Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeReinforcement-Learning Portfolio Allocation with Dynamic Embedding of Market Information
We develop a portfolio allocation framework that leverages deep learning techniques to address challenges arising from high-dimensional, non-stationary, and low-signal-to-noise market information. Our approach includes a dynamic embedding method that reduces the non-stationary, high-dimensional state space into a lower-dimensional representation. We design a reinforcement learning (RL) framework that integrates generative autoencoders and online meta-learning to dynamically embed market information, enabling the RL agent to focus on the most impactful parts of the state space for portfolio allocation decisions. Empirical analysis based on the top 500 U.S. stocks demonstrates that our framework outperforms common portfolio benchmarks and the predict-then-optimize (PTO) approach using machine learning, particularly during periods of market stress. Traditional factor models do not fully explain this superior performance. The framework's ability to time volatility reduces its market exposure during turbulent times. Ablation studies confirm the robustness of this performance across various reinforcement learning algorithms. Additionally, the embedding and meta-learning techniques effectively manage the complexities of high-dimensional, noisy, and non-stationary financial data, enhancing both portfolio performance and risk management.
Transfer Learning for Portfolio Optimization
In this work, we explore the possibility of utilizing transfer learning techniques to address the financial portfolio optimization problem. We introduce a novel concept called "transfer risk", within the optimization framework of transfer learning. A series of numerical experiments are conducted from three categories: cross-continent transfer, cross-sector transfer, and cross-frequency transfer. In particular, 1. a strong correlation between the transfer risk and the overall performance of transfer learning methods is established, underscoring the significance of transfer risk as a viable indicator of "transferability"; 2. transfer risk is shown to provide a computationally efficient way to identify appropriate source tasks in transfer learning, enhancing the efficiency and effectiveness of the transfer learning approach; 3. additionally, the numerical experiments offer valuable new insights for portfolio management across these different settings.
A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem
Financial portfolio management is the process of constant redistribution of a fund into different financial products. This paper presents a financial-model-free Reinforcement Learning framework to provide a deep machine learning solution to the portfolio management problem. The framework consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. This framework is realized in three instants in this work with a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). They are, along with a number of recently reviewed or published portfolio-selection strategies, examined in three back-test experiments with a trading period of 30 minutes in a cryptocurrency market. Cryptocurrencies are electronic and decentralized alternatives to government-issued money, with Bitcoin as the best-known example of a cryptocurrency. All three instances of the framework monopolize the top three positions in all experiments, outdistancing other compared trading algorithms. Although with a high commission rate of 0.25% in the backtests, the framework is able to achieve at least 4-fold returns in 50 days.
A Deep Reinforcement Learning Framework for Dynamic Portfolio Optimization: Evidence from China's Stock Market
Artificial intelligence is transforming financial investment decision-making frameworks, with deep reinforcement learning demonstrating substantial potential in robo-advisory applications. This paper addresses the limitations of traditional portfolio optimization methods in dynamic asset weight adjustment through the development of a deep reinforcement learning-based dynamic optimization model grounded in practical trading processes. The research advances two key innovations: first, the introduction of a novel Sharpe ratio reward function engineered for Actor-Critic deep reinforcement learning algorithms, which ensures stable convergence during training while consistently achieving positive average Sharpe ratios; second, the development of an innovative comprehensive approach to portfolio optimization utilizing deep reinforcement learning, which significantly enhances model optimization capability through the integration of random sampling strategies during training with image-based deep neural network architectures for multi-dimensional financial time series data processing, average Sharpe ratio reward functions, and deep reinforcement learning algorithms. The empirical analysis validates the model using randomly selected constituent stocks from the CSI 300 Index, benchmarking against established financial econometric optimization models. Backtesting results demonstrate the model's efficacy in optimizing portfolio allocation and mitigating investment risk, yielding superior comprehensive performance metrics.
A Comparative Analysis of Portfolio Optimization Using Mean-Variance, Hierarchical Risk Parity, and Reinforcement Learning Approaches on the Indian Stock Market
This paper presents a comparative analysis of the performances of three portfolio optimization approaches. Three approaches of portfolio optimization that are considered in this work are the mean-variance portfolio (MVP), hierarchical risk parity (HRP) portfolio, and reinforcement learning-based portfolio. The portfolios are trained and tested over several stock data and their performances are compared on their annual returns, annual risks, and Sharpe ratios. In the reinforcement learning-based portfolio design approach, the deep Q learning technique has been utilized. Due to the large number of possible states, the construction of the Q-table is done using a deep neural network. The historical prices of the 50 premier stocks from the Indian stock market, known as the NIFTY50 stocks, and several stocks from 10 important sectors of the Indian stock market are used to create the environment for training the agent.
Multimodal Deep Reinforcement Learning for Portfolio Optimization
We propose a reinforcement learning (RL) framework that leverages multimodal data including historical stock prices, sentiment analysis, and topic embeddings from news articles, to optimize trading strategies for SP100 stocks. Building upon recent advancements in financial reinforcement learning, we aim to enhance the state space representation by integrating financial sentiment data from SEC filings and news headlines and refining the reward function to better align with portfolio performance metrics. Our methodology includes deep reinforcement learning with state tensors comprising price data, sentiment scores, and news embeddings, processed through advanced feature extraction models like CNNs and RNNs. By benchmarking against traditional portfolio optimization techniques and advanced strategies, we demonstrate the efficacy of our approach in delivering superior portfolio performance. Empirical results showcase the potential of our agent to outperform standard benchmarks, especially when utilizing combined data sources under profit-based reward functions.
Advancing Investment Frontiers: Industry-grade Deep Reinforcement Learning for Portfolio Optimization
This research paper delves into the application of Deep Reinforcement Learning (DRL) in asset-class agnostic portfolio optimization, integrating industry-grade methodologies with quantitative finance. At the heart of this integration is our robust framework that not only merges advanced DRL algorithms with modern computational techniques but also emphasizes stringent statistical analysis, software engineering and regulatory compliance. To the best of our knowledge, this is the first study integrating financial Reinforcement Learning with sim-to-real methodologies from robotics and mathematical physics, thus enriching our frameworks and arguments with this unique perspective. Our research culminates with the introduction of AlphaOptimizerNet, a proprietary Reinforcement Learning agent (and corresponding library). Developed from a synthesis of state-of-the-art (SOTA) literature and our unique interdisciplinary methodology, AlphaOptimizerNet demonstrates encouraging risk-return optimization across various asset classes with realistic constraints. These preliminary results underscore the practical efficacy of our frameworks. As the finance sector increasingly gravitates towards advanced algorithmic solutions, our study bridges theoretical advancements with real-world applicability, offering a template for ensuring safety and robust standards in this technologically driven future.
Performance Evaluation of Equal-Weight Portfolio and Optimum Risk Portfolio on Indian Stocks
Designing an optimum portfolio for allocating suitable weights to its constituent assets so that the return and risk associated with the portfolio are optimized is a computationally hard problem. The seminal work of Markowitz that attempted to solve the problem by estimating the future returns of the stocks is found to perform sub-optimally on real-world stock market data. This is because the estimation task becomes extremely challenging due to the stochastic and volatile nature of stock prices. This work illustrates three approaches to portfolio design minimizing the risk, optimizing the risk, and assigning equal weights to the stocks of a portfolio. Thirteen critical sectors listed on the National Stock Exchange (NSE) of India are first chosen. Three portfolios are designed following the above approaches choosing the top ten stocks from each sector based on their free-float market capitalization. The portfolios are designed using the historical prices of the stocks from Jan 1, 2017, to Dec 31, 2022. The portfolios are evaluated on the stock price data from Jan 1, 2022, to Dec 31, 2022. The performances of the portfolios are compared, and the portfolio yielding the higher return for each sector is identified.
Cost-Sensitive Portfolio Selection via Deep Reinforcement Learning
Portfolio Selection is an important real-world financial task and has attracted extensive attention in artificial intelligence communities. This task, however, has two main difficulties: (i) the non-stationary price series and complex asset correlations make the learning of feature representation very hard; (ii) the practicality principle in financial markets requires controlling both transaction and risk costs. Most existing methods adopt handcraft features and/or consider no constraints for the costs, which may make them perform unsatisfactorily and fail to control both costs in practice. In this paper, we propose a cost-sensitive portfolio selection method with deep reinforcement learning. Specifically, a novel two-stream portfolio policy network is devised to extract both price series patterns and asset correlations, while a new cost-sensitive reward function is developed to maximize the accumulated return and constrain both costs via reinforcement learning. We theoretically analyze the near-optimality of the proposed reward, which shows that the growth rate of the policy regarding this reward function can approach the theoretical optimum. We also empirically evaluate the proposed method on real-world datasets. Promising results demonstrate the effectiveness and superiority of the proposed method in terms of profitability, cost-sensitivity and representation abilities.
Agentar-Fin-R1: Enhancing Financial Intelligence through Domain Expertise, Training Efficiency, and Advanced Reasoning
Large Language Models (LLMs) exhibit considerable promise in financial applications; however, prevailing models frequently demonstrate limitations when confronted with scenarios that necessitate sophisticated reasoning capabilities, stringent trustworthiness criteria, and efficient adaptation to domain-specific requirements. We introduce the Agentar-Fin-R1 series of financial large language models (8B and 32B parameters), specifically engineered based on the Qwen3 foundation model to enhance reasoning capabilities, reliability, and domain specialization for financial applications. Our optimization approach integrates a high-quality, systematic financial task label system with a comprehensive multi-layered trustworthiness assurance framework. This framework encompasses high-quality trustworthy knowledge engineering, multi-agent trustworthy data synthesis, and rigorous data validation governance. Through label-guided automated difficulty-aware optimization, tow-stage training pipeline, and dynamic attribution systems, we achieve substantial improvements in training efficiency. Our models undergo comprehensive evaluation on mainstream financial benchmarks including Fineva, FinEval, and FinanceIQ, as well as general reasoning datasets such as MATH-500 and GPQA-diamond. To thoroughly assess real-world deployment capabilities, we innovatively propose the Finova evaluation benchmark, which focuses on agent-level financial reasoning and compliance verification. Experimental results demonstrate that Agentar-Fin-R1 not only achieves state-of-the-art performance on financial tasks but also exhibits exceptional general reasoning capabilities, validating its effectiveness as a trustworthy solution for high-stakes financial applications. The Finova bench is available at https://github.com/antgroup/Finova.
A Deep Reinforcement Learning Framework For Financial Portfolio Management
In this research paper, we investigate into a paper named "A Deep Reinforcement Learning Framework for the Financial Portfolio Management Problem" [arXiv:1706.10059]. It is a portfolio management problem which is solved by deep learning techniques. The original paper proposes a financial-model-free reinforcement learning framework, which consists of the Ensemble of Identical Independent Evaluators (EIIE) topology, a Portfolio-Vector Memory (PVM), an Online Stochastic Batch Learning (OSBL) scheme, and a fully exploiting and explicit reward function. Three different instants are used to realize this framework, namely a Convolutional Neural Network (CNN), a basic Recurrent Neural Network (RNN), and a Long Short-Term Memory (LSTM). The performance is then examined by comparing to a number of recently reviewed or published portfolio-selection strategies. We have successfully replicated their implementations and evaluations. Besides, we further apply this framework in the stock market, instead of the cryptocurrency market that the original paper uses. The experiment in the cryptocurrency market is consistent with the original paper, which achieve superior returns. But it doesn't perform as well when applied in the stock market.
FinMarBa: A Market-Informed Dataset for Financial Sentiment Classification
This paper presents a novel hierarchical framework for portfolio optimization, integrating lightweight Large Language Models (LLMs) with Deep Reinforcement Learning (DRL) to combine sentiment signals from financial news with traditional market indicators. Our three-tier architecture employs base RL agents to process hybrid data, meta-agents to aggregate their decisions, and a super-agent to merge decisions based on market data and sentiment analysis. Evaluated on data from 2018 to 2024, after training on 2000-2017, the framework achieves a 26% annualized return and a Sharpe ratio of 1.2, outperforming equal-weighted and S&P 500 benchmarks. Key contributions include scalable cross-modal integration, a hierarchical RL structure for enhanced stability, and open-source reproducibility.
Portfolio Optimization: A Comparative Study
Portfolio optimization has been an area that has attracted considerable attention from the financial research community. Designing a profitable portfolio is a challenging task involving precise forecasting of future stock returns and risks. This chapter presents a comparative study of three portfolio design approaches, the mean-variance portfolio (MVP), hierarchical risk parity (HRP)-based portfolio, and autoencoder-based portfolio. These three approaches to portfolio design are applied to the historical prices of stocks chosen from ten thematic sectors listed on the National Stock Exchange (NSE) of India. The portfolios are designed using the stock price data from January 1, 2018, to December 31, 2021, and their performances are tested on the out-of-sample data from January 1, 2022, to December 31, 2022. Extensive results are analyzed on the performance of the portfolios. It is observed that the performance of the MVP portfolio is the best on the out-of-sample data for the risk-adjusted returns. However, the autoencoder portfolios outperformed their counterparts on annual returns.
FinMem: A Performance-Enhanced LLM Trading Agent with Layered Memory and Character Design
Recent advancements in Large Language Models (LLMs) have exhibited notable efficacy in question-answering (QA) tasks across diverse domains. Their prowess in integrating extensive web knowledge has fueled interest in developing LLM-based autonomous agents. While LLMs are efficient in decoding human instructions and deriving solutions by holistically processing historical inputs, transitioning to purpose-driven agents requires a supplementary rational architecture to process multi-source information, establish reasoning chains, and prioritize critical tasks. Addressing this, we introduce FinMem, a novel LLM-based agent framework devised for financial decision-making. It encompasses three core modules: Profiling, to customize the agent's characteristics; Memory, with layered message processing, to aid the agent in assimilating hierarchical financial data; and Decision-making, to convert insights gained from memories into investment decisions. Notably, FinMem's memory module aligns closely with the cognitive structure of human traders, offering robust interpretability and real-time tuning. Its adjustable cognitive span allows for the retention of critical information beyond human perceptual limits, thereby enhancing trading outcomes. This framework enables the agent to self-evolve its professional knowledge, react agilely to new investment cues, and continuously refine trading decisions in the volatile financial environment. We first compare FinMem with various algorithmic agents on a scalable real-world financial dataset, underscoring its leading trading performance in stocks. We then fine-tuned the agent's perceptual span and character setting to achieve a significantly enhanced trading performance. Collectively, FinMem presents a cutting-edge LLM agent framework for automated trading, boosting cumulative investment returns.
Portfolio Optimization on NIFTY Thematic Sector Stocks Using an LSTM Model
Portfolio optimization has been a broad and intense area of interest for quantitative and statistical finance researchers and financial analysts. It is a challenging task to design a portfolio of stocks to arrive at the optimized values of the return and risk. This paper presents an algorithmic approach for designing optimum risk and eigen portfolios for five thematic sectors of the NSE of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Optimum risk and eigen portfolios for each sector are designed based on ten critical stocks from the sector. An LSTM model is designed for predicting future stock prices. Seven months after the portfolios were formed, on Aug 3, 2021, the actual returns of the portfolios are compared with the LSTM-predicted returns. The predicted and the actual returns indicate a very high-level accuracy of the LSTM model.
Precise Stock Price Prediction for Optimized Portfolio Design Using an LSTM Model
Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio of stocks with the identification of proper weights of allocation to achieve the optimized values of return and risk. We present optimized portfolios based on the seven sectors of the Indian economy. The past prices of the stocks are extracted from the web from January 1, 2016, to December 31, 2020. Optimum portfolios are designed on the selected seven sectors. An LSTM regression model is also designed for predicting future stock prices. Five months after the construction of the portfolios, i.e., on June 1, 2021, the actual and predicted returns and risks of each portfolio are computed. The predicted and the actual returns indicate the very high accuracy of the LSTM model.
A Comparative Study of Hierarchical Risk Parity Portfolio and Eigen Portfolio on the NIFTY 50 Stocks
Portfolio optimization has been an area of research that has attracted a lot of attention from researchers and financial analysts. Designing an optimum portfolio is a complex task since it not only involves accurate forecasting of future stock returns and risks but also needs to optimize them. This paper presents a systematic approach to portfolio optimization using two approaches, the hierarchical risk parity algorithm and the Eigen portfolio on seven sectors of the Indian stock market. The portfolios are built following the two approaches to historical stock prices from Jan 1, 2016, to Dec 31, 2020. The portfolio performances are evaluated on the test data from Jan 1, 2021, to Nov 1, 2021. The backtesting results of the portfolios indicate that the performance of the HRP portfolio is superior to that of its Eigen counterpart on both training and test data for the majority of the sectors studied.
Hierarchical Risk Parity and Minimum Variance Portfolio Design on NIFTY 50 Stocks
Portfolio design and optimization have been always an area of research that has attracted a lot of attention from researchers from the finance domain. Designing an optimum portfolio is a complex task since it involves accurate forecasting of future stock returns and risks and making a suitable tradeoff between them. This paper proposes a systematic approach to designing portfolios using two algorithms, the critical line algorithm, and the hierarchical risk parity algorithm on eight sectors of the Indian stock market. While the portfolios are designed using the stock price data from Jan 1, 2016, to Dec 31, 2020, they are tested on the data from Jan 1, 2021, to Aug 26, 2021. The backtesting results of the portfolios indicate while the performance of the CLA algorithm is superior on the training data, the HRP algorithm has outperformed the CLA algorithm on the test data.
Ensembling Portfolio Strategies for Long-Term Investments: A Distribution-Free Preference Framework for Decision-Making and Algorithms
This paper investigates the problem of ensembling multiple strategies for sequential portfolios to outperform individual strategies in terms of long-term wealth. Due to the uncertainty of strategies' performances in the future market, which are often based on specific models and statistical assumptions, investors often mitigate risk and enhance robustness by combining multiple strategies, akin to common approaches in collective learning prediction. However, the absence of a distribution-free and consistent preference framework complicates decisions of combination due to the ambiguous objective. To address this gap, we introduce a novel framework for decision-making in combining strategies, irrespective of market conditions, by establishing the investor's preference between decisions and then forming a clear objective. Through this framework, we propose a combinatorial strategy construction, free from statistical assumptions, for any scale of component strategies, even infinite, such that it meets the determined criterion. Finally, we test the proposed strategy along with its accelerated variant and some other multi-strategies. The numerical experiments show results in favor of the proposed strategies, albeit with small tradeoffs in their Sharpe ratios, in which their cumulative wealths eventually exceed those of the best component strategies while the accelerated strategy significantly improves performance.
Will LLMs be Professional at Fund Investment? DeepFund: A Live Arena Perspective
Large Language Models (LLMs) have demonstrated impressive capabilities across various domains, but their effectiveness in financial decision-making remains inadequately evaluated. Current benchmarks primarily assess LLMs' understanding on financial documents rather than the ability to manage assets or dig out trading opportunities in dynamic market conditions. Despite the release of new benchmarks for evaluating diversified tasks on the financial domain, we identified four major problems in these benchmarks, which are data leakage, navel-gazing, over-intervention, and maintenance-hard. To pave the research gap, we introduce DeepFund, a comprehensive arena platform for evaluating LLM-based trading strategies in a live environment. Our approach implements a multi-agent framework where they serve as multiple key roles that realize the real-world investment decision processes. Moreover, we provide a web interface that visualizes LLMs' performance with fund investment metrics across different market conditions, enabling detailed comparative analysis. Through DeepFund, we aim to provide a more realistic and fair assessment on LLM's capabilities in fund investment, offering diversified insights and revealing their potential applications in real-world financial markets. Our code is publicly available at https://github.com/HKUSTDial/DeepFund.
Deep Reinforcement Learning for ESG financial portfolio management
This paper investigates the application of Deep Reinforcement Learning (DRL) for Environment, Social, and Governance (ESG) financial portfolio management, with a specific focus on the potential benefits of ESG score-based market regulation. We leveraged an Advantage Actor-Critic (A2C) agent and conducted our experiments using environments encoded within the OpenAI Gym, adapted from the FinRL platform. The study includes a comparative analysis of DRL agent performance under standard Dow Jones Industrial Average (DJIA) market conditions and a scenario where returns are regulated in line with company ESG scores. In the ESG-regulated market, grants were proportionally allotted to portfolios based on their returns and ESG scores, while taxes were assigned to portfolios below the mean ESG score of the index. The results intriguingly reveal that the DRL agent within the ESG-regulated market outperforms the standard DJIA market setup. Furthermore, we considered the inclusion of ESG variables in the agent state space, and compared this with scenarios where such data were excluded. This comparison adds to the understanding of the role of ESG factors in portfolio management decision-making. We also analyze the behaviour of the DRL agent in IBEX 35 and NASDAQ-100 indexes. Both the A2C and Proximal Policy Optimization (PPO) algorithms were applied to these additional markets, providing a broader perspective on the generalization of our findings. This work contributes to the evolving field of ESG investing, suggesting that market regulation based on ESG scoring can potentially improve DRL-based portfolio management, with significant implications for sustainable investing strategies.
