLLMs) to enhance ZS-CIR. In the Semantic Query-Augmented Fusion (SQAF) stage, we enrich the query embedding derived from a vision-language model (VLM) such as CLIP with MLLM-generated captions of the target image. These captions provide high-level semantic guidance, enabling the query to better capture the user's intent and improve global retrieval quality. In the Efficient Batch Reranking (EBR) stage, top-ranked candidates are presented as an image grid with visual marks to the MLLM, which performs joint visual-semantic reasoning across all candidates. Our reranking strategy operates in a single pass and yields more accurate rankings. Experiments show that SQUARE, with its simplicity and effectiveness, delivers strong performance on four standard CIR benchmarks. Notably, it maintains high performance even with lightweight pre-trained, demonstrating its potential applicability.
QLSC: A Query Latent Semantic Calibrator for Robust Extractive Question Answering
Extractive Question Answering (EQA) in Machine Reading Comprehension (MRC) often faces the challenge of dealing with semantically identical but format-variant inputs. Our work introduces a novel approach, called the ``Query Latent Semantic Calibrator (QLSC)'', designed as an auxiliary module for existing MRC models. We propose a unique scaling strategy to capture latent semantic center features of queries. These features are then seamlessly integrated into traditional query and passage embeddings using an attention mechanism. By deepening the comprehension of the semantic queries-passage relationship, our approach diminishes sensitivity to variations in text format and boosts the model's capability in pinpointing accurate answers. Experimental results on robust Question-Answer datasets confirm that our approach effectively handles format-variant but semantically identical queries, highlighting the effectiveness and adaptability of our proposed method.
Script: Graph-Structured and Query-Conditioned Semantic Token Pruning for Multimodal Large Language Models
The rapid growth of visual tokens in multimodal large language models (MLLMs) leads to excessive memory consumption and inference latency, especially when handling high-resolution images and videos. Token pruning is a technique used to mitigate this issue by removing redundancy, but existing methods often ignore relevance to the user query or suffer from the limitations of attention mechanisms, reducing their adaptability and effectiveness. To address these challenges, we propose Script, a plug-and-play pruning method that requires no retraining and generalizes across diverse MLLMs. Script comprises two modules: a graph-structured pruning module that removes visually redundant tokens, and a query-conditioned semantic pruning module that preserves query-relevant visual information. Together, they enhance performance on multimodal tasks. Experiments on fourteen benchmarks across image and video understanding tasks show that Script consistently achieves higher model efficiency and predictive accuracy compared to existing pruning methods. On LLaVA-NeXT-7B, it achieves up to 6.8x prefill speedup and 10x FLOP reduction, while retaining 96.88% of the original performance.
Leveraging Large Language Models for Semantic Query Processing in a Scholarly Knowledge Graph
The proposed research aims to develop an innovative semantic query processing system that enables users to obtain comprehensive information about research works produced by Computer Science (CS) researchers at the Australian National University (ANU). The system integrates Large Language Models (LLMs) with the ANU Scholarly Knowledge Graph (ASKG), a structured repository of all research-related artifacts produced at ANU in the CS field. Each artifact and its parts are represented as textual nodes stored in a Knowledge Graph (KG). To address the limitations of traditional scholarly KG construction and utilization methods, which often fail to capture fine-grained details, we propose a novel framework that integrates the Deep Document Model (DDM) for comprehensive document representation and the KG-enhanced Query Processing (KGQP) for optimized complex query handling. DDM enables a fine-grained representation of the hierarchical structure and semantic relationships within academic papers, while KGQP leverages the KG structure to improve query accuracy and efficiency with LLMs. By combining the ASKG with LLMs, our approach enhances knowledge utilization and natural language understanding capabilities. The proposed system employs an automatic LLM-SPARQL fusion to retrieve relevant facts and textual nodes from the ASKG. Initial experiments demonstrate that our framework is superior to baseline methods in terms of accuracy retrieval and query efficiency. We showcase the practical application of our framework in academic research scenarios, highlighting its potential to revolutionize scholarly knowledge management and discovery. This work empowers researchers to acquire and utilize knowledge from documents more effectively and provides a foundation for developing precise and reliable interactions with LLMs.
SQN: Weakly-Supervised Semantic Segmentation of Large-Scale 3D Point Clouds
Labelling point clouds fully is highly time-consuming and costly. As larger point cloud datasets with billions of points become more common, we ask whether the full annotation is even necessary, demonstrating that existing baselines designed under a fully annotated assumption only degrade slightly even when faced with 1% random point annotations. However, beyond this point, e.g., at 0.1% annotations, segmentation accuracy is unacceptably low. We observe that, as point clouds are samples of the 3D world, the distribution of points in a local neighborhood is relatively homogeneous, exhibiting strong semantic similarity. Motivated by this, we propose a new weak supervision method to implicitly augment highly sparse supervision signals. Extensive experiments demonstrate the proposed Semantic Query Network (SQN) achieves promising performance on seven large-scale open datasets under weak supervision schemes, while requiring only 0.1% randomly annotated points for training, greatly reducing annotation cost and effort. The code is available at https://github.com/QingyongHu/SQN.