FinRobot: An Open-Source AI Agent Platform for Financial Applications using Large Language Models
As financial institutions and professionals increasingly incorporate Large Language Models (LLMs) into their workflows, substantial barriers, including proprietary data and specialized knowledge, persist between the finance sector and the AI community. These challenges impede the AI community's ability to enhance financial tasks effectively. Acknowledging financial analysis's critical role, we aim to devise financial-specialized LLM-based toolchains and democratize access to them through open-source initiatives, promoting wider AI adoption in financial decision-making. In this paper, we introduce FinRobot, a novel open-source AI agent platform supporting multiple financially specialized AI agents, each powered by LLM. Specifically, the platform consists of four major layers: 1) the Financial AI Agents layer that formulates Financial Chain-of-Thought (CoT) by breaking sophisticated financial problems down into logical sequences; 2) the Financial LLM Algorithms layer dynamically configures appropriate model application strategies for specific tasks; 3) the LLMOps and DataOps layer produces accurate models by applying training/fine-tuning techniques and using task-relevant data; 4) the Multi-source LLM Foundation Models layer that integrates various LLMs and enables the above layers to access them directly. Finally, FinRobot provides hands-on for both professional-grade analysts and laypersons to utilize powerful AI techniques for advanced financial analysis. We open-source FinRobot at https://github.com/AI4Finance-Foundation/FinRobot.
Robust Portfolio Design and Stock Price Prediction Using an Optimized LSTM Model
Accurate prediction of future prices of stocks is a difficult task to perform. Even more challenging is to design an optimized portfolio with weights allocated to the stocks in a way that optimizes its return and the risk. This paper presents a systematic approach towards building two types of portfolios, optimum risk, and eigen, for four critical economic sectors of India. The prices of the stocks are extracted from the web from Jan 1, 2016, to Dec 31, 2020. Sector-wise portfolios are built based on their ten most significant stocks. An LSTM model is also designed for predicting future stock prices. Six months after the construction of the portfolios, i.e., on Jul 1, 2021, the actual returns and the LSTM-predicted returns for the portfolios are computed. A comparison of the predicted and the actual returns indicate a high accuracy level of the LSTM model.
A New Way: Kronecker-Factored Approximate Curvature Deep Hedging and its Benefits
This paper advances the computational efficiency of Deep Hedging frameworks through the novel integration of Kronecker-Factored Approximate Curvature (K-FAC) optimization. While recent literature has established Deep Hedging as a data-driven alternative to traditional risk management strategies, the computational burden of training neural networks with first-order methods remains a significant impediment to practical implementation. The proposed architecture couples Long Short-Term Memory (LSTM) networks with K-FAC second-order optimization, specifically addressing the challenges of sequential financial data and curvature estimation in recurrent networks. Empirical validation using simulated paths from a calibrated Heston stochastic volatility model demonstrates that the K-FAC implementation achieves marked improvements in convergence dynamics and hedging efficacy. The methodology yields a 78.3% reduction in transaction costs (t = 56.88, p < 0.001) and a 34.4% decrease in profit and loss (P&L) variance compared to Adam optimization. Moreover, the K-FAC-enhanced model exhibits superior risk-adjusted performance with a Sharpe ratio of 0.0401, contrasting with -0.0025 for the baseline model. These results provide compelling evidence that second-order optimization methods can materially enhance the tractability of Deep Hedging implementations. The findings contribute to the growing literature on computational methods in quantitative finance while highlighting the potential for advanced optimization techniques to bridge the gap between theoretical frameworks and practical applications in financial markets.
Benchmarking Robustness of Deep Reinforcement Learning approaches to Online Portfolio Management
Deep Reinforcement Learning approaches to Online Portfolio Selection have grown in popularity in recent years. The sensitive nature of training Reinforcement Learning agents implies a need for extensive efforts in market representation, behavior objectives, and training processes, which have often been lacking in previous works. We propose a training and evaluation process to assess the performance of classical DRL algorithms for portfolio management. We found that most Deep Reinforcement Learning algorithms were not robust, with strategies generalizing poorly and degrading quickly during backtesting.
Adaptive Alpha Weighting with PPO: Enhancing Prompt-Based LLM-Generated Alphas in Quant Trading
This paper proposes a reinforcement learning framework that employs Proximal Policy Optimization (PPO) to dynamically optimize the weights of multiple large language model (LLM)-generated formulaic alphas for stock trading strategies. Formulaic alphas are mathematically defined trading signals derived from price, volume, sentiment, and other data. Although recent studies have shown that LLMs can generate diverse and effective alphas, a critical challenge lies in how to adaptively integrate them under varying market conditions. To address this gap, we leverage the deepseek-r1-distill-llama-70b model to generate fifty alphas for five major stocks: Apple, HSBC, Pepsi, Toyota, and Tencent, and then use PPO to adjust their weights in real time. Experimental results demonstrate that the PPO-optimized strategy achieves strong returns and high Sharpe ratios across most stocks, outperforming both an equal-weighted alpha portfolio and traditional benchmarks such as the Nikkei 225, S&P 500, and Hang Seng Index. The findings highlight the importance of reinforcement learning in the allocation of alpha weights and show the potential of combining LLM-generated signals with adaptive optimization for robust financial forecasting and trading.
Constructing Time-Series Momentum Portfolios with Deep Multi-Task Learning
A diversified risk-adjusted time-series momentum (TSMOM) portfolio can deliver substantial abnormal returns and offer some degree of tail risk protection during extreme market events. The performance of existing TSMOM strategies, however, relies not only on the quality of the momentum signal but also on the efficacy of the volatility estimator. Yet many of the existing studies have always considered these two factors to be independent. Inspired by recent progress in Multi-Task Learning (MTL), we present a new approach using MTL in a deep neural network architecture that jointly learns portfolio construction and various auxiliary tasks related to volatility, such as forecasting realized volatility as measured by different volatility estimators. Through backtesting from January 2000 to December 2020 on a diversified portfolio of continuous futures contracts, we demonstrate that even after accounting for transaction costs of up to 3 basis points, our approach outperforms existing TSMOM strategies. Moreover, experiments confirm that adding auxiliary tasks indeed boosts the portfolio's performance. These findings demonstrate that MTL can be a powerful tool in finance.
FLAG-Trader: Fusion LLM-Agent with Gradient-based Reinforcement Learning for Financial Trading
Large language models (LLMs) fine-tuned on multimodal financial data have demonstrated impressive reasoning capabilities in various financial tasks. However, they often struggle with multi-step, goal-oriented scenarios in interactive financial markets, such as trading, where complex agentic approaches are required to improve decision-making. To address this, we propose FLAG-Trader, a unified architecture integrating linguistic processing (via LLMs) with gradient-driven reinforcement learning (RL) policy optimization, in which a partially fine-tuned LLM acts as the policy network, leveraging pre-trained knowledge while adapting to the financial domain through parameter-efficient fine-tuning. Through policy gradient optimization driven by trading rewards, our framework not only enhances LLM performance in trading but also improves results on other financial-domain tasks. We present extensive empirical evidence to validate these enhancements.
Multi-Layer Deep xVA: Structural Credit Models, Measure Changes and Convergence Analysis
We propose a structural default model for portfolio-wide valuation adjustments (xVAs) and represent it as a system of coupled backward stochastic differential equations. The framework is divided into four layers, each capturing a key component: (i) clean values, (ii) initial margin and Collateral Valuation Adjustment (ColVA), (iii) Credit/Debit Valuation Adjustments (CVA/DVA) together with Margin Valuation Adjustment (MVA), and (iv) Funding Valuation Adjustment (FVA). Because these layers depend on one another through collateral and default effects, a naive Monte Carlo approach would require deeply nested simulations, making the problem computationally intractable. To address this challenge, we use an iterative deep BSDE approach, handling each layer sequentially so that earlier outputs serve as inputs to the subsequent layers. Initial margin is computed via deep quantile regression to reflect margin requirements over the Margin Period of Risk. We also adopt a change-of-measure method that highlights rare but significant defaults of the bank or counterparty, ensuring that these events are accurately captured in the training process. We further extend Han and Long's (2020) a posteriori error analysis to BSDEs on bounded domains. Due to the random exit from the domain, we obtain an order of convergence of O(h^{1/4-epsilon}) rather than the usual O(h^{1/2}). Numerical experiments illustrate that this method drastically reduces computational demands and successfully scales to high-dimensional, non-symmetric portfolios. The results confirm its effectiveness and accuracy, offering a practical alternative to nested Monte Carlo simulations in multi-counterparty xVA analyses.
Transformation-based Feature Computation for Algorithm Portfolios
Instance-specific algorithm configuration and algorithm portfolios have been shown to offer significant improvements over single algorithm approaches in a variety of application domains. In the SAT and CSP domains algorithm portfolios have consistently dominated the main competitions in these fields for the past five years. For a portfolio approach to be effective there are two crucial conditions that must be met. First, there needs to be a collection of complementary solvers with which to make a portfolio. Second, there must be a collection of problem features that can accurately identify structural differences between instances. This paper focuses on the latter issue: feature representation, because, unlike SAT, not every problem has well-studied features. We employ the well-known SATzilla feature set, but compute alternative sets on different SAT encodings of CSPs. We show that regardless of what encoding is used to convert the instances, adequate structural information is maintained to differentiate between problem instances, and that this can be exploited to make an effective portfolio-based CSP solver.
FinRL-DeepSeek: LLM-Infused Risk-Sensitive Reinforcement Learning for Trading Agents
This paper presents a novel risk-sensitive trading agent combining reinforcement learning and large language models (LLMs). We extend the Conditional Value-at-Risk Proximal Policy Optimization (CPPO) algorithm, by adding risk assessment and trading recommendation signals generated by a LLM from financial news. Our approach is backtested on the Nasdaq-100 index benchmark, using financial news data from the FNSPID dataset and the DeepSeek V3, Qwen 2.5 and Llama 3.3 language models. The code, data, and trading agents are available at: https://github.com/benstaf/FinRL_DeepSeek
INVESTORBENCH: A Benchmark for Financial Decision-Making Tasks with LLM-based Agent
Recent advancements have underscored the potential of large language model (LLM)-based agents in financial decision-making. Despite this progress, the field currently encounters two main challenges: (1) the lack of a comprehensive LLM agent framework adaptable to a variety of financial tasks, and (2) the absence of standardized benchmarks and consistent datasets for assessing agent performance. To tackle these issues, we introduce InvestorBench, the first benchmark specifically designed for evaluating LLM-based agents in diverse financial decision-making contexts. InvestorBench enhances the versatility of LLM-enabled agents by providing a comprehensive suite of tasks applicable to different financial products, including single equities like stocks, cryptocurrencies and exchange-traded funds (ETFs). Additionally, we assess the reasoning and decision-making capabilities of our agent framework using thirteen different LLMs as backbone models, across various market environments and tasks. Furthermore, we have curated a diverse collection of open-source, multi-modal datasets and developed a comprehensive suite of environments for financial decision-making. This establishes a highly accessible platform for evaluating financial agents' performance across various scenarios.
Variance Reduction in Deep Learning: More Momentum is All You Need
Variance reduction (VR) techniques have contributed significantly to accelerating learning with massive datasets in the smooth and strongly convex setting (Schmidt et al., 2017; Johnson & Zhang, 2013; Roux et al., 2012). However, such techniques have not yet met the same success in the realm of large-scale deep learning due to various factors such as the use of data augmentation or regularization methods like dropout (Defazio & Bottou, 2019). This challenge has recently motivated the design of novel variance reduction techniques tailored explicitly for deep learning (Arnold et al., 2019; Ma & Yarats, 2018). This work is an additional step in this direction. In particular, we exploit the ubiquitous clustering structure of rich datasets used in deep learning to design a family of scalable variance reduced optimization procedures by combining existing optimizers (e.g., SGD+Momentum, Quasi Hyperbolic Momentum, Implicit Gradient Transport) with a multi-momentum strategy (Yuan et al., 2019). Our proposal leads to faster convergence than vanilla methods on standard benchmark datasets (e.g., CIFAR and ImageNet). It is robust to label noise and amenable to distributed optimization. We provide a parallel implementation in JAX.
FinGAIA: A Chinese Benchmark for AI Agents in Real-World Financial Domain
The booming development of AI agents presents unprecedented opportunities for automating complex tasks across various domains. However, their multi-step, multi-tool collaboration capabilities in the financial sector remain underexplored. This paper introduces FinGAIA, an end-to-end benchmark designed to evaluate the practical abilities of AI agents in the financial domain. FinGAIA comprises 407 meticulously crafted tasks, spanning seven major financial sub-domains: securities, funds, banking, insurance, futures, trusts, and asset management. These tasks are organized into three hierarchical levels of scenario depth: basic business analysis, asset decision support, and strategic risk management. We evaluated 10 mainstream AI agents in a zero-shot setting. The best-performing agent, ChatGPT, achieved an overall accuracy of 48.9\%, which, while superior to non-professionals, still lags financial experts by over 35 percentage points. Error analysis has revealed five recurring failure patterns: Cross-modal Alignment Deficiency, Financial Terminological Bias, Operational Process Awareness Barrier, among others. These patterns point to crucial directions for future research. Our work provides the first agent benchmark closely related to the financial domain, aiming to objectively assess and promote the development of agents in this crucial field. Partial data is available at https://github.com/SUFE-AIFLM-Lab/FinGAIA.
Precise Stock Price Prediction for Robust Portfolio Design from Selected Sectors of the Indian Stock Market
Stock price prediction is a challenging task and a lot of propositions exist in the literature in this area. Portfolio construction is a process of choosing a group of stocks and investing in them optimally to maximize the return while minimizing the risk. Since the time when Markowitz proposed the Modern Portfolio Theory, several advancements have happened in the area of building efficient portfolios. An investor can get the best benefit out of the stock market if the investor invests in an efficient portfolio and could take the buy or sell decision in advance, by estimating the future asset value of the portfolio with a high level of precision. In this project, we have built an efficient portfolio and to predict the future asset value by means of individual stock price prediction of the stocks in the portfolio. As part of building an efficient portfolio we have studied multiple portfolio optimization methods beginning with the Modern Portfolio theory. We have built the minimum variance portfolio and optimal risk portfolio for all the five chosen sectors by using past daily stock prices over the past five years as the training data, and have also conducted back testing to check the performance of the portfolio. A comparative study of minimum variance portfolio and optimal risk portfolio with equal weight portfolio is done by backtesting.
MM-DREX: Multimodal-Driven Dynamic Routing of LLM Experts for Financial Trading
The inherent non-stationarity of financial markets and the complexity of multi-modal information pose significant challenges to existing quantitative trading models. Traditional methods relying on fixed structures and unimodal data struggle to adapt to market regime shifts, while large language model (LLM)-driven solutions - despite their multi-modal comprehension - suffer from static strategies and homogeneous expert designs, lacking dynamic adjustment and fine-grained decision mechanisms. To address these limitations, we propose MM-DREX: a Multimodal-driven, Dynamically-Routed EXpert framework based on large language models. MM-DREX explicitly decouples market state perception from strategy execution to enable adaptive sequential decision-making in non-stationary environments. Specifically, it (1) introduces a vision-language model (VLM)-powered dynamic router that jointly analyzes candlestick chart patterns and long-term temporal features to allocate real-time expert weights; (2) designs four heterogeneous trading experts (trend, reversal, breakout, positioning) generating specialized fine-grained sub-strategies; and (3) proposes an SFT-RL hybrid training paradigm to synergistically optimize the router's market classification capability and experts' risk-adjusted decision-making. Extensive experiments on multi-modal datasets spanning stocks, futures, and cryptocurrencies demonstrate that MM-DREX significantly outperforms 15 baselines (including state-of-the-art financial LLMs and deep reinforcement learning models) across key metrics: total return, Sharpe ratio, and maximum drawdown, validating its robustness and generalization. Additionally, an interpretability module traces routing logic and expert behavior in real time, providing an audit trail for strategy transparency.
Exploring Selective Layer Fine-Tuning in Federated Learning
Federated learning (FL) has emerged as a promising paradigm for fine-tuning foundation models using distributed data in a privacy-preserving manner. Under limited computational resources, clients often find it more practical to fine-tune a selected subset of layers, rather than the entire model, based on their task-specific data. In this study, we provide a thorough theoretical exploration of selective layer fine-tuning in FL, emphasizing a flexible approach that allows the clients to adjust their selected layers according to their local data and resources. We theoretically demonstrate that the layer selection strategy has a significant impact on model convergence in two critical aspects: the importance of selected layers and the heterogeneous choices across clients. Drawing from these insights, we further propose a strategic layer selection method that utilizes local gradients and regulates layer selections across clients. The extensive experiments on both image and text datasets demonstrate the effectiveness of the proposed strategy compared with several baselines, highlighting its advances in identifying critical layers that adapt to the client heterogeneity and training dynamics in FL.
B2Opt: Learning to Optimize Black-box Optimization with Little Budget
The core challenge of high-dimensional and expensive black-box optimization (BBO) is how to obtain better performance faster with little function evaluation cost. The essence of the problem is how to design an efficient optimization strategy tailored to the target task. This paper designs a powerful optimization framework to automatically learn the optimization strategies from the target or cheap surrogate task without human intervention. However, current methods are weak for this due to poor representation of optimization strategy. To achieve this, 1) drawing on the mechanism of genetic algorithm, we propose a deep neural network framework called B2Opt, which has a stronger representation of optimization strategies based on survival of the fittest; 2) B2Opt can utilize the cheap surrogate functions of the target task to guide the design of the efficient optimization strategies. Compared to the state-of-the-art BBO baselines, B2Opt can achieve multiple orders of magnitude performance improvement with less function evaluation cost. We validate our proposal on high-dimensional synthetic functions and two real-world applications. We also find that deep B2Opt performs better than shallow ones.
Generalized Mean Absolute Directional Loss as a Solution to Overfitting and High Transaction Costs in Machine Learning Models Used in High-Frequency Algorithmic Investment Strategies
Regardless of the selected asset class and the level of model complexity (Transformer versus LSTM versus Perceptron/RNN), the GMADL loss function produces superior results than standard MSE-type loss functions and has better numerical properties in the context of optimization than MADL. Better results mean the possibility of achieving a higher risk-weighted return based on buy and sell signals built on forecasts generated by a given theoretical model estimated using the GMADL versus MSE or MADL function. In practice, GMADL solves the problem of selecting the most preferable feature in both classification and regression problems, improving the performance of each estimation. What is important is that, through additional parameterization, GMADL also solves the problem of optimizing investment systems on high-frequency data in such a way that they focus on strategy variants that contain fewer transactions so that transaction costs do not reduce the effectiveness of a given strategy to zero. Moreover, the implementation leverages state-of-the-art machine learning tools, including frameworks for hyperparameter tuning, architecture testing, and walk-forward optimization, ensuring robust and scalable solutions for real-world algorithmic trading.
Optimum Risk Portfolio and Eigen Portfolio: A Comparative Analysis Using Selected Stocks from the Indian Stock Market
Designing an optimum portfolio that allocates weights to its constituent stocks in a way that achieves the best trade-off between the return and the risk is a challenging research problem. The classical mean-variance theory of portfolio proposed by Markowitz is found to perform sub-optimally on the real-world stock market data since the error in estimation for the expected returns adversely affects the performance of the portfolio. This paper presents three approaches to portfolio design, viz, the minimum risk portfolio, the optimum risk portfolio, and the Eigen portfolio, for seven important sectors of the Indian stock market. The daily historical prices of the stocks are scraped from Yahoo Finance website from January 1, 2016, to December 31, 2020. Three portfolios are built for each of the seven sectors chosen for this study, and the portfolios are analyzed on the training data based on several metrics such as annualized return and risk, weights assigned to the constituent stocks, the correlation heatmaps, and the principal components of the Eigen portfolios. Finally, the optimum risk portfolios and the Eigen portfolios for all sectors are tested on their return over a period of a six-month period. The performances of the portfolios are compared and the portfolio yielding the higher return for each sector is identified.
SNFinLLM: Systematic and Nuanced Financial Domain Adaptation of Chinese Large Language Models
Large language models (LLMs) have become powerful tools for advancing natural language processing applications in the financial industry. However, existing financial LLMs often face challenges such as hallucinations or superficial parameter training, resulting in suboptimal performance, particularly in financial computing and machine reading comprehension (MRC). To address these issues, we propose a novel large language model specifically designed for the Chinese financial domain, named SNFinLLM. SNFinLLM excels in domain-specific tasks such as answering questions, summarizing financial research reports, analyzing sentiment, and executing financial calculations. We then perform the supervised fine-tuning (SFT) to enhance the model's proficiency across various financial domains. Specifically, we gather extensive financial data and create a high-quality instruction dataset composed of news articles, professional papers, and research reports of finance domain. Utilizing both domain-specific and general datasets, we proceed with continuous pre-training on an established open-source base model, resulting in SNFinLLM-base. Following this, we engage in supervised fine-tuning (SFT) to bolster the model's capability across multiple financial tasks. Crucially, we employ a straightforward Direct Preference Optimization (DPO) method to better align the model with human preferences. Extensive experiments conducted on finance benchmarks and our evaluation dataset demonstrate that SNFinLLM markedly outperforms other state-of-the-art financial language models. For more details, check out our demo video here: https://www.youtube.com/watch?v=GYT-65HZwus.
DeepUnifiedMom: Unified Time-series Momentum Portfolio Construction via Multi-Task Learning with Multi-Gate Mixture of Experts
This paper introduces DeepUnifiedMom, a deep learning framework that enhances portfolio management through a multi-task learning approach and a multi-gate mixture of experts. The essence of DeepUnifiedMom lies in its ability to create unified momentum portfolios that incorporate the dynamics of time series momentum across a spectrum of time frames, a feature often missing in traditional momentum strategies. Our comprehensive backtesting, encompassing diverse asset classes such as equity indexes, fixed income, foreign exchange, and commodities, demonstrates that DeepUnifiedMom consistently outperforms benchmark models, even after factoring in transaction costs. This superior performance underscores DeepUnifiedMom's capability to capture the full spectrum of momentum opportunities within financial markets. The findings highlight DeepUnifiedMom as an effective tool for practitioners looking to exploit the entire range of momentum opportunities. It offers a compelling solution for improving risk-adjusted returns and is a valuable strategy for navigating the complexities of portfolio management.
A Deep Reinforcement Learning Approach to Automated Stock Trading, using xLSTM Networks
Traditional Long Short-Term Memory (LSTM) networks are effective for handling sequential data but have limitations such as gradient vanishing and difficulty in capturing long-term dependencies, which can impact their performance in dynamic and risky environments like stock trading. To address these limitations, this study explores the usage of the newly introduced Extended Long Short Term Memory (xLSTM) network in combination with a deep reinforcement learning (DRL) approach for automated stock trading. Our proposed method utilizes xLSTM networks in both actor and critic components, enabling effective handling of time series data and dynamic market environments. Proximal Policy Optimization (PPO), with its ability to balance exploration and exploitation, is employed to optimize the trading strategy. Experiments were conducted using financial data from major tech companies over a comprehensive timeline, demonstrating that the xLSTM-based model outperforms LSTM-based methods in key trading evaluation metrics, including cumulative return, average profitability per trade, maximum earning rate, maximum pullback, and Sharpe ratio. These findings mark the potential of xLSTM for enhancing DRL-based stock trading systems.
Time Travel is Cheating: Going Live with DeepFund for Real-Time Fund Investment Benchmarking
Large Language Models (LLMs) have demonstrated notable capabilities across financial tasks, including financial report summarization, earnings call transcript analysis, and asset classification. However, their real-world effectiveness in managing complex fund investment remains inadequately assessed. A fundamental limitation of existing benchmarks for evaluating LLM-driven trading strategies is their reliance on historical back-testing, inadvertently enabling LLMs to "time travel"-leveraging future information embedded in their training corpora, thus resulting in possible information leakage and overly optimistic performance estimates. To address this issue, we introduce DeepFund, a live fund benchmark tool designed to rigorously evaluate LLM in real-time market conditions. Utilizing a multi-agent architecture, DeepFund connects directly with real-time stock market data-specifically data published after each model pretraining cutoff-to ensure fair and leakage-free evaluations. Empirical tests on nine flagship LLMs from leading global institutions across multiple investment dimensions-including ticker-level analysis, investment decision-making, portfolio management, and risk control-reveal significant practical challenges. Notably, even cutting-edge models such as DeepSeek-V3 and Claude-3.7-Sonnet incur net trading losses within DeepFund real-time evaluation environment, underscoring the present limitations of LLMs for active fund management. Our code is available at https://github.com/HKUSTDial/DeepFund.
FinCon: A Synthesized LLM Multi-Agent System with Conceptual Verbal Reinforcement for Enhanced Financial Decision Making
Large language models (LLMs) have demonstrated notable potential in conducting complex tasks and are increasingly utilized in various financial applications. However, high-quality sequential financial investment decision-making remains challenging. These tasks require multiple interactions with a volatile environment for every decision, demanding sufficient intelligence to maximize returns and manage risks. Although LLMs have been used to develop agent systems that surpass human teams and yield impressive investment returns, opportunities to enhance multi-sourced information synthesis and optimize decision-making outcomes through timely experience refinement remain unexplored. Here, we introduce the FinCon, an LLM-based multi-agent framework with CONceptual verbal reinforcement tailored for diverse FINancial tasks. Inspired by effective real-world investment firm organizational structures, FinCon utilizes a manager-analyst communication hierarchy. This structure allows for synchronized cross-functional agent collaboration towards unified goals through natural language interactions and equips each agent with greater memory capacity than humans. Additionally, a risk-control component in FinCon enhances decision quality by episodically initiating a self-critiquing mechanism to update systematic investment beliefs. The conceptualized beliefs serve as verbal reinforcement for the future agent's behavior and can be selectively propagated to the appropriate node that requires knowledge updates. This feature significantly improves performance while reducing unnecessary peer-to-peer communication costs. Moreover, FinCon demonstrates strong generalization capabilities in various financial tasks, including single stock trading and portfolio management.
Managing Portfolio for Maximizing Alpha and Minimizing Beta
Portfolio management is an essential component of investment strategy that aims to maximize returns while minimizing risk. This paper explores several portfolio management strategies, including asset allocation, diversification, active management, and risk management, and their importance in optimizing portfolio performance. These strategies are examined individually and in combination to demonstrate how they can help investors maximize alpha and minimize beta. Asset allocation is the process of dividing a portfolio among different asset classes to achieve the desired level of risk and return. Diversification involves spreading investments across different securities and sectors to minimize the impact of individual security or sector-specific risks. Active management involves security selection and risk management techniques to generate excess returns while minimizing losses. Risk management strategies, such as stop-loss orders and options strategies, aim to minimize losses in adverse market conditions. The importance of combining these strategies for optimizing portfolio performance is emphasized in this paper. The proper implementation of these strategies can help investors achieve their investment goals over the long-term, while minimizing exposure to risks. A call to action for investors to utilize portfolio management strategies to maximize alpha and minimize beta is also provided.
FinVerse: An Autonomous Agent System for Versatile Financial Analysis
With the significant advancements in cognitive intelligence driven by LLMs, autonomous agent systems have attracted extensive attention. Despite this growing interest, the development of stable and efficient agent systems poses substantial practical challenges. In this paper, we introduce FinVerse, a meticulously crafted agent system designed for a broad range of financial topics. FinVerse integrates over 600 financial APIs, enabling access to more accurate and extensive financial information compared to generalist agents. To enhance financial information processing capabilities, FinVerse is equipped with an embedded code interpreter, enabling the execution of complex data analysis tasks with precision and efficiency. Our work includes an empirical comparison of several LLMs in driving FinVerse. Specifically, we propose our own scheme for training LLMs using SFT to optimize LLM performance within FinVerse. Recognizing the scarcity of specialized datasets to build LLMs for agents, we have constructed a dataset and plan to make it open-source, providing a valuable resource for peer application developers. The demo video has been released on YouTube at https://www.youtube.com/watch?v=sk8L9_Wv7J4
Synthesizing Behaviorally-Grounded Reasoning Chains: A Data-Generation Framework for Personal Finance LLMs
Personalized financial advice requires consideration of user goals, constraints, risk tolerance, and jurisdiction. Prior LLM work has focused on support systems for investors and financial planners. Simultaneously, numerous recent studies examine broader personal finance tasks, including budgeting, debt management, retirement, and estate planning, through agentic pipelines that incur high maintenance costs, yielding less than 25% of their expected financial returns. In this study, we introduce a novel and reproducible framework that integrates relevant financial context with behavioral finance studies to construct supervision data for end-to-end advisors. Using this framework, we create a 19k sample reasoning dataset and conduct a comprehensive fine-tuning of the Qwen-3-8B model on the dataset. Through a held-out test split and a blind LLM-jury study, we demonstrate that through careful data curation and behavioral integration, our 8B model achieves performance comparable to significantly larger baselines (14-32B parameters) across factual accuracy, fluency, and personalization metrics while incurring 80% lower costs than the larger counterparts.
ContestTrade: A Multi-Agent Trading System Based on Internal Contest Mechanism
In financial trading, large language model (LLM)-based agents demonstrate significant potential. However, the high sensitivity to market noise undermines the performance of LLM-based trading systems. To address this limitation, we propose a novel multi-agent system featuring an internal competitive mechanism inspired by modern corporate management structures. The system consists of two specialized teams: (1) Data Team - responsible for processing and condensing massive market data into diversified text factors, ensuring they fit the model's constrained context. (2) Research Team - tasked with making parallelized multipath trading decisions based on deep research methods. The core innovation lies in implementing a real-time evaluation and ranking mechanism within each team, driven by authentic market feedback. Each agent's performance undergoes continuous scoring and ranking, with only outputs from top-performing agents being adopted. The design enables the system to adaptively adjust to dynamic environment, enhances robustness against market noise and ultimately delivers superior trading performance. Experimental results demonstrate that our proposed system significantly outperforms prevailing multi-agent systems and traditional quantitative investment methods across diverse evaluation metrics. ContestTrade is open-sourced on GitHub at https://github.com/FinStep-AI/ContestTrade.
Language Model Guided Reinforcement Learning in Quantitative Trading
Algorithmic trading requires short-term decisions aligned with long-term financial goals. While reinforcement learning (RL) has been explored for such tactical decisions, its adoption remains limited by myopic behavior and opaque policy rationale. In contrast, large language models (LLMs) have recently demonstrated strategic reasoning and multi-modal financial signal interpretation when guided by well-designed prompts. We propose a hybrid system where LLMs generate high-level trading strategies to guide RL agents in their actions. We evaluate (i) the rationale of LLM-generated strategies via expert review, and (ii) the Sharpe Ratio (SR) and Maximum Drawdown (MDD) of LLM-guided agents versus unguided baselines. Results show improved return and risk metrics over standard RL.
Can Large Language Models Beat Wall Street? Unveiling the Potential of AI in Stock Selection
This paper introduces MarketSenseAI, an innovative framework leveraging GPT-4's advanced reasoning for selecting stocks in financial markets. By integrating Chain of Thought and In-Context Learning, MarketSenseAI analyzes diverse data sources, including market trends, news, fundamentals, and macroeconomic factors, to emulate expert investment decision-making. The development, implementation, and validation of the framework are elaborately discussed, underscoring its capability to generate actionable and interpretable investment signals. A notable feature of this work is employing GPT-4 both as a predictive mechanism and signal evaluator, revealing the significant impact of the AI-generated explanations on signal accuracy, reliability and acceptance. Through empirical testing on the competitive S&P 100 stocks over a 15-month period, MarketSenseAI demonstrated exceptional performance, delivering excess alpha of 10% to 30% and achieving a cumulative return of up to 72% over the period, while maintaining a risk profile comparable to the broader market. Our findings highlight the transformative potential of Large Language Models in financial decision-making, marking a significant leap in integrating generative AI into financial analytics and investment strategies.
Neur2RO: Neural Two-Stage Robust Optimization
Robust optimization provides a mathematical framework for modeling and solving decision-making problems under worst-case uncertainty. This work addresses two-stage robust optimization (2RO) problems (also called adjustable robust optimization), wherein first-stage and second-stage decisions are made before and after uncertainty is realized, respectively. This results in a nested min-max-min optimization problem which is extremely challenging computationally, especially when the decisions are discrete. We propose Neur2RO, an efficient machine learning-driven instantiation of column-and-constraint generation (CCG), a classical iterative algorithm for 2RO. Specifically, we learn to estimate the value function of the second-stage problem via a novel neural network architecture that is easy to optimize over by design. Embedding our neural network into CCG yields high-quality solutions quickly as evidenced by experiments on two 2RO benchmarks, knapsack and capital budgeting. For knapsack, Neur2RO finds solutions that are within roughly 2% of the best-known values in a few seconds compared to the three hours of the state-of-the-art exact branch-and-price algorithm; for larger and more complex instances, Neur2RO finds even better solutions. For capital budgeting, Neur2RO outperforms three variants of the k-adaptability algorithm, particularly on the largest instances, with a 10 to 100-fold reduction in solution time. Our code and data are available at https://github.com/khalil-research/Neur2RO.
Reinforcement Learning and Deep Stochastic Optimal Control for Final Quadratic Hedging
We consider two data driven approaches, Reinforcement Learning (RL) and Deep Trajectory-based Stochastic Optimal Control (DTSOC) for hedging a European call option without and with transaction cost according to a quadratic hedging P&L objective at maturity ("variance-optimal hedging" or "final quadratic hedging"). We study the performance of the two approaches under various market environments (modeled via the Black-Scholes and/or the log-normal SABR model) to understand their advantages and limitations. Without transaction costs and in the Black-Scholes model, both approaches match the performance of the variance-optimal Delta hedge. In the log-normal SABR model without transaction costs, they match the performance of the variance-optimal Barlett's Delta hedge. Agents trained on Black-Scholes trajectories with matching initial volatility but used on SABR trajectories match the performance of Bartlett's Delta hedge in average cost, but show substantially wider variance. To apply RL approaches to these problems, P&L at maturity is written as sum of step-wise contributions and variants of RL algorithms are implemented and used that minimize expectation of second moments of such sums.
Towards Assessing and Benchmarking Risk-Return Tradeoff of Off-Policy Evaluation
Off-Policy Evaluation (OPE) aims to assess the effectiveness of counterfactual policies using only offline logged data and is often used to identify the top-k promising policies for deployment in online A/B tests. Existing evaluation metrics for OPE estimators primarily focus on the "accuracy" of OPE or that of downstream policy selection, neglecting risk-return tradeoff in the subsequent online policy deployment. To address this issue, we draw inspiration from portfolio evaluation in finance and develop a new metric, called SharpeRatio@k, which measures the risk-return tradeoff of policy portfolios formed by an OPE estimator under varying online evaluation budgets (k). We validate our metric in two example scenarios, demonstrating its ability to effectively distinguish between low-risk and high-risk estimators and to accurately identify the most efficient one. Efficiency of an estimator is characterized by its capability to form the most advantageous policy portfolios, maximizing returns while minimizing risks during online deployment, a nuance that existing metrics typically overlook. To facilitate a quick, accurate, and consistent evaluation of OPE via SharpeRatio@k, we have also integrated this metric into an open-source software, SCOPE-RL (https://github.com/hakuhodo-technologies/scope-rl). Employing SharpeRatio@k and SCOPE-RL, we conduct comprehensive benchmarking experiments on various estimators and RL tasks, focusing on their risk-return tradeoff. These experiments offer several interesting directions and suggestions for future OPE research.
Predictive Crypto-Asset Automated Market Making Architecture for Decentralized Finance using Deep Reinforcement Learning
The study proposes a quote-driven predictive automated market maker (AMM) platform with on-chain custody and settlement functions, alongside off-chain predictive reinforcement learning capabilities to improve liquidity provision of real-world AMMs. The proposed AMM architecture is an augmentation to the Uniswap V3, a cryptocurrency AMM protocol, by utilizing a novel market equilibrium pricing for reduced divergence and slippage loss. Further, the proposed architecture involves a predictive AMM capability, utilizing a deep hybrid Long Short-Term Memory (LSTM) and Q-learning reinforcement learning framework that looks to improve market efficiency through better forecasts of liquidity concentration ranges, so liquidity starts moving to expected concentration ranges, prior to asset price movement, so that liquidity utilization is improved. The augmented protocol framework is expected have practical real-world implications, by (i) reducing divergence loss for liquidity providers, (ii) reducing slippage for crypto-asset traders, while (iii) improving capital efficiency for liquidity provision for the AMM protocol. To our best knowledge, there are no known protocol or literature that are proposing similar deep learning-augmented AMM that achieves similar capital efficiency and loss minimization objectives for practical real-world applications.
R&D-Agent-Quant: A Multi-Agent Framework for Data-Centric Factors and Model Joint Optimization
Financial markets pose fundamental challenges for asset return prediction due to their high dimensionality, non-stationarity, and persistent volatility. Despite advances in large language models and multi-agent systems, current quantitative research pipelines suffer from limited automation, weak interpretability, and fragmented coordination across key components such as factor mining and model innovation. In this paper, we propose R&D-Agent for Quantitative Finance, in short RD-Agent(Q), the first data-centric multi-agent framework designed to automate the full-stack research and development of quantitative strategies via coordinated factor-model co-optimization. RD-Agent(Q) decomposes the quant process into two iterative stages: a Research stage that dynamically sets goal-aligned prompts, formulates hypotheses based on domain priors, and maps them to concrete tasks, and a Development stage that employs a code-generation agent, Co-STEER, to implement task-specific code, which is then executed in real-market backtests. The two stages are connected through a feedback stage that thoroughly evaluates experimental outcomes and informs subsequent iterations, with a multi-armed bandit scheduler for adaptive direction selection. Empirically, RD-Agent(Q) achieves up to 2X higher annualized returns than classical factor libraries using 70% fewer factors, and outperforms state-of-the-art deep time-series models on real markets. Its joint factor-model optimization delivers a strong balance between predictive accuracy and strategy robustness. Our code is available at: https://github.com/microsoft/RD-Agent.
Supervised Neural Networks for Illiquid Alternative Asset Cash Flow Forecasting
Institutional investors have been increasing the allocation of the illiquid alternative assets such as private equity funds in their portfolios, yet there exists a very limited literature on cash flow forecasting of illiquid alternative assets. The net cash flow of private equity funds typically follow a J-curve pattern, however the timing and the size of the contributions and distributions depend on the investment opportunities. In this paper, we develop a benchmark model and present two novel approaches (direct vs. indirect) to predict the cash flows of private equity funds. We introduce a sliding window approach to apply on our cash flow data because different vintage year funds contain different lengths of cash flow information. We then pass the data to an LSTM/ GRU model to predict the future cash flows either directly or indirectly (based on the benchmark model). We further integrate macroeconomic indicators into our data, which allows us to consider the impact of market environment on cash flows and to apply stress testing. Our results indicate that the direct model is easier to implement compared to the benchmark model and the indirect model, but still the predicted cash flows align better with the actual cash flows. We also show that macroeconomic variables improve the performance of the direct model whereas the impact is not obvious on the indirect model.
VeLO: Training Versatile Learned Optimizers by Scaling Up
While deep learning models have replaced hand-designed features across many domains, these models are still trained with hand-designed optimizers. In this work, we leverage the same scaling approach behind the success of deep learning to learn versatile optimizers. We train an optimizer for deep learning which is itself a small neural network that ingests gradients and outputs parameter updates. Meta-trained with approximately four thousand TPU-months of compute on a wide variety of optimization tasks, our optimizer not only exhibits compelling performance, but optimizes in interesting and unexpected ways. It requires no hyperparameter tuning, instead automatically adapting to the specifics of the problem being optimized. We open source our learned optimizer, meta-training code, the associated train and test data, and an extensive optimizer benchmark suite with baselines at velo-code.github.io.
StockBench: Can LLM Agents Trade Stocks Profitably In Real-world Markets?