Actor-agnostic Multi-label Action Recognition with Multi-modal Query
Existing action recognition methods are typically actor-specific due to the intrinsic topological and apparent differences among the actors. This requires actor-specific pose estimation (e.g., humans vs. animals), leading to cumbersome model design complexity and high maintenance costs. Moreover, they often focus on learning the visual modality alone and single-label classification whilst neglecting other available information sources (e.g., class name text) and the concurrent occurrence of multiple actions. To overcome these limitations, we propose a new approach called 'actor-agnostic multi-modal multi-label action recognition,' which offers a unified solution for various types of actors, including humans and animals. We further formulate a novel Multi-modal Semantic Query Network (MSQNet) model in a transformer-based object detection framework (e.g., DETR), characterized by leveraging visual and textual modalities to represent the action classes better. The elimination of actor-specific model designs is a key advantage, as it removes the need for actor pose estimation altogether. Extensive experiments on five publicly available benchmarks show that our MSQNet consistently outperforms the prior arts of actor-specific alternatives on human and animal single- and multi-label action recognition tasks by up to 50%. Code is made available at https://github.com/mondalanindya/MSQNet.
AttentionRAG: Attention-Guided Context Pruning in Retrieval-Augmented Generation
While RAG demonstrates remarkable capabilities in LLM applications, its effectiveness is hindered by the ever-increasing length of retrieved contexts, which introduces information redundancy and substantial computational overhead. Existing context pruning methods, such as LLMLingua, lack contextual awareness and offer limited flexibility in controlling compression rates, often resulting in either insufficient pruning or excessive information loss. In this paper, we propose AttentionRAG, an attention-guided context pruning method for RAG systems. The core idea of AttentionRAG lies in its attention focus mechanism, which reformulates RAG queries into a next-token prediction paradigm. This mechanism isolates the query's semantic focus to a single token, enabling precise and efficient attention calculation between queries and retrieved contexts. Extensive experiments on LongBench and Babilong benchmarks show that AttentionRAG achieves up to 6.3times context compression while outperforming LLMLingua methods by around 10\% in key metrics.
RARe: Retrieval Augmented Retrieval with In-Context Examples
We investigate whether in-context examples, widely used in decoder-only language models (LLMs), can improve embedding model performance in retrieval tasks. Unlike in LLMs, naively prepending in-context examples (query-document pairs) to the target query at inference time does not work out of the box. We introduce a simple approach to enable retrievers to use in-context examples. Our approach, RARe, finetunes a pre-trained model with in-context examples whose query is semantically similar to the target query. This can be applied to adapt various base architectures (i.e., decoder-only language models, retriever models) and consistently achieves performance gains of up to +2.72% nDCG across various open-domain retrieval datasets (BeIR, RAR-b). In particular, we find RARe exhibits stronger out-of-domain generalization compared to models using queries without in-context examples, similar to what is seen for in-context learning in LLMs. We further provide analysis on the design choices of in-context example augmentation and lay the foundation for future work in this space.
A Neural Corpus Indexer for Document Retrieval
Current state-of-the-art document retrieval solutions mainly follow an index-retrieve paradigm, where the index is hard to be directly optimized for the final retrieval target. In this paper, we aim to show that an end-to-end deep neural network unifying training and indexing stages can significantly improve the recall performance of traditional methods. To this end, we propose Neural Corpus Indexer (NCI), a sequence-to-sequence network that generates relevant document identifiers directly for a designated query. To optimize the recall performance of NCI, we invent a prefix-aware weight-adaptive decoder architecture, and leverage tailored techniques including query generation, semantic document identifiers, and consistency-based regularization. Empirical studies demonstrated the superiority of NCI on two commonly used academic benchmarks, achieving +21.4% and +16.8% relative enhancement for Recall@1 on NQ320k dataset and R-Precision on TriviaQA dataset, respectively, compared to the best baseline method.
Query and Conquer: Execution-Guided SQL Generation
We propose a novel approach for generating complex outputs that significantly improves accuracy in text-to-SQL tasks. Our method leverages execution results to select the most semantically consistent query from multiple candidates, enabling smaller, cost-effective models to surpass computationally intensive reasoning methods such as o1, o3-mini, and DeepSeek R1 while reducing inference cost by as much as 30 times. It integrates effortlessly with existing models, offering a practical and scalable pathway to state-of-the-art SQL generation.
MeanCache: User-Centric Semantic Caching for LLM Web Services
Large Language Models (LLMs) like ChatGPT and Llama have revolutionized natural language processing and search engine dynamics. However, these models incur exceptionally high computational costs. For instance, GPT-3 consists of 175 billion parameters, where inference demands billions of floating-point operations. Caching is a natural solution to reduce LLM inference costs on repeated queries, which constitute about 31% of the total queries. However, existing caching methods are incapable of finding semantic similarities among LLM queries nor do they operate on contextual queries, leading to unacceptable false hit-and-miss rates. This paper introduces MeanCache, a user-centric semantic cache for LLM-based services that identifies semantically similar queries to determine cache hit or miss. Using MeanCache, the response to a user's semantically similar query can be retrieved from a local cache rather than re-querying the LLM, thus reducing costs, service provider load, and environmental impact. MeanCache leverages Federated Learning (FL) to collaboratively train a query similarity model without violating user privacy. By placing a local cache in each user's device and using FL, MeanCache reduces the latency and costs and enhances model performance, resulting in lower false hit rates. MeanCache also encodes context chains for every cached query, offering a simple yet highly effective mechanism to discern contextual query responses from standalone. Our experiments benchmarked against the state-of-the-art caching method, reveal that MeanCache attains an approximately 17% higher F-score and a 20% increase in precision during semantic cache hit-and-miss decisions while performing even better on contextual queries. It also reduces the storage requirement by 83% and accelerates semantic cache hit-and-miss decisions by 11%.