Large language models (LLMs) have recently demonstrated strong capabilities as autonomous agents, showing promise in reasoning, tool use, and sequential decision-making. While prior benchmarks have evaluated LLM agents in domains such as software engineering and scientific discovery, the finance domain remains underexplored, despite its direct relevance to economic value and high-stakes decision-making. Existing financial benchmarks primarily test static knowledge through question answering, but they fall short of capturing the dynamic and iterative nature of trading. To address this gap, we introduce StockBench, a contamination-free benchmark designed to evaluate LLM agents in realistic, multi-month stock trading environments. Agents receive daily market signals -- including prices, fundamentals, and news -- and must make sequential buy, sell, or hold decisions. Performance is assessed using financial metrics such as cumulative return, maximum drawdown, and the Sortino ratio. Our evaluation of state-of-the-art proprietary (e.g., GPT-5, Claude-4) and open-weight (e.g., Qwen3, Kimi-K2, GLM-4.5) models shows that while most LLM agents struggle to outperform the simple buy-and-hold baseline, several models demonstrate the potential to deliver higher returns and manage risk more effectively. These findings highlight both the challenges and opportunities in developing LLM-powered financial agents, showing that excelling at static financial knowledge tasks does not necessarily translate into successful trading strategies. We release StockBench as an open-source resource to support reproducibility and advance future research in this domain.
WHEN FLUE MEETS FLANG: Benchmarks and Large Pre-trained Language Model for Financial Domain
Pre-trained language models have shown impressive performance on a variety of tasks and domains. Previous research on financial language models usually employs a generic training scheme to train standard model architectures, without completely leveraging the richness of the financial data. We propose a novel domain specific Financial LANGuage model (FLANG) which uses financial keywords and phrases for better masking, together with span boundary objective and in-filing objective. Additionally, the evaluation benchmarks in the field have been limited. To this end, we contribute the Financial Language Understanding Evaluation (FLUE), an open-source comprehensive suite of benchmarks for the financial domain. These include new benchmarks across 5 NLP tasks in financial domain as well as common benchmarks used in the previous research. Experiments on these benchmarks suggest that our model outperforms those in prior literature on a variety of NLP tasks. Our models, code and benchmark data are publicly available on Github and Huggingface.
A Dutch Financial Large Language Model
This paper presents FinGEITje, the first Dutch financial Large Language Model (LLM) specifically designed and optimized for various financial tasks. Together with the model, we release a specialized Dutch financial instruction tuning dataset with over 140,000 samples, constructed employing an automated translation and data processing method. The open-source data construction method is provided, facilitating the creation of financial instruction datasets in different languages. To evaluate model performance, the study introduces the first Dutch financial evaluation benchmark, along with an automated evaluation method that utilizes an LLM as an independent evaluator, reducing manual intervention in performance evaluation. The experimental results highlight the superior performance of FinGEITje across five critical Dutch and English financial tasks.
STRUX: An LLM for Decision-Making with Structured Explanations
Countless decisions shape our daily lives, and it is paramount to understand the how and why behind these choices. In this paper, we introduce a new LLM decision-making framework called STRUX, which enhances LLM decision-making by providing structured explanations. These include favorable and adverse facts related to the decision, along with their respective strengths. STRUX begins by distilling lengthy information into a concise table of key facts. It then employs a series of self-reflection steps to determine which of these facts are pivotal, categorizing them as either favorable or adverse in relation to a specific decision. Lastly, we fine-tune an LLM to identify and prioritize these key facts to optimize decision-making. STRUX has been evaluated on the challenging task of forecasting stock investment decisions based on earnings call transcripts and demonstrated superior performance against strong baselines. It enhances decision transparency by allowing users to understand the impact of different factors, representing a meaningful step towards practical decision-making with LLMs.
FinanceBench: A New Benchmark for Financial Question Answering
FinanceBench is a first-of-its-kind test suite for evaluating the performance of LLMs on open book financial question answering (QA). It comprises 10,231 questions about publicly traded companies, with corresponding answers and evidence strings. The questions in FinanceBench are ecologically valid and cover a diverse set of scenarios. They are intended to be clear-cut and straightforward to answer to serve as a minimum performance standard. We test 16 state of the art model configurations (including GPT-4-Turbo, Llama2 and Claude2, with vector stores and long context prompts) on a sample of 150 cases from FinanceBench, and manually review their answers (n=2,400). The cases are available open-source. We show that existing LLMs have clear limitations for financial QA. Notably, GPT-4-Turbo used with a retrieval system incorrectly answered or refused to answer 81% of questions. While augmentation techniques such as using longer context window to feed in relevant evidence improve performance, they are unrealistic for enterprise settings due to increased latency and cannot support larger financial documents. We find that all models examined exhibit weaknesses, such as hallucinations, that limit their suitability for use by enterprises.
FinWorld: An All-in-One Open-Source Platform for End-to-End Financial AI Research and Deployment
Financial AI holds great promise for transforming modern finance, with the potential to support a wide range of tasks such as market forecasting, portfolio management, quantitative trading, and automated analysis. However, existing platforms remain limited in task coverage, lack robust multimodal data integration, and offer insufficient support for the training and deployment of large language models (LLMs). In response to these limitations, we present FinWorld, an all-in-one open-source platform that provides end-to-end support for the entire financial AI workflow, from data acquisition to experimentation and deployment. FinWorld distinguishes itself through native integration of heterogeneous financial data, unified support for diverse AI paradigms, and advanced agent automation, enabling seamless development and deployment. Leveraging data from 2 representative markets, 4 stock pools, and over 800 million financial data points, we conduct comprehensive experiments on 4 key financial AI tasks. These experiments systematically evaluate deep learning and reinforcement learning algorithms, with particular emphasis on RL-based finetuning for LLMs and LLM Agents. The empirical results demonstrate that FinWorld significantly enhances reproducibility, supports transparent benchmarking, and streamlines deployment, thereby providing a strong foundation for future research and real-world applications. Code is available at Github~https://github.com/DVampire/FinWorld.
A Multimodal Foundation Agent for Financial Trading: Tool-Augmented, Diversified, and Generalist
Financial trading is a crucial component of the markets, informed by a multimodal information landscape encompassing news, prices, and Kline charts, and encompasses diverse tasks such as quantitative trading and high-frequency trading with various assets. While advanced AI techniques like deep learning and reinforcement learning are extensively utilized in finance, their application in financial trading tasks often faces challenges due to inadequate handling of multimodal data and limited generalizability across various tasks. To address these challenges, we present FinAgent, a multimodal foundational agent with tool augmentation for financial trading. FinAgent's market intelligence module processes a diverse range of data-numerical, textual, and visual-to accurately analyze the financial market. Its unique dual-level reflection module not only enables rapid adaptation to market dynamics but also incorporates a diversified memory retrieval system, enhancing the agent's ability to learn from historical data and improve decision-making processes. The agent's emphasis on reasoning for actions fosters trust in its financial decisions. Moreover, FinAgent integrates established trading strategies and expert insights, ensuring that its trading approaches are both data-driven and rooted in sound financial principles. With comprehensive experiments on 6 financial datasets, including stocks and Crypto, FinAgent significantly outperforms 9 state-of-the-art baselines in terms of 6 financial metrics with over 36% average improvement on profit. Specifically, a 92.27% return (a 84.39% relative improvement) is achieved on one dataset. Notably, FinAgent is the first advanced multimodal foundation agent designed for financial trading tasks.
Risk Management with Feature-Enriched Generative Adversarial Networks (FE-GAN)
This paper investigates the application of Feature-Enriched Generative Adversarial Networks (FE-GAN) in financial risk management, with a focus on improving the estimation of Value at Risk (VaR) and Expected Shortfall (ES). FE-GAN enhances existing GANs architectures by incorporating an additional input sequence derived from preceding data to improve model performance. Two specialized GANs models, the Wasserstein Generative Adversarial Network (WGAN) and the Tail Generative Adversarial Network (Tail-GAN), were evaluated under the FE-GAN framework. The results demonstrate that FE-GAN significantly outperforms traditional architectures in both VaR and ES estimation. Tail-GAN, leveraging its task-specific loss function, consistently outperforms WGAN in ES estimation, while both models exhibit similar performance in VaR estimation. Despite these promising results, the study acknowledges limitations, including reliance on highly correlated temporal data and restricted applicability to other domains. Future research directions include exploring alternative input generation methods, dynamic forecasting models, and advanced neural network architectures to further enhance GANs-based financial risk estimation.
From Data to Rewards: a Bilevel Optimization Perspective on Maximum Likelihood Estimation
Generative models form the backbone of modern machine learning, underpinning state-of-the-art systems in text, vision, and multimodal applications. While Maximum Likelihood Estimation has traditionally served as the dominant training paradigm, recent work have highlighted its limitations, particularly in generalization and susceptibility to catastrophic forgetting compared to Reinforcement Learning techniques, such as Policy Gradient methods. However, these approaches depend on explicit reward signals, which are often unavailable in practice, leaving open the fundamental problem of how to align generative models when only high-quality datasets are accessible. In this work, we address this challenge via a Bilevel Optimization framework, where the reward function is treated as the optimization variable of an outer-level problem, while a policy gradient objective defines the inner-level. We then conduct a theoretical analysis of this optimization problem in a tractable setting and extract insights that, as we demonstrate, generalize to applications such as tabular classification and model-based reinforcement learning. We release the code at https://github.com/abenechehab/nll_to_po .
Scalable Nested Optimization for Deep Learning
Gradient-based optimization has been critical to the success of machine learning, updating a single set of parameters to minimize a single loss. A growing number of applications rely on a generalization of this, where we have a bilevel or nested optimization of which subsets of parameters update on different objectives nested inside each other. We focus on motivating examples of hyperparameter optimization and generative adversarial networks. However, naively applying classical methods often fails when we look at solving these nested problems on a large scale. In this thesis, we build tools for nested optimization that scale to deep learning setups.
QTMRL: An Agent for Quantitative Trading Decision-Making Based on Multi-Indicator Guided Reinforcement Learning
In the highly volatile and uncertain global financial markets, traditional quantitative trading models relying on statistical modeling or empirical rules often fail to adapt to dynamic market changes and black swan events due to rigid assumptions and limited generalization. To address these issues, this paper proposes QTMRL (Quantitative Trading Multi-Indicator Reinforcement Learning), an intelligent trading agent combining multi-dimensional technical indicators with reinforcement learning (RL) for adaptive and stable portfolio management. We first construct a comprehensive multi-indicator dataset using 23 years of S&P 500 daily OHLCV data (2000-2022) for 16 representative stocks across 5 sectors, enriching raw data with trend, volatility, and momentum indicators to capture holistic market dynamics. Then we design a lightweight RL framework based on the Advantage Actor-Critic (A2C) algorithm, including data processing, A2C algorithm, and trading agent modules to support policy learning and actionable trading decisions. Extensive experiments compare QTMRL with 9 baselines (e.g., ARIMA, LSTM, moving average strategies) across diverse market regimes, verifying its superiority in profitability, risk adjustment, and downside risk control. The code of QTMRL is publicly available at https://github.com/ChenJiahaoJNU/QTMRL.git
Financial Models in Generative Art: Black-Scholes-Inspired Concept Blending in Text-to-Image Diffusion
We introduce a novel approach for concept blending in pretrained text-to-image diffusion models, aiming to generate images at the intersection of multiple text prompts. At each time step during diffusion denoising, our algorithm forecasts predictions w.r.t. the generated image and makes informed text conditioning decisions. Central to our method is the unique analogy between diffusion models, which are rooted in non-equilibrium thermodynamics, and the Black-Scholes model for financial option pricing. By drawing parallels between key variables in both domains, we derive a robust algorithm for concept blending that capitalizes on the Markovian dynamics of the Black-Scholes framework. Our text-based concept blending algorithm is data-efficient, meaning it does not need additional training. Furthermore, it operates without human intervention or hyperparameter tuning. We highlight the benefits of our approach by comparing it qualitatively and quantitatively to other text based concept blending techniques, including linear interpolation, alternating prompts, step-wise prompt switching, and CLIP-guided prompt selection across various scenarios such as single object per text prompt, multiple objects per text prompt and objects against backgrounds. Our work shows that financially inspired techniques can enhance text-to-image concept blending in generative AI, paving the way for broader innovation. Code is available at https://github.com/divyakraman/BlackScholesDiffusion2024.
Can LLM-based Financial Investing Strategies Outperform the Market in Long Run?
Large Language Models (LLMs) have recently been leveraged for asset pricing tasks and stock trading applications, enabling AI agents to generate investment decisions from unstructured financial data. However, most evaluations of LLM timing-based investing strategies are conducted on narrow timeframes and limited stock universes, overstating effectiveness due to survivorship and data-snooping biases. We critically assess their generalizability and robustness by proposing FINSABER, a backtesting framework evaluating timing-based strategies across longer periods and a larger universe of symbols. Systematic backtests over two decades and 100+ symbols reveal that previously reported LLM advantages deteriorate significantly under broader cross-section and over a longer-term evaluation. Our market regime analysis further demonstrates that LLM strategies are overly conservative in bull markets, underperforming passive benchmarks, and overly aggressive in bear markets, incurring heavy losses. These findings highlight the need to develop LLM strategies that are able to prioritise trend detection and regime-aware risk controls over mere scaling of framework complexity.
Deep Reinforcement Learning for Quantitative Trading
Artificial Intelligence (AI) and Machine Learning (ML) are transforming the domain of Quantitative Trading (QT) through the deployment of advanced algorithms capable of sifting through extensive financial datasets to pinpoint lucrative investment openings. AI-driven models, particularly those employing ML techniques such as deep learning and reinforcement learning, have shown great prowess in predicting market trends and executing trades at a speed and accuracy that far surpass human capabilities. Its capacity to automate critical tasks, such as discerning market conditions and executing trading strategies, has been pivotal. However, persistent challenges exist in current QT methods, especially in effectively handling noisy and high-frequency financial data. Striking a balance between exploration and exploitation poses another challenge for AI-driven trading agents. To surmount these hurdles, our proposed solution, QTNet, introduces an adaptive trading model that autonomously formulates QT strategies through an intelligent trading agent. Incorporating deep reinforcement learning (DRL) with imitative learning methodologies, we bolster the proficiency of our model. To tackle the challenges posed by volatile financial datasets, we conceptualize the QT mechanism within the framework of a Partially Observable Markov Decision Process (POMDP). Moreover, by embedding imitative learning, the model can capitalize on traditional trading tactics, nurturing a balanced synergy between discovery and utilization. For a more realistic simulation, our trading agent undergoes training using minute-frequency data sourced from the live financial market. Experimental findings underscore the model's proficiency in extracting robust market features and its adaptability to diverse market conditions.
Risk-sensitive Reinforcement Learning Based on Convex Scoring Functions
We propose a reinforcement learning (RL) framework under a broad class of risk objectives, characterized by convex scoring functions. This class covers many common risk measures, such as variance, Expected Shortfall, entropic Value-at-Risk, and mean-risk utility. To resolve the time-inconsistency issue, we consider an augmented state space and an auxiliary variable and recast the problem as a two-state optimization problem. We propose a customized Actor-Critic algorithm and establish some theoretical approximation guarantees. A key theoretical contribution is that our results do not require the Markov decision process to be continuous. Additionally, we propose an auxiliary variable sampling method inspired by the alternating minimization algorithm, which is convergent under certain conditions. We validate our approach in simulation experiments with a financial application in statistical arbitrage trading, demonstrating the effectiveness of the algorithm.
Why Is Public Pretraining Necessary for Private Model Training?
In the privacy-utility tradeoff of a model trained on benchmark language and vision tasks, remarkable improvements have been widely reported with the use of pretraining on publicly available data. This is in part due to the benefits of transfer learning, which is the standard motivation for pretraining in non-private settings. However, the stark contrast in the improvement achieved through pretraining under privacy compared to non-private settings suggests that there may be a deeper, distinct cause driving these gains. To explain this phenomenon, we hypothesize that the non-convex loss landscape of a model training necessitates an optimization algorithm to go through two phases. In the first, the algorithm needs to select a good "basin" in the loss landscape. In the second, the algorithm solves an easy optimization within that basin. The former is a harder problem to solve with private data, while the latter is harder to solve with public data due to a distribution shift or data scarcity. Guided by this intuition, we provide theoretical constructions that provably demonstrate the separation between private training with and without public pretraining. Further, systematic experiments on CIFAR10 and LibriSpeech provide supporting evidence for our hypothesis.
Forecasting Probability Distributions of Financial Returns with Deep Neural Networks
This study evaluates deep neural networks for forecasting probability distributions of financial returns. 1D convolutional neural networks (CNN) and Long Short-Term Memory (LSTM) architectures are used to forecast parameters of three probability distributions: Normal, Student's t, and skewed Student's t. Using custom negative log-likelihood loss functions, distribution parameters are optimized directly. The models are tested on six major equity indices (S\&P 500, BOVESPA, DAX, WIG, Nikkei 225, and KOSPI) using probabilistic evaluation metrics including Log Predictive Score (LPS), Continuous Ranked Probability Score (CRPS), and Probability Integral Transform (PIT). Results show that deep learning models provide accurate distributional forecasts and perform competitively with classical GARCH models for Value-at-Risk estimation. The LSTM with skewed Student's t distribution performs best across multiple evaluation criteria, capturing both heavy tails and asymmetry in financial returns. This work shows that deep neural networks are viable alternatives to traditional econometric models for financial risk assessment and portfolio management.
SCOPE: Optimizing Key-Value Cache Compression in Long-context Generation
Key-Value (KV) cache has become a bottleneck of LLMs for long-context generation. Despite the numerous efforts in this area, the optimization for the decoding phase is generally ignored. However, we believe such optimization is crucial, especially for long-output generation tasks based on the following two observations: (i) Excessive compression during the prefill phase, which requires specific full context impairs the comprehension of the reasoning task; (ii) Deviation of heavy hitters occurs in the reasoning tasks with long outputs. Therefore, SCOPE, a simple yet efficient framework that separately performs KV cache optimization during the prefill and decoding phases, is introduced. Specifically, the KV cache during the prefill phase is preserved to maintain the essential information, while a novel strategy based on sliding is proposed to select essential heavy hitters for the decoding phase. Memory usage and memory transfer are further optimized using adaptive and discontinuous strategies. Extensive experiments on LongGenBench show the effectiveness and generalization of SCOPE and its compatibility as a plug-in to other prefill-only KV compression methods.
Profitability Analysis in Stock Investment Using an LSTM-Based Deep Learning Model
Designing robust systems for precise prediction of future prices of stocks has always been considered a very challenging research problem. Even more challenging is to build a system for constructing an optimum portfolio of stocks based on the forecasted future stock prices. We present a deep learning-based regression model built on a long-and-short-term memory network (LSTM) network that automatically scraps the web and extracts historical stock prices based on a stock's ticker name for a specified pair of start and end dates, and forecasts the future stock prices. We deploy the model on 75 significant stocks chosen from 15 critical sectors of the Indian stock market. For each of the stocks, the model is evaluated for its forecast accuracy. Moreover, the predicted values of the stock prices are used as the basis for investment decisions, and the returns on the investments are computed. Extensive results are presented on the performance of the model. The analysis of the results demonstrates the efficacy and effectiveness of the system and enables us to compare the profitability of the sectors from the point of view of the investors in the stock market.
Risk-aware Direct Preference Optimization under Nested Risk Measure
When fine-tuning pre-trained Large Language Models (LLMs) to align with human values and intentions, maximizing the estimated reward can lead to superior performance, but it also introduces potential risks due to deviations from the reference model's intended behavior. Most existing methods typically introduce KL divergence to constrain deviations between the trained model and the reference model; however, this may not be sufficient in certain applications that require tight risk control. In this paper, we introduce Risk-aware Direct Preference Optimization (Ra-DPO), a novel approach that incorporates risk-awareness by employing a class of nested risk measures. This approach formulates a constrained risk-aware advantage function maximization problem and then converts the Bradley-Terry model into a token-level representation. The objective function maximizes the likelihood of the policy while suppressing the deviation between a trained model and the reference model using a sequential risk ratio, thereby enhancing the model's risk-awareness. Experimental results across three open-source datasets: IMDb Dataset, Anthropic HH Dataset, and AlpacaEval, demonstrate the proposed method's superior performance in balancing alignment performance and model drift. Our code is opensourced at https://github.com/zlj123-max/Ra-DPO.
AlphaOPT: Formulating Optimization Programs with Self-Improving LLM Experience Library
Optimization modeling enables critical decisions across industries but remains difficult to automate: informal language must be mapped to precise mathematical formulations and executable solver code. Prior LLM approaches either rely on brittle prompting or costly retraining with limited generalization. We present AlphaOPT, a self-improving experience library that enables an LLM to learn from limited demonstrations (even answers alone, without gold-standard programs) and solver feedback - without annotated reasoning traces or parameter updates. AlphaOPT operates in a continual two-phase cycle: (i) a Library Learning phase that reflects on failed attempts, extracting solver-verified, structured insights as {taxonomy, condition, explanation, example}; and (ii) a Library Evolution phase that diagnoses retrieval misalignments and refines the applicability conditions of stored insights, improving transfer across tasks. This design (1) learns efficiently from limited demonstrations without curated rationales, (2) expands continually without costly retraining by updating the library rather than model weights, and (3) makes knowledge explicit and interpretable for human inspection and intervention. Experiments show that AlphaOPT steadily improves with more data (65% to 72% from 100 to 300 training items) and surpasses the strongest baseline by 7.7% on the out-of-distribution OptiBench dataset when trained only on answers. Code and data are available at: https://github.com/Minw913/AlphaOPT.
Kronos: A Foundation Model for the Language of Financial Markets
The success of large-scale pre-training paradigm, exemplified by Large Language Models (LLMs), has inspired the development of Time Series Foundation Models (TSFMs). However, their application to financial candlestick (K-line) data remains limited, often underperforming non-pre-trained architectures. Moreover, existing TSFMs often overlook crucial downstream tasks such as volatility prediction and synthetic data generation. To address these limitations, we propose Kronos, a unified, scalable pre-training framework tailored to financial K-line modeling. Kronos introduces a specialized tokenizer that discretizes continuous market information into token sequences, preserving both price dynamics and trade activity patterns. We pre-train Kronos using an autoregressive objective on a massive, multi-market corpus of over 12 billion K-line records from 45 global exchanges, enabling it to learn nuanced temporal and cross-asset representations. Kronos excels in a zero-shot setting across a diverse set of financial tasks. On benchmark datasets, Kronos boosts price series forecasting RankIC by 93% over the leading TSFM and 87% over the best non-pre-trained baseline. It also achieves a 9% lower MAE in volatility forecasting and a 22% improvement in generative fidelity for synthetic K-line sequences. These results establish Kronos as a robust, versatile foundation model for end-to-end financial time series analysis. Our pre-trained model is publicly available at https://github.com/shiyu-coder/Kronos.
Hedging Properties of Algorithmic Investment Strategies using Long Short-Term Memory and Time Series models for Equity Indices
This paper proposes a novel approach to hedging portfolios of risky assets when financial markets are affected by financial turmoils. We introduce a completely novel approach to diversification activity not on the level of single assets but on the level of ensemble algorithmic investment strategies (AIS) built based on the prices of these assets. We employ four types of diverse theoretical models (LSTM - Long Short-Term Memory, ARIMA-GARCH - Autoregressive Integrated Moving Average - Generalized Autoregressive Conditional Heteroskedasticity, momentum, and contrarian) to generate price forecasts, which are then used to produce investment signals in single and complex AIS. In such a way, we are able to verify the diversification potential of different types of investment strategies consisting of various assets (energy commodities, precious metals, cryptocurrencies, or soft commodities) in hedging ensemble AIS built for equity indices (S&P 500 index). Empirical data used in this study cover the period between 2004 and 2022. Our main conclusion is that LSTM-based strategies outperform the other models and that the best diversifier for the AIS built for the S&P 500 index is the AIS built for Bitcoin. Finally, we test the LSTM model for a higher frequency of data (1 hour). We conclude that it outperforms the results obtained using daily data.
FinReflectKG -- MultiHop: Financial QA Benchmark for Reasoning with Knowledge Graph Evidence
Multi-hop reasoning over financial disclosures is often a retrieval problem before it becomes a reasoning or generation problem: relevant facts are dispersed across sections, filings, companies, and years, and LLMs often expend excessive tokens navigating noisy context. Without precise Knowledge Graph (KG)-guided selection of relevant context, even strong reasoning models either fail to answer or consume excessive tokens, whereas KG-linked evidence enables models to focus their reasoning on composing already retrieved facts. We present FinReflectKG - MultiHop, a benchmark built on FinReflectKG, a temporally indexed financial KG that links audited triples to source chunks from S&P 100 filings (2022-2024). Mining frequent 2-3 hop subgraph patterns across sectors (via GICS taxonomy), we generate financial analyst style questions with exact supporting evidence from the KG. A two-phase pipeline first creates QA pairs via pattern-specific prompts, followed by a multi-criteria quality control evaluation to ensure QA validity. We then evaluate three controlled retrieval scenarios: (S1) precise KG-linked paths; (S2) text-only page windows centered on relevant text spans; and (S3) relevant page windows with randomizations and distractors. Across both reasoning and non-reasoning models, KG-guided precise retrieval yields substantial gains on the FinReflectKG - MultiHop QA benchmark dataset, boosting correctness scores by approximately 24 percent while reducing token utilization by approximately 84.5 percent compared to the page window setting, which reflects the traditional vector retrieval paradigm. Spanning intra-document, inter-year, and cross-company scopes, our work underscores the pivotal role of knowledge graphs in efficiently connecting evidence for multi-hop financial QA. We also release a curated subset of the benchmark (555 QA Pairs) to catalyze further research.
Solving the optimal stopping problem with reinforcement learning: an application in financial option exercise
The optimal stopping problem is a category of decision problems with a specific constrained configuration. It is relevant to various real-world applications such as finance and management. To solve the optimal stopping problem, state-of-the-art algorithms in dynamic programming, such as the least-squares Monte Carlo (LSMC), are employed. This type of algorithm relies on path simulations using only the last price of the underlying asset as a state representation. Also, the LSMC was thinking for option valuation where risk-neutral probabilities can be employed to account for uncertainty. However, the general optimal stopping problem goals may not fit the requirements of the LSMC showing auto-correlated prices. We employ a data-driven method that uses Monte Carlo simulation to train and test artificial neural networks (ANN) to solve the optimal stopping problem. Using ANN to solve decision problems is not entirely new. We propose a different architecture that uses convolutional neural networks (CNN) to deal with the dimensionality problem that arises when we transform the whole history of prices into a Markovian state. We present experiments that indicate that our proposed architecture improves results over the previous implementations under specific simulated time series function sets. Lastly, we employ our proposed method to compare the optimal exercise of the financial options problem with the LSMC algorithm. Our experiments show that our method can capture more accurate exercise opportunities when compared to the LSMC. We have outstandingly higher (above 974\% improvement) expected payoff from these exercise policies under the many Monte Carlo simulations that used the real-world return database on the out-of-sample (test) data.
Distributionally Robust Optimization with Bias and Variance Reduction
We consider the distributionally robust optimization (DRO) problem with spectral risk-based uncertainty set and f-divergence penalty. This formulation includes common risk-sensitive learning objectives such as regularized condition value-at-risk (CVaR) and average top-k loss. We present Prospect, a stochastic gradient-based algorithm that only requires tuning a single learning rate hyperparameter, and prove that it enjoys linear convergence for smooth regularized losses. This contrasts with previous algorithms that either require tuning multiple hyperparameters or potentially fail to converge due to biased gradient estimates or inadequate regularization. Empirically, we show that Prospect can converge 2-3times faster than baselines such as stochastic gradient and stochastic saddle-point methods on distribution shift and fairness benchmarks spanning tabular, vision, and language domains.
A predict-and-optimize approach to profit-driven churn prevention
In this paper, we introduce a novel predict-and-optimize method for profit-driven churn prevention. We frame the task of targeting customers for a retention campaign as a regret minimization problem. The main objective is to leverage individual customer lifetime values (CLVs) to ensure that only the most valuable customers are targeted. In contrast, many profit-driven strategies focus on churn probabilities while considering average CLVs. This often results in significant information loss due to data aggregation. Our proposed model aligns with the guidelines of Predict-and-Optimize (PnO) frameworks and can be efficiently solved using stochastic gradient descent methods. Results from 12 churn prediction datasets underscore the effectiveness of our approach, which achieves the best average performance compared to other well-established strategies in terms of average profit.
From Tokens to Layers: Redefining Stall-Free Scheduling for LLM Serving with Layered Prefill
Large Language Model (LLM) inference in production must meet stringent service-level objectives for both time-to-first-token (TTFT) and time-between-token (TBT) while maximizing throughput under fixed compute, memory, and interconnect budgets. Modern serving systems adopt stall-free scheduling techniques such as chunked prefill, which splits long prompt processing along the token dimension and interleaves prefill with ongoing decode iterations. While effective at stabilizing TBT, chunked prefill incurs substantial overhead in Mixture-of-Experts (MoE) models: redundant expert weight loads increase memory traffic by up to 39% and inflate energy consumption. We propose layered prefill, a new scheduling paradigm that treats transformer layer groups as the primary scheduling unit. By vertically partitioning the model into contiguous layer groups and interleaving prefill and decode across the groups, layered prefill sustains stall-free decoding while eliminating chunk-induced MoE weight reloads. It reduces off-chip bandwidth demand, lowering TTFT by up to 70%, End-to-End latency by 41% and per-token energy by up to 22%. Evaluations show that layered prefill consistently improves the TTFT--TBT Pareto frontier over chunked prefill, reducing expert-load traffic and energy cost while maintaining stall-free decoding. Overall, shifting the scheduling axis from tokens to layers unlocks a new operating regime for high-efficiency, energy-aware LLM serving in co-located environments.
A Comparative Study of Portfolio Optimization Methods for the Indian Stock Market
This chapter presents a comparative study of the three portfolio optimization methods, MVP, HRP, and HERC, on the Indian stock market, particularly focusing on the stocks chosen from 15 sectors listed on the National Stock Exchange of India. The top stocks of each cluster are identified based on their free-float market capitalization from the report of the NSE published on July 1, 2022 (NSE Website). For each sector, three portfolios are designed on stock prices from July 1, 2019, to June 30, 2022, following three portfolio optimization approaches. The portfolios are tested over the period from July 1, 2022, to June 30, 2023. For the evaluation of the performances of the portfolios, three metrics are used. These three metrics are cumulative returns, annual volatilities, and Sharpe ratios. For each sector, the portfolios that yield the highest cumulative return, the lowest volatility, and the maximum Sharpe Ratio over the training and the test periods are identified.
MARS: Unleashing the Power of Variance Reduction for Training Large Models
Training deep neural networks--and more recently, large models--demands efficient and scalable optimizers. Adaptive gradient algorithms like Adam, AdamW, and their variants have been central to this task. Despite the development of numerous variance reduction algorithms in the past decade aimed at accelerating stochastic optimization in both convex and nonconvex settings, variance reduction has not found widespread success in training deep neural networks or large language models. Consequently, it has remained a less favored approach in modern AI. In this paper, to unleash the power of variance reduction for efficient training of large models, we propose a unified optimization framework, MARS (Make vAriance Reduction Shine), which reconciles preconditioned gradient methods with variance reduction via a scaled stochastic recursive momentum technique. Within our framework, we introduce three instances of MARS that leverage preconditioned gradient updates based on AdamW, Lion, and Shampoo, respectively. We also draw a connection between our algorithms and existing optimizers. Experimental results on training GPT-2 models indicate that MARS consistently outperforms AdamW by a large margin.
Supervised Deep Neural Networks (DNNs) for Pricing/Calibration of Vanilla/Exotic Options Under Various Different Processes
We apply supervised deep neural networks (DNNs) for pricing and calibration of both vanilla and exotic options under both diffusion and pure jump processes with and without stochastic volatility. We train our neural network models under different number of layers, neurons per layer, and various different activation functions in order to find which combinations work better empirically. For training, we consider various different loss functions and optimization routines. We demonstrate that deep neural networks exponentially expedite option pricing compared to commonly used option pricing methods which consequently make calibration and parameter estimation super fast.
MarS: a Financial Market Simulation Engine Powered by Generative Foundation Model
Generative models aim to simulate realistic effects of various actions across different contexts, from text generation to visual effects. Despite significant efforts to build real-world simulators, the application of generative models to virtual worlds, like financial markets, remains under-explored. In financial markets, generative models can simulate complex market effects of participants with various behaviors, enabling interaction under different market conditions, and training strategies without financial risk. This simulation relies on the finest structured data in financial market like orders thus building the finest realistic simulation. We propose Large Market Model (LMM), an order-level generative foundation model, for financial market simulation, akin to language modeling in the digital world. Our financial Market Simulation engine (MarS), powered by LMM, addresses the domain-specific need for realistic, interactive and controllable order generation. Key observations include LMM's strong scalability across data size and model complexity, and MarS's robust and practicable realism in controlled generation with market impact. We showcase MarS as a forecast tool, detection system, analysis platform, and agent training environment, thus demonstrating MarS's "paradigm shift" potential for a variety of financial applications. We release the code of MarS at https://github.com/microsoft/MarS/.
InvestLM: A Large Language Model for Investment using Financial Domain Instruction Tuning
We present a new financial domain large language model, InvestLM, tuned on LLaMA-65B (Touvron et al., 2023), using a carefully curated instruction dataset related to financial investment. Inspired by less-is-more-for-alignment (Zhou et al., 2023), we manually curate a small yet diverse instruction dataset, covering a wide range of financial related topics, from Chartered Financial Analyst (CFA) exam questions to SEC filings to Stackexchange quantitative finance discussions. InvestLM shows strong capabilities in understanding financial text and provides helpful responses to investment related questions. Financial experts, including hedge fund managers and research analysts, rate InvestLM's response as comparable to those of state-of-the-art commercial models (GPT-3.5, GPT-4 and Claude-2). Zero-shot evaluation on a set of financial NLP benchmarks demonstrates strong generalizability. From a research perspective, this work suggests that a high-quality domain specific LLM can be tuned using a small set of carefully curated instructions on a well-trained foundation model, which is consistent with the Superficial Alignment Hypothesis (Zhou et al., 2023). From a practical perspective, this work develops a state-of-the-art financial domain LLM with superior capability in understanding financial texts and providing helpful investment advice, potentially enhancing the work efficiency of financial professionals. We release the model parameters to the research community.
Reinforcement Learning for Optimal Execution when Liquidity is Time-Varying
Optimal execution is an important problem faced by any trader. Most solutions are based on the assumption of constant market impact, while liquidity is known to be dynamic. Moreover, models with time-varying liquidity typically assume that it is observable, despite the fact that, in reality, it is latent and hard to measure in real time. In this paper we show that the use of Double Deep Q-learning, a form of Reinforcement Learning based on neural networks, is able to learn optimal trading policies when liquidity is time-varying. Specifically, we consider an Almgren-Chriss framework with temporary and permanent impact parameters following several deterministic and stochastic dynamics. Using extensive numerical experiments, we show that the trained algorithm learns the optimal policy when the analytical solution is available, and overcomes benchmarks and approximated solutions when the solution is not available.
A projection-based framework for gradient-free and parallel learning
We present a feasibility-seeking approach to neural network training. This mathematical optimization framework is distinct from conventional gradient-based loss minimization and uses projection operators and iterative projection algorithms. We reformulate training as a large-scale feasibility problem: finding network parameters and states that satisfy local constraints derived from its elementary operations. Training then involves projecting onto these constraints, a local operation that can be parallelized across the network. We introduce PJAX, a JAX-based software framework that enables this paradigm. PJAX composes projection operators for elementary operations, automatically deriving the solution operators for the feasibility problems (akin to autodiff for derivatives). It inherently supports GPU/TPU acceleration, provides a familiar NumPy-like API, and is extensible. We train diverse architectures (MLPs, CNNs, RNNs) on standard benchmarks using PJAX, demonstrating its functionality and generality. Our results show that this approach is as a compelling alternative to gradient-based training, with clear advantages in parallelism and the ability to handle non-differentiable operations.
'Finance Wizard' at the FinLLM Challenge Task: Financial Text Summarization
This paper presents our participation under the team name `Finance Wizard' in the FinNLP-AgentScen 2024 shared task #2: Financial Text Summarization. It documents our pipeline approach of fine-tuning a foundation model into a task-specific model for Financial Text Summarization. It involves (1) adapting Llama3 8B, a foundation model, to the Finance domain via continued pre-training, (2) multi-task instruction-tuning to further equip the model with more finance-related capabilities, (3) finally fine-tuning the model into a task-specific `expert'. Our model, FinLlama3\_sum, yielded commendable results, securing the third position in its category with a ROUGE-1 score of 0.521.
IBCL: Zero-shot Model Generation for Task Trade-offs in Continual Learning
Like generic multi-task learning, continual learning has the nature of multi-objective optimization, and therefore faces a trade-off between the performance of different tasks. That is, to optimize for the current task distribution, it may need to compromise performance on some previous tasks. This means that there exist multiple models that are Pareto-optimal at different times, each addressing a distinct task performance trade-off. Researchers have discussed how to train particular models to address specific trade-off preferences. However, existing algorithms require training overheads proportional to the number of preferences -- a large burden when there are multiple, possibly infinitely many, preferences. As a response, we propose Imprecise Bayesian Continual Learning (IBCL). Upon a new task, IBCL (1) updates a knowledge base in the form of a convex hull of model parameter distributions and (2) obtains particular models to address task trade-off preferences with zero-shot. That is, IBCL does not require any additional training overhead to generate preference-addressing models from its knowledge base. We show that models obtained by IBCL have guarantees in identifying the Pareto optimal parameters. Moreover, experiments on standard image classification and NLP tasks support this guarantee. Statistically, IBCL improves average per-task accuracy by at most 23% and peak per-task accuracy by at most 15% with respect to the baseline methods, with steadily near-zero or positive backward transfer. Most importantly, IBCL significantly reduces the training overhead from training 1 model per preference to at most 3 models for all preferences.
metaTextGrad: Automatically optimizing language model optimizers
Large language models (LLMs) are increasingly used in learning algorithms, evaluations, and optimization tasks. Recent studies have shown that using LLM-based optimizers to automatically optimize model prompts, demonstrations, predictions themselves, or other components can significantly enhance the performance of AI systems, as demonstrated by frameworks such as DSPy and TextGrad. However, optimizers built on language models themselves are usually designed by humans with manual design choices; optimizers themselves are not optimized. Moreover, these optimizers are general purpose by design, to be useful to a broad audience, and are not tailored for specific tasks. To address these challenges, we propose metaTextGrad, which focuses on designing a meta-optimizer to further enhance existing optimizers and align them to be good optimizers for a given task. Our approach consists of two key components: a meta prompt optimizer and a meta structure optimizer. The combination of these two significantly improves performance across multiple benchmarks, achieving an average absolute performance improvement of up to 6% compared to the best baseline.
LLM-Based Routing in Mixture of Experts: A Novel Framework for Trading
Recent advances in deep learning and large language models (LLMs) have facilitated the deployment of the mixture-of-experts (MoE) mechanism in the stock investment domain. While these models have demonstrated promising trading performance, they are often unimodal, neglecting the wealth of information available in other modalities, such as textual data. Moreover, the traditional neural network-based router selection mechanism fails to consider contextual and real-world nuances, resulting in suboptimal expert selection. To address these limitations, we propose LLMoE, a novel framework that employs LLMs as the router within the MoE architecture. Specifically, we replace the conventional neural network-based router with LLMs, leveraging their extensive world knowledge and reasoning capabilities to select experts based on historical price data and stock news. This approach provides a more effective and interpretable selection mechanism. Our experiments on multimodal real-world stock datasets demonstrate that LLMoE outperforms state-of-the-art MoE models and other deep neural network approaches. Additionally, the flexible architecture of LLMoE allows for easy adaptation to various downstream tasks.
A Comparative Study of Quantum Optimization Techniques for Solving Combinatorial Optimization Benchmark Problems
Quantum optimization holds promise for addressing classically intractable combinatorial problems, yet a standardized framework for benchmarking its performance, particularly in terms of solution quality, computational speed, and scalability is still lacking. In this work, we introduce a comprehensive benchmarking framework designed to systematically evaluate a range of quantum optimization techniques against well-established NP-hard combinatorial problems. Our framework focuses on key problem classes, including the Multi-Dimensional Knapsack Problem (MDKP), Maximum Independent Set (MIS), Quadratic Assignment Problem (QAP), and Market Share Problem (MSP). Our study evaluates gate-based quantum approaches, including the Variational Quantum Eigensolver (VQE) and its CVaR-enhanced variant, alongside advanced quantum algorithms such as the Quantum Approximate Optimization Algorithm (QAOA) and its extensions. To address resource constraints, we incorporate qubit compression techniques like Pauli Correlation Encoding (PCE) and Quantum Random Access Optimization (QRAO). Experimental results, obtained from simulated quantum environments and classical solvers, provide key insights into feasibility, optimality gaps, and scalability. Our findings highlight both the promise and current limitations of quantum optimization, offering a structured pathway for future research and practical applications in quantum-enhanced decision-making.
Tutorial on amortized optimization
Optimization is a ubiquitous modeling tool and is often deployed in settings which repeatedly solve similar instances of the same problem. Amortized optimization methods use learning to predict the solutions to problems in these settings, exploiting the shared structure between similar problem instances. These methods have been crucial in variational inference and reinforcement learning and are capable of solving optimization problems many orders of magnitudes times faster than traditional optimization methods that do not use amortization. This tutorial presents an introduction to the amortized optimization foundations behind these advancements and overviews their applications in variational inference, sparse coding, gradient-based meta-learning, control, reinforcement learning, convex optimization, optimal transport, and deep equilibrium networks. The source code for this tutorial is available at https://github.com/facebookresearch/amortized-optimization-tutorial.
TradingAgents: Multi-Agents LLM Financial Trading Framework
Significant progress has been made in automated problem-solving using societies of agents powered by large language models (LLMs). In finance, efforts have largely focused on single-agent systems handling specific tasks or multi-agent frameworks independently gathering data. However, the multi-agent systems' potential to replicate real-world trading firms' collaborative dynamics remains underexplored. TradingAgents proposes a novel stock trading framework inspired by trading firms, featuring LLM-powered agents in specialized roles such as fundamental analysts, sentiment analysts, technical analysts, and traders with varied risk profiles. The framework includes Bull and Bear researcher agents assessing market conditions, a risk management team monitoring exposure, and traders synthesizing insights from debates and historical data to make informed decisions. By simulating a dynamic, collaborative trading environment, this framework aims to improve trading performance. Detailed architecture and extensive experiments reveal its superiority over baseline models, with notable improvements in cumulative returns, Sharpe ratio, and maximum drawdown, highlighting the potential of multi-agent LLM frameworks in financial trading. TradingAgents is available at https://github.com/TauricResearch/TradingAgents.
FinPT: Financial Risk Prediction with Profile Tuning on Pretrained Foundation Models
Financial risk prediction plays a crucial role in the financial sector. Machine learning methods have been widely applied for automatically detecting potential risks and thus saving the cost of labor. However, the development in this field is lagging behind in recent years by the following two facts: 1) the algorithms used are somewhat outdated, especially in the context of the fast advance of generative AI and large language models (LLMs); 2) the lack of a unified and open-sourced financial benchmark has impeded the related research for years. To tackle these issues, we propose FinPT and FinBench: the former is a novel approach for financial risk prediction that conduct Profile Tuning on large pretrained foundation models, and the latter is a set of high-quality datasets on financial risks such as default, fraud, and churn. In FinPT, we fill the financial tabular data into the pre-defined instruction template, obtain natural-language customer profiles by prompting LLMs, and fine-tune large foundation models with the profile text to make predictions. We demonstrate the effectiveness of the proposed FinPT by experimenting with a range of representative strong baselines on FinBench. The analytical studies further deepen the understanding of LLMs for financial risk prediction.
GIFD: A Generative Gradient Inversion Method with Feature Domain Optimization
Federated Learning (FL) has recently emerged as a promising distributed machine learning framework to preserve clients' privacy, by allowing multiple clients to upload the gradients calculated from their local data to a central server. Recent studies find that the exchanged gradients also take the risk of privacy leakage, e.g., an attacker can invert the shared gradients and recover sensitive data against an FL system by leveraging pre-trained generative adversarial networks (GAN) as prior knowledge. However, performing gradient inversion attacks in the latent space of the GAN model limits their expression ability and generalizability. To tackle these challenges, we propose Gradient Inversion over Feature Domains (GIFD), which disassembles the GAN model and searches the feature domains of the intermediate layers. Instead of optimizing only over the initial latent code, we progressively change the optimized layer, from the initial latent space to intermediate layers closer to the output images. In addition, we design a regularizer to avoid unreal image generation by adding a small {l_1} ball constraint to the searching range. We also extend GIFD to the out-of-distribution (OOD) setting, which weakens the assumption that the training sets of GANs and FL tasks obey the same data distribution. Extensive experiments demonstrate that our method can achieve pixel-level reconstruction and is superior to the existing methods. Notably, GIFD also shows great generalizability under different defense strategy settings and batch sizes.
Deep Metric Learning for Computer Vision: A Brief Overview
Objective functions that optimize deep neural networks play a vital role in creating an enhanced feature representation of the input data. Although cross-entropy-based loss formulations have been extensively used in a variety of supervised deep-learning applications, these methods tend to be less adequate when there is large intra-class variance and low inter-class variance in input data distribution. Deep Metric Learning seeks to develop methods that aim to measure the similarity between data samples by learning a representation function that maps these data samples into a representative embedding space. It leverages carefully designed sampling strategies and loss functions that aid in optimizing the generation of a discriminative embedding space even for distributions having low inter-class and high intra-class variances. In this chapter, we will provide an overview of recent progress in this area and discuss state-of-the-art Deep Metric Learning approaches.
FinBloom: Knowledge Grounding Large Language Model with Real-time Financial Data
Large language models (LLMs) excel at generating human-like responses but often struggle with interactive tasks that require access to real-time information. This limitation poses challenges in finance, where models must access up-to-date information, such as recent news or price movements, to support decision-making. To address this, we introduce Financial Agent, a knowledge-grounding approach for LLMs to handle financial queries using real-time text and tabular data. Our contributions are threefold: First, we develop a Financial Context Dataset of over 50,000 financial queries paired with the required context. Second, we train FinBloom 7B, a custom 7 billion parameter LLM, on 14 million financial news articles from Reuters and Deutsche Presse-Agentur, alongside 12 million Securities and Exchange Commission (SEC) filings. Third, we fine-tune FinBloom 7B using the Financial Context Dataset to serve as a Financial Agent. This agent generates relevant financial context, enabling efficient real-time data retrieval to answer user queries. By reducing latency and eliminating the need for users to manually provide accurate data, our approach significantly enhances the capability of LLMs to handle dynamic financial tasks. Our proposed approach makes real-time financial decisions, algorithmic trading and other related tasks streamlined, and is valuable in contexts with high-velocity data flows.
Technical Report: Full-Stack Fine-Tuning for the Q Programming Language
Even though large language models are becoming increasingly capable, it is still unreasonable to expect them to excel at tasks that are under-represented on the Internet. Leveraging LLMs for specialized applications, particularly in niche programming languages and private domains, remains challenging and largely unsolved. In this work, we address this gap by presenting a comprehensive, open-source approach for adapting LLMs to the Q programming language, a popular tool in quantitative finance that is much less present on the Internet compared to Python, C, Java, and other ``mainstream" languages and is therefore not a strong suit of general-purpose AI models. We introduce a new Leetcode style evaluation dataset for Q, benchmark major frontier models on the dataset, then do pretraining, supervised fine tuning, and reinforcement learning to train a suite of reasoning and non-reasoning models based on the Qwen-2.5 series, spanning five parameter sizes (1.5B, 3B, 7B, 14B, 32B). Our best model achieves a pass@1 accuracy of 59 percent on our Q benchmark, surpassing the best-performing frontier model, Claude Opus-4 by 29.5 percent. Additionally, all models, even our 1.5B model, outperform GPT-4.1 on this task. In addition to releasing models, code, and data, we provide a detailed blueprint for dataset construction, model pretraining, supervised fine-tuning, and reinforcement learning. Our methodology is broadly applicable, and we discuss how these techniques can be extended to other tasks, including those where evaluation may rely on soft or subjective signals.
Continuous Risk Factor Models: Analyzing Asset Correlations through Energy Distance
This paper introduces a novel approach to financial risk analysis that does not rely on traditional price and market data, instead using market news to model assets as distributions over a metric space of risk factors. By representing asset returns as integrals over the scalar field of these risk factors, we derive the covariance structure between asset returns. Utilizing encoder-only language models to embed this news data, we explore the relationships between asset return distributions through the concept of Energy Distance, establishing connections between distributional differences and excess returns co-movements. This data-agnostic approach provides new insights into portfolio diversification, risk management, and the construction of hedging strategies. Our findings have significant implications for both theoretical finance and practical risk management, offering a more robust framework for modelling complex financial systems without depending on conventional market data.
Learn to Rank Risky Investors: A Case Study of Predicting Retail Traders' Behaviour and Profitability
Identifying risky traders with high profits in financial markets is crucial for market makers, such as trading exchanges, to ensure effective risk management through real-time decisions on regulation compliance and hedging. However, capturing the complex and dynamic behaviours of individual traders poses significant challenges. Traditional classification and anomaly detection methods often establish a fixed risk boundary, failing to account for this complexity and dynamism. To tackle this issue, we propose a profit-aware risk ranker (PA-RiskRanker) that reframes the problem of identifying risky traders as a ranking task using Learning-to-Rank (LETOR) algorithms. Our approach features a Profit-Aware binary cross entropy (PA-BCE) loss function and a transformer-based ranker enhanced with a self-cross-trader attention pipeline. These components effectively integrate profit and loss (P&L) considerations into the training process while capturing intra- and inter-trader relationships. Our research critically examines the limitations of existing deep learning-based LETOR algorithms in trading risk management, which often overlook the importance of P&L in financial scenarios. By prioritising P&L, our method improves risky trader identification, achieving an 8.4% increase in F1 score compared to state-of-the-art (SOTA) ranking models like Rankformer. Additionally, it demonstrates a 10%-17% increase in average profit compared to all benchmark models.
Binary Tree Option Pricing Under Market Microstructure Effects: A Random Forest Approach
We propose a machine learning-based extension of the classical binomial option pricing model that incorporates key market microstructure effects. Traditional models assume frictionless markets, overlooking empirical features such as bid-ask spreads, discrete price movements, and serial return correlations. Our framework augments the binomial tree with path-dependent transition probabilities estimated via Random Forest classifiers trained on high-frequency market data. This approach preserves no-arbitrage conditions while embedding real-world trading dynamics into the pricing model. Using 46,655 minute-level observations of SPY from January to June 2025, we achieve an AUC of 88.25% in forecasting one-step price movements. Order flow imbalance is identified as the most influential predictor, contributing 43.2% to feature importance. After resolving time-scaling inconsistencies in tree construction, our model yields option prices that deviate by 13.79% from Black-Scholes benchmarks, highlighting the impact of microstructure on fair value estimation. While computational limitations restrict the model to short-term derivatives, our results offer a robust, data-driven alternative to classical pricing methods grounded in empirical market behavior.
Revisiting Ensemble Methods for Stock Trading and Crypto Trading Tasks at ACM ICAIF FinRL Contest 2023-2024
Reinforcement learning has demonstrated great potential for performing financial tasks. However, it faces two major challenges: policy instability and sampling bottlenecks. In this paper, we revisit ensemble methods with massively parallel simulations on graphics processing units (GPUs), significantly enhancing the computational efficiency and robustness of trained models in volatile financial markets. Our approach leverages the parallel processing capability of GPUs to significantly improve the sampling speed for training ensemble models. The ensemble models combine the strengths of component agents to improve the robustness of financial decision-making strategies. We conduct experiments in both stock and cryptocurrency trading tasks to evaluate the effectiveness of our approach. Massively parallel simulation on a single GPU improves the sampling speed by up to 1,746times using 2,048 parallel environments compared to a single environment. The ensemble models have high cumulative returns and outperform some individual agents, reducing maximum drawdown by up to 4.17% and improving the Sharpe ratio by up to 0.21. This paper describes trading tasks at ACM ICAIF FinRL Contests in 2023 and 2024.
Trading-R1: Financial Trading with LLM Reasoning via Reinforcement Learning
Developing professional, structured reasoning on par with human financial analysts and traders remains a central challenge in AI for finance, where markets demand interpretability and trust. Traditional time-series models lack explainability, while LLMs face challenges in turning natural-language analysis into disciplined, executable trades. Although reasoning LLMs have advanced in step-by-step planning and verification, their application to risk-sensitive financial decisions is underexplored. We present Trading-R1, a financially-aware model that incorporates strategic thinking and planning for comprehensive thesis composition, facts-grounded analysis, and volatility-adjusted decision making. Trading-R1 aligns reasoning with trading principles through supervised fine-tuning and reinforcement learning with a three-stage easy-to-hard curriculum. Training uses Tauric-TR1-DB, a 100k-sample corpus spanning 18 months, 14 equities, and five heterogeneous financial data sources. Evaluated on six major equities and ETFs, Trading-R1 demonstrates improved risk-adjusted returns and lower drawdowns compared to both open-source and proprietary instruction-following models as well as reasoning models. The system generates structured, evidence-based investment theses that support disciplined and interpretable trading decisions. Trading-R1 Terminal will be released at https://github.com/TauricResearch/Trading-R1.
SigFormer: Signature Transformers for Deep Hedging
Deep hedging is a promising direction in quantitative finance, incorporating models and techniques from deep learning research. While giving excellent hedging strategies, models inherently requires careful treatment in designing architectures for neural networks. To mitigate such difficulties, we introduce SigFormer, a novel deep learning model that combines the power of path signatures and transformers to handle sequential data, particularly in cases with irregularities. Path signatures effectively capture complex data patterns, while transformers provide superior sequential attention. Our proposed model is empirically compared to existing methods on synthetic data, showcasing faster learning and enhanced robustness, especially in the presence of irregular underlying price data. Additionally, we validate our model performance through a real-world backtest on hedging the SP 500 index, demonstrating positive outcomes.
Optimizing Return Distributions with Distributional Dynamic Programming
We introduce distributional dynamic programming (DP) methods for optimizing statistical functionals of the return distribution, with standard reinforcement learning as a special case. Previous distributional DP methods could optimize the same class of expected utilities as classic DP. To go beyond expected utilities, we combine distributional DP with stock augmentation, a technique previously introduced for classic DP in the context of risk-sensitive RL, where the MDP state is augmented with a statistic of the rewards obtained so far (since the first time step). We find that a number of recently studied problems can be formulated as stock-augmented return distribution optimization, and we show that we can use distributional DP to solve them. We analyze distributional value and policy iteration, with bounds and a study of what objectives these distributional DP methods can or cannot optimize. We describe a number of applications outlining how to use distributional DP to solve different stock-augmented return distribution optimization problems, for example maximizing conditional value-at-risk, and homeostatic regulation. To highlight the practical potential of stock-augmented return distribution optimization and distributional DP, we combine the core ideas of distributional value iteration with the deep RL agent DQN, and empirically evaluate it for solving instances of the applications discussed.
Beyond Outliers: A Study of Optimizers Under Quantization
As new optimizers gain traction and model quantization becomes standard for efficient deployment, a key question arises: how does the choice of optimizer affect model performance in the presence of quantization? Despite progress in both areas, systematic evidence on optimizer-quantization interactions remains limited. To fill this gap, we study the impact of optimizer choice on model robustness under quantization, considering both post-training quantization (PTQ), and quantization-aware training (QAT). We first train full-precision models, ranging from 50M to 1.5B parameters, with six optimizers, to explore the hyperparameter landscape, and establish well-tuned baselines. We then apply PTQ to evaluate how model performance degrades when trained with different optimizers. We find that outlier-related metrics, such as the max-to-mean ratio (MMR) and Kurtosis, fail to predict the PTQ performance across different optimizers. We show analytically that this is due to the MMR capturing only isolated layer errors, while ignoring how quantization errors accumulate and propagate through the network. To study the QAT degradation, we train quantized models from scratch and compare them to our original-precision baselines. We find that optimizers performing well in the original pretraining setup may not remain optimal under QAT, and that models trained with Shampoo show the lowest accuracy degradation. Finally, we derive scaling laws for quantization-aware training under different optimizers, showing that Shampoo achieves the highest parameter efficiency of all tested optimizers.
Provably Mitigating Overoptimization in RLHF: Your SFT Loss is Implicitly an Adversarial Regularizer
Aligning generative models with human preference via RLHF typically suffers from overoptimization, where an imperfectly learned reward model can misguide the generative model to output undesired responses. We investigate this problem in a principled manner by identifying the source of the misalignment as a form of distributional shift and uncertainty in learning human preferences. To mitigate overoptimization, we first propose a theoretical algorithm that chooses the best policy for an adversarially chosen reward model; one that simultaneously minimizes the maximum likelihood estimation of the loss and a reward penalty term. Here, the reward penalty term is introduced to prevent the policy from choosing actions with spurious high proxy rewards, resulting in provable sample efficiency of the algorithm under a partial coverage style condition. Moving from theory to practice, the proposed algorithm further enjoys an equivalent but surprisingly easy-to-implement reformulation. Using the equivalence between reward models and the corresponding optimal policy, the algorithm features a simple objective that combines: (i) a preference optimization loss that directly aligns the policy with human preference, and (ii) a supervised learning loss that explicitly imitates the policy with a (suitable) baseline distribution. In the context of aligning large language models (LLM), this objective fuses the direct preference optimization (DPO) loss with the supervised fune-tuning (SFT) loss to help mitigate the overoptimization towards undesired responses, for which we name the algorithm Regularized Preference Optimization (RPO). Experiments of aligning LLMs demonstrate the improved performance of RPO compared with DPO baselines. Our work sheds light on the interplay between preference optimization and SFT in tuning LLMs with both theoretical guarantees and empirical evidence.
AI PB: A Grounded Generative Agent for Personalized Investment Insights
We present AI PB, a production-scale generative agent deployed in real retail finance. Unlike reactive chatbots that answer queries passively, AI PB proactively generates grounded, compliant, and user-specific investment insights. It integrates (i) a component-based orchestration layer that deterministically routes between internal and external LLMs based on data sensitivity, (ii) a hybrid retrieval pipeline using OpenSearch and the finance-domain embedding model, and (iii) a multi-stage recommendation mechanism combining rule heuristics, sequential behavioral modeling, and contextual bandits. Operating fully on-premises under Korean financial regulations, the system employs Docker Swarm and vLLM across 24 X NVIDIA H100 GPUs. Through human QA and system metrics, we demonstrate that grounded generation with explicit routing and layered safety can deliver trustworthy AI insights in high-stakes finance.
AI-Powered Energy Algorithmic Trading: Integrating Hidden Markov Models with Neural Networks
In quantitative finance, machine learning methods are essential for alpha generation. This study introduces a new approach that combines Hidden Markov Models (HMM) and neural networks, integrated with Black-Litterman portfolio optimization. During the COVID period (2019-2022), this dual-model approach achieved a 83% return with a Sharpe ratio of 0.77. It incorporates two risk models to enhance risk management, showing efficiency during volatile periods. The methodology was implemented on the QuantConnect platform, which was chosen for its robust framework and experimental reproducibility. The system, which predicts future price movements, includes a three-year warm-up to ensure proper algorithm function. It targets highly liquid, large-cap energy stocks to ensure stable and predictable performance while also considering broker payments. The dual-model alpha system utilizes log returns to select the optimal state based on the historical performance. It combines state predictions with neural network outputs, which are based on historical data, to generate trading signals. This study examined the architecture of the trading system, data pre-processing, training, and performance. The full code and backtesting data are available under the QuantConnect terms.
Stratify: Unifying Multi-Step Forecasting Strategies
A key aspect of temporal domains is the ability to make predictions multiple time steps into the future, a process known as multi-step forecasting (MSF). At the core of this process is selecting a forecasting strategy, however, with no existing frameworks to map out the space of strategies, practitioners are left with ad-hoc methods for strategy selection. In this work, we propose Stratify, a parameterised framework that addresses multi-step forecasting, unifying existing strategies and introducing novel, improved strategies. We evaluate Stratify on 18 benchmark datasets, five function classes, and short to long forecast horizons (10, 20, 40, 80). In over 84% of 1080 experiments, novel strategies in Stratify improved performance compared to all existing ones. Importantly, we find that no single strategy consistently outperforms others in all task settings, highlighting the need for practitioners explore the Stratify space to carefully search and select forecasting strategies based on task-specific requirements. Our results are the most comprehensive benchmarking of known and novel forecasting strategies. We make code available to reproduce our results.
BASE Layers: Simplifying Training of Large, Sparse Models
We introduce a new balanced assignment of experts (BASE) layer for large language models that greatly simplifies existing high capacity sparse layers. Sparse layers can dramatically improve the efficiency of training and inference by routing each token to specialized expert modules that contain only a small fraction of the model parameters. However, it can be difficult to learn balanced routing functions that make full use of the available experts; existing approaches typically use routing heuristics or auxiliary expert-balancing loss functions. In contrast, we formulate token-to-expert allocation as a linear assignment problem, allowing an optimal assignment in which each expert receives an equal number of tokens. This optimal assignment scheme improves efficiency by guaranteeing balanced compute loads, and also simplifies training by not requiring any new hyperparameters or auxiliary losses. Code is publicly released at https://github.com/pytorch/fairseq/
Compositional Generative Inverse Design
Inverse design, where we seek to design input variables in order to optimize an underlying objective function, is an important problem that arises across fields such as mechanical engineering to aerospace engineering. Inverse design is typically formulated as an optimization problem, with recent works leveraging optimization across learned dynamics models. However, as models are optimized they tend to fall into adversarial modes, preventing effective sampling. We illustrate that by instead optimizing over the learned energy function captured by the diffusion model, we can avoid such adversarial examples and significantly improve design performance. We further illustrate how such a design system is compositional, enabling us to combine multiple different diffusion models representing subcomponents of our desired system to design systems with every specified component. In an N-body interaction task and a challenging 2D multi-airfoil design task, we demonstrate that by composing the learned diffusion model at test time, our method allows us to design initial states and boundary shapes that are more complex than those in the training data. Our method generalizes to more objects for N-body dataset and discovers formation flying to minimize drag in the multi-airfoil design task. Project website and code can be found at https://github.com/AI4Science-WestlakeU/cindm.
Demystifying Domain-adaptive Post-training for Financial LLMs
Domain-adaptive post-training of large language models (LLMs) has emerged as a promising approach for specialized domains such as medicine and finance. However, significant challenges remain in identifying optimal adaptation criteria and training strategies across varying data and model configurations. To address these challenges, we introduce FINDAP, a systematic and fine-grained investigation into domain-adaptive post-training of LLMs for the finance domain. Our approach begins by identifying the core capabilities required for the target domain and designing a comprehensive evaluation suite aligned with these needs. We then analyze the effectiveness of key post-training stages, including continual pretraining, instruction tuning, and preference alignment. Building on these insights, we propose an effective training recipe centered on a novel preference data distillation method, which leverages process signals from a generative reward model. The resulting model, Llama-Fin, achieves state-of-the-art performance across a wide range of financial tasks. Our analysis also highlights how each post-training stage contributes to distinct capabilities, uncovering specific challenges and effective solutions, providing valuable insights for domain adaptation of LLMs. Project page: https://github.com/SalesforceAIResearch/FinDap
QuantAgent: Price-Driven Multi-Agent LLMs for High-Frequency Trading
Recent advances in Large Language Models (LLMs) have demonstrated impressive capabilities in financial reasoning and market understanding. Multi-agent LLM frameworks such as TradingAgent and FINMEM augment these models to long-horizon investment tasks, leveraging fundamental and sentiment-based inputs for strategic decision-making. However, such systems are ill-suited for the high-speed, precision-critical demands of High-Frequency Trading (HFT). HFT requires rapid, risk-aware decisions based on structured, short-horizon signals, including technical indicators, chart patterns, and trend-based features, distinct from the long-term semantic reasoning typical of traditional financial LLM applications. To this end, we introduce QuantAgent, the first multi-agent LLM framework explicitly designed for high-frequency algorithmic trading. The system decomposes trading into four specialized agents, Indicator, Pattern, Trend, and Risk, each equipped with domain-specific tools and structured reasoning capabilities to capture distinct aspects of market dynamics over short temporal windows. In zero-shot evaluations across ten financial instruments, including Bitcoin and Nasdaq futures, QuantAgent demonstrates superior performance in both predictive accuracy and cumulative return over 4-hour trading intervals, outperforming strong neural and rule-based baselines. Our findings suggest that combining structured financial priors with language-native reasoning unlocks new potential for traceable, real-time decision systems in high-frequency financial markets.
Target-based Surrogates for Stochastic Optimization
We consider minimizing functions for which it is expensive to compute the (possibly stochastic) gradient. Such functions are prevalent in reinforcement learning, imitation learning and adversarial training. Our target optimization framework uses the (expensive) gradient computation to construct surrogate functions in a target space (e.g. the logits output by a linear model for classification) that can be minimized efficiently. This allows for multiple parameter updates to the model, amortizing the cost of gradient computation. In the full-batch setting, we prove that our surrogate is a global upper-bound on the loss, and can be (locally) minimized using a black-box optimization algorithm. We prove that the resulting majorization-minimization algorithm ensures convergence to a stationary point of the loss. Next, we instantiate our framework in the stochastic setting and propose the SSO algorithm, which can be viewed as projected stochastic gradient descent in the target space. This connection enables us to prove theoretical guarantees for SSO when minimizing convex functions. Our framework allows the use of standard stochastic optimization algorithms to construct surrogates which can be minimized by any deterministic optimization method. To evaluate our framework, we consider a suite of supervised learning and imitation learning problems. Our experiments indicate the benefits of target optimization and the effectiveness of SSO.
TRADES: Generating Realistic Market Simulations with Diffusion Models
Financial markets are complex systems characterized by high statistical noise, nonlinearity, and constant evolution. Thus, modeling them is extremely hard. We address the task of generating realistic and responsive Limit Order Book (LOB) market simulations, which are fundamental for calibrating and testing trading strategies, performing market impact experiments, and generating synthetic market data. Previous works lack realism, usefulness, and responsiveness of the generated simulations. To bridge this gap, we propose a novel TRAnsformer-based Denoising Diffusion Probabilistic Engine for LOB Simulations (TRADES). TRADES generates realistic order flows conditioned on the state of the market, leveraging a transformer-based architecture that captures the temporal and spatial characteristics of high-frequency market data. There is a notable absence of quantitative metrics for evaluating generative market simulation models in the literature. To tackle this problem, we adapt the predictive score, a metric measured as an MAE, by training a stock price predictive model on synthetic data and testing it on real data. We compare TRADES with previous works on two stocks, reporting an x3.27 and x3.47 improvement over SoTA according to the predictive score, demonstrating that we generate useful synthetic market data for financial downstream tasks. We assess TRADES's market simulation realism and responsiveness, showing that it effectively learns the conditional data distribution and successfully reacts to an experimental agent, giving sprout to possible calibrations and evaluations of trading strategies and market impact experiments. We developed DeepMarket, the first open-source Python framework for market simulation with deep learning. Our repository includes a synthetic LOB dataset composed of TRADES's generates simulations. We release the code at github.com/LeonardoBerti00/DeepMarket.
Quantization Error Propagation: Revisiting Layer-Wise Post-Training Quantization
Layer-wise PTQ is a promising technique for compressing large language models (LLMs), due to its simplicity and effectiveness without requiring retraining. However, recent progress in this area is saturating, underscoring the need to revisit its core limitations and explore further improvements. We address this challenge by identifying a key limitation of existing layer-wise PTQ methods: the growth of quantization errors across layers significantly degrades performance, particularly in low-bit regimes. To address this fundamental issue, we propose Quantization Error Propagation (QEP), a general, lightweight, and scalable framework that enhances layer-wise PTQ by explicitly propagating quantization errors and compensating for accumulated errors. QEP also offers a tunable propagation mechanism that prevents overfitting and controls computational overhead, enabling the framework to adapt to various architectures and resource budgets. Extensive experiments on several LLMs demonstrate that QEP-enhanced layer-wise PTQ achieves substantially higher accuracy than existing methods. Notably, the gains are most pronounced in the extremely low-bit quantization regime.
Reward Model Ensembles Help Mitigate Overoptimization
Reinforcement learning from human feedback (RLHF) is a standard approach for fine-tuning large language models to follow instructions. As part of this process, learned reward models are used to approximately model human preferences. However, as imperfect representations of the "true" reward, these learned reward models are susceptible to overoptimization. Gao et al. (2023) studied this phenomenon in a synthetic human feedback setup with a significantly larger "gold" reward model acting as the true reward (instead of humans) and showed that overoptimization remains a persistent problem regardless of the size of the proxy reward model and training data used. Using a similar setup, we conduct a systematic study to evaluate the efficacy of using ensemble-based conservative optimization objectives, specifically worst-case optimization (WCO) and uncertainty-weighted optimization (UWO), for mitigating reward model overoptimization when using two optimization methods: (a) best-of-n sampling (BoN) (b) proximal policy optimization (PPO). We additionally extend the setup of Gao et al. (2023) to include 25% label noise to better mirror real-world conditions. Both with and without label noise, we find that conservative optimization practically eliminates overoptimization and improves performance by up to 70% for BoN sampling. For PPO, ensemble-based conservative optimization always reduces overoptimization and outperforms single reward model optimization. Moreover, combining it with a small KL penalty successfully prevents overoptimization at no performance cost. Overall, our results demonstrate that ensemble-based conservative optimization can effectively counter overoptimization.
FinSearchComp: Towards a Realistic, Expert-Level Evaluation of Financial Search and Reasoning
Search has emerged as core infrastructure for LLM-based agents and is widely viewed as critical on the path toward more general intelligence. Finance is a particularly demanding proving ground: analysts routinely conduct complex, multi-step searches over time-sensitive, domain-specific data, making it ideal for assessing both search proficiency and knowledge-grounded reasoning. Yet no existing open financial datasets evaluate data searching capability of end-to-end agents, largely because constructing realistic, complicated tasks requires deep financial expertise and time-sensitive data is hard to evaluate. We present FinSearchComp, the first fully open-source agent benchmark for realistic, open-domain financial search and reasoning. FinSearchComp comprises three tasks -- Time-Sensitive Data Fetching, Simple Historical Lookup, and Complex Historical Investigation -- closely reproduce real-world financial analyst workflows. To ensure difficulty and reliability, we engage 70 professional financial experts for annotation and implement a rigorous multi-stage quality-assurance pipeline. The benchmark includes 635 questions spanning global and Greater China markets, and we evaluate 21 models (products) on it. Grok 4 (web) tops the global subset, approaching expert-level accuracy. DouBao (web) leads on the Greater China subset. Experimental analyses show that equipping agents with web search and financial plugins substantially improves results on FinSearchComp, and the country origin of models and tools impact performance significantly.By aligning with realistic analyst tasks and providing end-to-end evaluation, FinSearchComp offers a professional, high-difficulty testbed for complex financial search and reasoning.
CyclicReflex: Improving Large Reasoning Models via Cyclical Reflection Token Scheduling
Large reasoning models (LRMs), such as OpenAI's o1 and DeepSeek-R1, harness test-time scaling to perform multi-step reasoning for complex problem-solving. This reasoning process, executed before producing final answers, is often guided by special juncture tokens or textual segments that prompt self-evaluative reflection. We refer to these transition markers and reflective cues as "reflection tokens" (e.g., "wait", "but", "alternatively"). In this work, we treat reflection tokens as a "resource" and introduce the problem of resource allocation, aimed at improving the test-time compute performance of LRMs by adaptively regulating the frequency and placement of reflection tokens. Through empirical analysis, we show that both excessive and insufficient use of reflection tokens, referred to as over-reflection and under-reflection, can degrade model performance. To better understand and manage this trade-off, we draw an analogy between reflection token usage and learning rate scheduling in optimization. Building on this insight, we propose cyclical reflection token scheduling (termed CyclicReflex), a decoding strategy that dynamically modulates reflection token logits using a position-dependent triangular waveform. Experiments on MATH500, AIME2024/2025, and AMC2023 demonstrate that CyclicReflex consistently improves performance across model sizes (1.5B-8B), outperforming standard decoding and more recent approaches such as TIP (thought switching penalty) and S1. Codes are available at https://github.com/OPTML-Group/CyclicReflex.
Feasible Learning
We introduce Feasible Learning (FL), a sample-centric learning paradigm where models are trained by solving a feasibility problem that bounds the loss for each training sample. In contrast to the ubiquitous Empirical Risk Minimization (ERM) framework, which optimizes for average performance, FL demands satisfactory performance on every individual data point. Since any model that meets the prescribed performance threshold is a valid FL solution, the choice of optimization algorithm and its dynamics play a crucial role in shaping the properties of the resulting solutions. In particular, we study a primal-dual approach which dynamically re-weights the importance of each sample during training. To address the challenge of setting a meaningful threshold in practice, we introduce a relaxation of FL that incorporates slack variables of minimal norm. Our empirical analysis, spanning image classification, age regression, and preference optimization in large language models, demonstrates that models trained via FL can learn from data while displaying improved tail behavior compared to ERM, with only a marginal impact on average performance.
Policy gradient learning methods for stochastic control with exit time and applications to share repurchase pricing
We develop policy gradients methods for stochastic control with exit time in a model-free setting. We propose two types of algorithms for learning either directly the optimal policy or by learning alternately the value function (critic) and the optimal control (actor). The use of randomized policies is crucial for overcoming notably the issue related to the exit time in the gradient computation. We demonstrate the effectiveness of our approach by implementing our numerical schemes in the application to the problem of share repurchase pricing. Our results show that the proposed policy gradient methods outperform PDE or other neural networks techniques in a model-based setting. Furthermore, our algorithms are flexible enough to incorporate realistic market conditions like e.g. price impact or transaction costs.
Learning to Retrieve Iteratively for In-Context Learning
We introduce iterative retrieval, a novel framework that empowers retrievers to make iterative decisions through policy optimization. Finding an optimal portfolio of retrieved items is a combinatorial optimization problem, generally considered NP-hard. This approach provides a learned approximation to such a solution, meeting specific task requirements under a given family of large language models (LLMs). We propose a training procedure based on reinforcement learning, incorporating feedback from LLMs. We instantiate an iterative retriever for composing in-context learning (ICL) exemplars and apply it to various semantic parsing tasks that demand synthesized programs as outputs. By adding only 4M additional parameters for state encoding, we convert an off-the-shelf dense retriever into a stateful iterative retriever, outperforming previous methods in selecting ICL exemplars on semantic parsing datasets such as CalFlow, TreeDST, and MTOP. Additionally, the trained iterative retriever generalizes across different inference LLMs beyond the one used during training.
Quantformer: from attention to profit with a quantitative transformer trading strategy
In traditional quantitative trading practice, navigating the complicated and dynamic financial market presents a persistent challenge. Fully capturing various market variables, including long-term information, as well as essential signals that may lead to profit remains a difficult task for learning algorithms. In order to tackle this challenge, this paper introduces quantformer, an enhanced neural network architecture based on transformers, to build investment factors. By transfer learning from sentiment analysis, quantformer not only exploits its original inherent advantages in capturing long-range dependencies and modeling complex data relationships, but is also able to solve tasks with numerical inputs and accurately forecast future returns over a given period. This work collects more than 5,000,000 rolling data of 4,601 stocks in the Chinese capital market from 2010 to 2019. The results of this study demonstrated the model's superior performance in predicting stock trends compared with other 100 factor-based quantitative strategies. Notably, the model's innovative use of transformer-liked model to establish factors, in conjunction with market sentiment information, has been shown to enhance the accuracy of trading signals significantly, thereby offering promising implications for the future of quantitative trading strategies.
Stockformer: A Price-Volume Factor Stock Selection Model Based on Wavelet Transform and Multi-Task Self-Attention Networks
As the Chinese stock market continues to evolve and its market structure grows increasingly complex, traditional quantitative trading methods are facing escalating challenges. Particularly, due to policy uncertainty and the frequent market fluctuations triggered by sudden economic events, existing models often struggle to accurately predict market dynamics. To address these challenges, this paper introduces Stockformer, a price-volume factor stock selection model that integrates wavelet transformation and a multitask self-attention network, aimed at enhancing responsiveness and predictive accuracy regarding market instabilities. Through discrete wavelet transform, Stockformer decomposes stock returns into high and low frequencies, meticulously capturing long-term market trends and short-term fluctuations, including abrupt events. Moreover, the model incorporates a Dual-Frequency Spatiotemporal Encoder and graph embedding techniques to effectively capture complex temporal and spatial relationships among stocks. Employing a multitask learning strategy, it simultaneously predicts stock returns and directional trends. Experimental results show that Stockformer outperforms existing advanced methods on multiple real stock market datasets. In strategy backtesting, Stockformer consistently demonstrates exceptional stability and reliability across market conditions-whether rising, falling, or fluctuating-particularly maintaining high performance during downturns or volatile periods, indicating a high adaptability to market fluctuations. To foster innovation and collaboration in the financial analysis sector, the Stockformer model's code has been open-sourced and is available on the GitHub repository: https://github.com/Eric991005/Multitask-Stockformer.
Buying Information for Stochastic Optimization
Stochastic optimization is one of the central problems in Machine Learning and Theoretical Computer Science. In the standard model, the algorithm is given a fixed distribution known in advance. In practice though, one may acquire at a cost extra information to make better decisions. In this paper, we study how to buy information for stochastic optimization and formulate this question as an online learning problem. Assuming the learner has an oracle for the original optimization problem, we design a 2-competitive deterministic algorithm and a e/(e-1)-competitive randomized algorithm for buying information. We show that this ratio is tight as the problem is equivalent to a robust generalization of the ski-rental problem, which we call super-martingale stopping. We also consider an adaptive setting where the learner can choose to buy information after taking some actions for the underlying optimization problem. We focus on the classic optimization problem, Min-Sum Set Cover, where the goal is to quickly find an action that covers a given request drawn from a known distribution. We provide an 8-competitive algorithm running in polynomial time that chooses actions and decides when to buy information about the underlying request.
From Scores to Skills: A Cognitive Diagnosis Framework for Evaluating Financial Large Language Models
Large Language Models (LLMs) have shown promise for financial applications, yet their suitability for this high-stakes domain remains largely unproven due to inadequacies in existing benchmarks. Existing benchmarks solely rely on score-level evaluation, summarizing performance with a single score that obscures the nuanced understanding of what models truly know and their precise limitations. They also rely on datasets that cover only a narrow subset of financial concepts, while overlooking other essentials for real-world applications. To address these gaps, we introduce FinCDM, the first cognitive diagnosis evaluation framework tailored for financial LLMs, enabling the evaluation of LLMs at the knowledge-skill level, identifying what financial skills and knowledge they have or lack based on their response patterns across skill-tagged tasks, rather than a single aggregated number. We construct CPA-QKA, the first cognitively informed financial evaluation dataset derived from the Certified Public Accountant (CPA) examination, with comprehensive coverage of real-world accounting and financial skills. It is rigorously annotated by domain experts, who author, validate, and annotate questions with high inter-annotator agreement and fine-grained knowledge labels. Our extensive experiments on 30 proprietary, open-source, and domain-specific LLMs show that FinCDM reveals hidden knowledge gaps, identifies under-tested areas such as tax and regulatory reasoning overlooked by traditional benchmarks, and uncovers behavioral clusters among models. FinCDM introduces a new paradigm for financial LLM evaluation by enabling interpretable, skill-aware diagnosis that supports more trustworthy and targeted model development, and all datasets and evaluation scripts will be publicly released to support further research.
Optimizing Instructions and Demonstrations for Multi-Stage Language Model Programs
Language Model Programs, i.e. sophisticated pipelines of modular language model (LM) calls, are increasingly advancing NLP tasks, but they require crafting prompts that are jointly effective for all modules. We study prompt optimization for LM programs, i.e. how to update these prompts to maximize a downstream metric without access to module-level labels or gradients. To make this tractable, we factorize our problem into optimizing the free-form instructions and few-shot demonstrations of every module and introduce several strategies to craft task-grounded instructions and navigate credit assignment across modules. Our strategies include (i) program- and data-aware techniques for proposing effective instructions, (ii) a stochastic mini-batch evaluation function for learning a surrogate model of our objective, and (iii) a meta-optimization procedure in which we refine how LMs construct proposals over time. Using these insights we develop MIPRO, a novel algorithm for optimizing LM programs. MIPRO outperforms baseline optimizers on five of seven diverse multi-stage LM programs using a best-in-class open-source model (Llama-3-8B), by as high as 13% accuracy. We have released our new optimizers and benchmark in DSPy at http://dspy.ai
Harnessing Earnings Reports for Stock Predictions: A QLoRA-Enhanced LLM Approach
Accurate stock market predictions following earnings reports are crucial for investors. Traditional methods, particularly classical machine learning models, struggle with these predictions because they cannot effectively process and interpret extensive textual data contained in earnings reports and often overlook nuances that influence market movements. This paper introduces an advanced approach by employing Large Language Models (LLMs) instruction fine-tuned with a novel combination of instruction-based techniques and quantized low-rank adaptation (QLoRA) compression. Our methodology integrates 'base factors', such as financial metric growth and earnings transcripts, with 'external factors', including recent market indices performances and analyst grades, to create a rich, supervised dataset. This comprehensive dataset enables our models to achieve superior predictive performance in terms of accuracy, weighted F1, and Matthews correlation coefficient (MCC), especially evident in the comparison with benchmarks such as GPT-4. We specifically highlight the efficacy of the llama-3-8b-Instruct-4bit model, which showcases significant improvements over baseline models. The paper also discusses the potential of expanding the output capabilities to include a 'Hold' option and extending the prediction horizon, aiming to accommodate various investment styles and time frames. This study not only demonstrates the power of integrating cutting-edge AI with fine-tuned financial data but also paves the way for future research in enhancing AI-driven financial analysis tools.
Pre-training Time Series Models with Stock Data Customization
Stock selection, which aims to predict stock prices and identify the most profitable ones, is a crucial task in finance. While existing methods primarily focus on developing model structures and building graphs for improved selection, pre-training strategies remain underexplored in this domain. Current stock series pre-training follows methods from other areas without adapting to the unique characteristics of financial data, particularly overlooking stock-specific contextual information and the non-stationary nature of stock prices. Consequently, the latent statistical features inherent in stock data are underutilized. In this paper, we propose three novel pre-training tasks tailored to stock data characteristics: stock code classification, stock sector classification, and moving average prediction. We develop the Stock Specialized Pre-trained Transformer (SSPT) based on a two-layer transformer architecture. Extensive experimental results validate the effectiveness of our pre-training methods and provide detailed guidance on their application. Evaluations on five stock datasets, including four markets and two time periods, demonstrate that SSPT consistently outperforms the market and existing methods in terms of both cumulative investment return ratio and Sharpe ratio. Additionally, our experiments on simulated data investigate the underlying mechanisms of our methods, providing insights into understanding price series. Our code is publicly available at: https://github.com/astudentuser/Pre-training-Time-Series-Models-with-Stock-Data-Customization.
Train 'n Trade: Foundations of Parameter Markets
Organizations typically train large models individually. This is costly and time-consuming, particularly for large-scale foundation models. Such vertical production is known to be suboptimal. Inspired by this economic insight, we ask whether it is possible to leverage others' expertise by trading the constituent parts in models, i.e., sets of weights, as if they were market commodities. While recent advances in aligning and interpolating models suggest that doing so may be possible, a number of fundamental questions must be answered to create viable parameter markets. In this work, we address these basic questions, propose a framework containing the infrastructure necessary for market operations to take place, study strategies for exchanging parameters, and offer means for agents to monetize parameters. Excitingly, compared to agents who train siloed models from scratch, we show that it is possible to mutually gain by using the market, even in competitive settings. This suggests that the notion of parameter markets may be a useful paradigm for improving large-scale model training in the future.
XGrad: Boosting Gradient-Based Optimizers With Weight Prediction
In this paper, we propose a general deep learning training framework XGrad which introduces weight prediction into the popular gradient-based optimizers to boost their convergence and generalization when training the deep neural network (DNN) models. In particular, ahead of each mini-batch training, the future weights are predicted according to the update rule of the used optimizer and are then applied to both the forward pass and backward propagation. In this way, during the whole training period, the optimizer always utilizes the gradients w.r.t. the future weights to update the DNN parameters, making the gradient-based optimizer achieve better convergence and generalization compared to the original optimizer without weight prediction. XGrad is rather straightforward to implement yet pretty effective in boosting the convergence of gradient-based optimizers and the accuracy of DNN models. Empirical results concerning the most three popular gradient-based optimizers including SGD with momentum, Adam, and AdamW demonstrate the effectiveness of our proposal. The experimental results validate that XGrad can attain higher model accuracy than the original optimizers when training the DNN models. The code of XGrad will be available at: https://github.com/guanleics/XGrad.
OptiProxy-NAS: Optimization Proxy based End-to-End Neural Architecture Search
Neural architecture search (NAS) is a hard computationally expensive optimization problem with a discrete, vast, and spiky search space. One of the key research efforts dedicated to this space focuses on accelerating NAS via certain proxy evaluations of neural architectures. Different from the prevalent predictor-based methods using surrogate models and differentiable architecture search via supernetworks, we propose an optimization proxy to streamline the NAS as an end-to-end optimization framework, named OptiProxy-NAS. In particular, using a proxy representation, the NAS space is reformulated to be continuous, differentiable, and smooth. Thereby, any differentiable optimization method can be applied to the gradient-based search of the relaxed architecture parameters. Our comprehensive experiments on 12 NAS tasks of 4 search spaces across three different domains including computer vision, natural language processing, and resource-constrained NAS fully demonstrate the superior search results and efficiency. Further experiments on low-fidelity scenarios verify the flexibility.
Show me your NFT and I tell you how it will perform: Multimodal representation learning for NFT selling price prediction
Non-Fungible Tokens (NFTs) represent deeds of ownership, based on blockchain technologies and smart contracts, of unique crypto assets on digital art forms (e.g., artworks or collectibles). In the spotlight after skyrocketing in 2021, NFTs have attracted the attention of crypto enthusiasts and investors intent on placing promising investments in this profitable market. However, the NFT financial performance prediction has not been widely explored to date. In this work, we address the above problem based on the hypothesis that NFT images and their textual descriptions are essential proxies to predict the NFT selling prices. To this purpose, we propose MERLIN, a novel multimodal deep learning framework designed to train Transformer-based language and visual models, along with graph neural network models, on collections of NFTs' images and texts. A key aspect in MERLIN is its independence on financial features, as it exploits only the primary data a user interested in NFT trading would like to deal with, i.e., NFT images and textual descriptions. By learning dense representations of such data, a price-category classification task is performed by MERLIN models, which can also be tuned according to user preferences in the inference phase to mimic different risk-return investment profiles. Experimental evaluation on a publicly available dataset has shown that MERLIN models achieve significant performances according to several financial assessment criteria, fostering profitable investments, and also beating baseline machine-learning classifiers based on financial features.
ReNO: Enhancing One-step Text-to-Image Models through Reward-based Noise Optimization
Text-to-Image (T2I) models have made significant advancements in recent years, but they still struggle to accurately capture intricate details specified in complex compositional prompts. While fine-tuning T2I models with reward objectives has shown promise, it suffers from "reward hacking" and may not generalize well to unseen prompt distributions. In this work, we propose Reward-based Noise Optimization (ReNO), a novel approach that enhances T2I models at inference by optimizing the initial noise based on the signal from one or multiple human preference reward models. Remarkably, solving this optimization problem with gradient ascent for 50 iterations yields impressive results on four different one-step models across two competitive benchmarks, T2I-CompBench and GenEval. Within a computational budget of 20-50 seconds, ReNO-enhanced one-step models consistently surpass the performance of all current open-source Text-to-Image models. Extensive user studies demonstrate that our model is preferred nearly twice as often compared to the popular SDXL model and is on par with the proprietary Stable Diffusion 3 with 8B parameters. Moreover, given the same computational resources, a ReNO-optimized one-step model outperforms widely-used open-source models such as SDXL and PixArt-alpha, highlighting the efficiency and effectiveness of ReNO in enhancing T2I model performance at inference time. Code is available at https://github.com/ExplainableML/ReNO.
Practical tradeoffs between memory, compute, and performance in learned optimizers
Optimization plays a costly and crucial role in developing machine learning systems. In learned optimizers, the few hyperparameters of commonly used hand-designed optimizers, e.g. Adam or SGD, are replaced with flexible parametric functions. The parameters of these functions are then optimized so that the resulting learned optimizer minimizes a target loss on a chosen class of models. Learned optimizers can both reduce the number of required training steps and improve the final test loss. However, they can be expensive to train, and once trained can be expensive to use due to computational and memory overhead for the optimizer itself. In this work, we identify and quantify the design features governing the memory, compute, and performance trade-offs for many learned and hand-designed optimizers. We further leverage our analysis to construct a learned optimizer that is both faster and more memory efficient than previous work. Our model and training code are open source.
FinTrust: A Comprehensive Benchmark of Trustworthiness Evaluation in Finance Domain
Recent LLMs have demonstrated promising ability in solving finance related problems. However, applying LLMs in real-world finance application remains challenging due to its high risk and high stakes property. This paper introduces FinTrust, a comprehensive benchmark specifically designed for evaluating the trustworthiness of LLMs in finance applications. Our benchmark focuses on a wide range of alignment issues based on practical context and features fine-grained tasks for each dimension of trustworthiness evaluation. We assess eleven LLMs on FinTrust and find that proprietary models like o4-mini outperforms in most tasks such as safety while open-source models like DeepSeek-V3 have advantage in specific areas like industry-level fairness. For challenging task like fiduciary alignment and disclosure, all LLMs fall short, showing a significant gap in legal awareness. We believe that FinTrust can be a valuable benchmark for LLMs' trustworthiness evaluation in finance domain.
CNN-DRL for Scalable Actions in Finance
The published MLP-based DRL in finance has difficulties in learning the dynamics of the environment when the action scale increases. If the buying and selling increase to one thousand shares, the MLP agent will not be able to effectively adapt to the environment. To address this, we designed a CNN agent that concatenates the data from the last ninety days of the daily feature vector to create the CNN input matrix. Our extensive experiments demonstrate that the MLP-based agent experiences a loss corresponding to the initial environment setup, while our designed CNN remains stable, effectively learns the environment, and leads to an increase in rewards.
Self-Improving Interference Management Based on Deep Learning With Uncertainty Quantification
This paper presents a groundbreaking self-improving interference management framework tailored for wireless communications, integrating deep learning with uncertainty quantification to enhance overall system performance. Our approach addresses the computational challenges inherent in traditional optimization-based algorithms by harnessing deep learning models to predict optimal interference management solutions. A significant breakthrough of our framework is its acknowledgment of the limitations inherent in data-driven models, particularly in scenarios not adequately represented by the training dataset. To overcome these challenges, we propose a method for uncertainty quantification, accompanied by a qualifying criterion, to assess the trustworthiness of model predictions. This framework strategically alternates between model-generated solutions and traditional algorithms, guided by a criterion that assesses the prediction credibility based on quantified uncertainties. Experimental results validate the framework's efficacy, demonstrating its superiority over traditional deep learning models, notably in scenarios underrepresented in the training dataset. This work marks a pioneering endeavor in harnessing self-improving deep learning for interference management, through the lens of uncertainty quantification.
When Agents Trade: Live Multi-Market Trading Benchmark for LLM Agents
Although Large Language Model (LLM)-based agents are increasingly used in financial trading, it remains unclear whether they can reason and adapt in live markets, as most studies test models instead of agents, cover limited periods and assets, and rely on unverified data. To address these gaps, we introduce Agent Market Arena (AMA), the first lifelong, real-time benchmark for evaluating LLM-based trading agents across multiple markets. AMA integrates verified trading data, expert-checked news, and diverse agent architectures within a unified trading framework, enabling fair and continuous comparison under real conditions. It implements four agents, including InvestorAgent as a single-agent baseline, TradeAgent and HedgeFundAgent with different risk styles, and DeepFundAgent with memory-based reasoning, and evaluates them across GPT-4o, GPT-4.1, Claude-3.5-haiku, Claude-sonnet-4, and Gemini-2.0-flash. Live experiments on both cryptocurrency and stock markets demonstrate that agent frameworks display markedly distinct behavioral patterns, spanning from aggressive risk-taking to conservative decision-making, whereas model backbones contribute less to outcome variation. AMA thus establishes a foundation for rigorous, reproducible, and continuously evolving evaluation of financial reasoning and trading intelligence in LLM-based agents.
OMPQ: Orthogonal Mixed Precision Quantization
To bridge the ever increasing gap between deep neural networks' complexity and hardware capability, network quantization has attracted more and more research attention. The latest trend of mixed precision quantization takes advantage of hardware's multiple bit-width arithmetic operations to unleash the full potential of network quantization. However, this also results in a difficult integer programming formulation, and forces most existing approaches to use an extremely time-consuming search process even with various relaxations. Instead of solving a problem of the original integer programming, we propose to optimize a proxy metric, the concept of network orthogonality, which is highly correlated with the loss of the integer programming but also easy to optimize with linear programming. This approach reduces the search time and required data amount by orders of magnitude, with little compromise on quantization accuracy. Specifically, we achieve 72.08% Top-1 accuracy on ResNet-18 with 6.7Mb, which does not require any searching iterations. Given the high efficiency and low data dependency of our algorithm, we used it for the post-training quantization, which achieve 71.27% Top-1 accuracy on MobileNetV2 with only 1.5Mb. Our code is available at https://github.com/MAC-AutoML/OMPQ.
Sentiment-Aware Mean-Variance Portfolio Optimization for Cryptocurrencies
This paper presents a dynamic cryptocurrency portfolio optimization strategy that integrates technical indicators and sentiment analysis to enhance investment decision-making. The proposed method employs the 14-day Relative Strength Index (RSI) and 14-day Simple Moving Average (SMA) to capture market momentum, while sentiment scores are extracted from news articles using the VADER (Valence Aware Dictionary and sEntiment Reasoner) model, with compound scores quantifying overall market tone. The large language model Google Gemini is used to further verify the sentiment scores predicted by VADER and give investment decisions. These technical indicator and sentiment signals are incorporated into the expected return estimates before applying mean-variance optimization with constraints on asset weights. The strategy is evaluated through a rolling-window backtest over cryptocurrency market data, with Bitcoin (BTC) and an equal-weighted portfolio of selected cryptocurrencies serving as benchmarks. Experimental results show that the proposed approach achieves a cumulative return of 38.72, substantially exceeding Bitcoin's 8.85 and the equal-weighted portfolio's 21.65 over the same period, and delivers a higher Sharpe ratio (1.1093 vs. 0.8853 and 1.0194, respectively). However, the strategy exhibits a larger maximum drawdown (-18.52%) compared to Bitcoin (-4.48%) and the equal-weighted portfolio (-11.02%), indicating higher short-term downside risk. These results highlight the potential of combining sentiment and technical signals to improve cryptocurrency portfolio performance, while also emphasizing the need to address risk exposure in volatile markets.
Large Language Models for Supply Chain Optimization
Supply chain operations traditionally involve a variety of complex decision making problems. Over the last few decades, supply chains greatly benefited from advances in computation, which allowed the transition from manual processing to automation and cost-effective optimization. Nonetheless, business operators still need to spend substantial efforts in explaining and interpreting the optimization outcomes to stakeholders. Motivated by the recent advances in Large Language Models (LLMs), we study how this disruptive technology can help bridge the gap between supply chain automation and human comprehension and trust thereof. We design -- a framework that accepts as input queries in plain text, and outputs insights about the underlying optimization outcomes. Our framework does not forgo the state-of-the-art combinatorial optimization technology, but rather leverages it to quantitatively answer what-if scenarios (e.g., how would the cost change if we used supplier B instead of supplier A for a given demand?). Importantly, our design does not require sending proprietary data over to LLMs, which can be a privacy concern in some circumstances. We demonstrate the effectiveness of our framework on a real server placement scenario within Microsoft's cloud supply chain. Along the way, we develop a general evaluation benchmark, which can be used to evaluate the accuracy of the LLM output in other scenarios.
Benchmarking Optimizers for Large Language Model Pretraining
The recent development of Large Language Models (LLMs) has been accompanied by an effervescence of novel ideas and methods to better optimize the loss of deep learning models. Claims from those methods are myriad: from faster convergence to removing reliance on certain hyperparameters. However, the diverse experimental protocols used to validate these claims make direct comparisons between methods challenging. This study presents a comprehensive evaluation of recent optimization techniques across standardized LLM pretraining scenarios, systematically varying model size, batch size, and training duration. Through careful tuning of each method, we provide guidance to practitioners on which optimizer is best suited for each scenario. For researchers, our work highlights promising directions for future optimization research. Finally, by releasing our code and making all experiments fully reproducible, we hope our efforts can help the development and rigorous benchmarking of future methods.
Layer-wise Regularized Adversarial Training using Layers Sustainability Analysis (LSA) framework
Deep neural network models are used today in various applications of artificial intelligence, the strengthening of which, in the face of adversarial attacks is of particular importance. An appropriate solution to adversarial attacks is adversarial training, which reaches a trade-off between robustness and generalization. This paper introduces a novel framework (Layer Sustainability Analysis (LSA)) for the analysis of layer vulnerability in an arbitrary neural network in the scenario of adversarial attacks. LSA can be a helpful toolkit to assess deep neural networks and to extend the adversarial training approaches towards improving the sustainability of model layers via layer monitoring and analysis. The LSA framework identifies a list of Most Vulnerable Layers (MVL list) of the given network. The relative error, as a comparison measure, is used to evaluate representation sustainability of each layer against adversarial inputs. The proposed approach for obtaining robust neural networks to fend off adversarial attacks is based on a layer-wise regularization (LR) over LSA proposal(s) for adversarial training (AT); i.e. the AT-LR procedure. AT-LR could be used with any benchmark adversarial attack to reduce the vulnerability of network layers and to improve conventional adversarial training approaches. The proposed idea performs well theoretically and experimentally for state-of-the-art multilayer perceptron and convolutional neural network architectures. Compared with the AT-LR and its corresponding base adversarial training, the classification accuracy of more significant perturbations increased by 16.35%, 21.79%, and 10.730% on Moon, MNIST, and CIFAR-10 benchmark datasets, respectively. The LSA framework is available and published at https://github.com/khalooei/LSA.
Towards Constituting Mathematical Structures for Learning to Optimize
Learning to Optimize (L2O), a technique that utilizes machine learning to learn an optimization algorithm automatically from data, has gained arising attention in recent years. A generic L2O approach parameterizes the iterative update rule and learns the update direction as a black-box network. While the generic approach is widely applicable, the learned model can overfit and may not generalize well to out-of-distribution test sets. In this paper, we derive the basic mathematical conditions that successful update rules commonly satisfy. Consequently, we propose a novel L2O model with a mathematics-inspired structure that is broadly applicable and generalized well to out-of-distribution problems. Numerical simulations validate our theoretical findings and demonstrate the superior empirical performance of the proposed L2O model.
Layer Collaboration in the Forward-Forward Algorithm
Backpropagation, which uses the chain rule, is the de-facto standard algorithm for optimizing neural networks nowadays. Recently, Hinton (2022) proposed the forward-forward algorithm, a promising alternative that optimizes neural nets layer-by-layer, without propagating gradients throughout the network. Although such an approach has several advantages over back-propagation and shows promising results, the fact that each layer is being trained independently limits the optimization process. Specifically, it prevents the network's layers from collaborating to learn complex and rich features. In this work, we study layer collaboration in the forward-forward algorithm. We show that the current version of the forward-forward algorithm is suboptimal when considering information flow in the network, resulting in a lack of collaboration between layers of the network. We propose an improved version that supports layer collaboration to better utilize the network structure, while not requiring any additional assumptions or computations. We empirically demonstrate the efficacy of the proposed version when considering both information flow and objective metrics. Additionally, we provide a theoretical motivation for the proposed method, inspired by functional entropy theory.
FedRC: Tackling Diverse Distribution Shifts Challenge in Federated Learning by Robust Clustering
Federated Learning (FL) is a machine learning paradigm that safeguards privacy by retaining client data on edge devices. However, optimizing FL in practice can be challenging due to the diverse and heterogeneous nature of the learning system. Though recent research has focused on improving the optimization of FL when distribution shifts occur among clients, ensuring global performance when multiple types of distribution shifts occur simultaneously among clients -- such as feature distribution shift, label distribution shift, and concept shift -- remain under-explored. In this paper, we identify the learning challenges posed by the simultaneous occurrence of diverse distribution shifts and propose a clustering principle to overcome these challenges. Through our research, we find that existing methods fail to address the clustering principle. Therefore, we propose a novel clustering algorithm framework, dubbed as FedRC, which adheres to our proposed clustering principle by incorporating a bi-level optimization problem and a novel objective function. Extensive experiments demonstrate that FedRC significantly outperforms other SOTA cluster-based FL methods. Our code is available at https://github.com/LINs-lab/FedRC.
Less is More: Task-aware Layer-wise Distillation for Language Model Compression
Layer-wise distillation is a powerful tool to compress large models (i.e. teacher models) into small ones (i.e., student models). The student distills knowledge from the teacher by mimicking the hidden representations of the teacher at every intermediate layer. However, layer-wise distillation is difficult. Since the student has a smaller model capacity than the teacher, it is often under-fitted. Furthermore, the hidden representations of the teacher contain redundant information that the student does not necessarily need for the target task's learning. To address these challenges, we propose a novel Task-aware layEr-wise Distillation (TED). TED designs task-aware filters to align the hidden representations of the student and the teacher at each layer. The filters select the knowledge that is useful for the target task from the hidden representations. As such, TED reduces the knowledge gap between the two models and helps the student to fit better on the target task. We evaluate TED in two scenarios: continual pre-training and fine-tuning. TED demonstrates significant and consistent improvements over existing distillation methods in both scenarios. Code is available at https://github.com/cliang1453/task-aware-distillation.
