- Phoneme-Level BERT for Enhanced Prosody of Text-to-Speech with Grapheme Predictions Large-scale pre-trained language models have been shown to be helpful in improving the naturalness of text-to-speech (TTS) models by enabling them to produce more naturalistic prosodic patterns. However, these models are usually word-level or sup-phoneme-level and jointly trained with phonemes, making them inefficient for the downstream TTS task where only phonemes are needed. In this work, we propose a phoneme-level BERT (PL-BERT) with a pretext task of predicting the corresponding graphemes along with the regular masked phoneme predictions. Subjective evaluations show that our phoneme-level BERT encoder has significantly improved the mean opinion scores (MOS) of rated naturalness of synthesized speech compared with the state-of-the-art (SOTA) StyleTTS baseline on out-of-distribution (OOD) texts. 4 authors · Jan 20, 2023
- XPhoneBERT: A Pre-trained Multilingual Model for Phoneme Representations for Text-to-Speech We present XPhoneBERT, the first multilingual model pre-trained to learn phoneme representations for the downstream text-to-speech (TTS) task. Our XPhoneBERT has the same model architecture as BERT-base, trained using the RoBERTa pre-training approach on 330M phoneme-level sentences from nearly 100 languages and locales. Experimental results show that employing XPhoneBERT as an input phoneme encoder significantly boosts the performance of a strong neural TTS model in terms of naturalness and prosody and also helps produce fairly high-quality speech with limited training data. We publicly release our pre-trained XPhoneBERT with the hope that it would facilitate future research and downstream TTS applications for multiple languages. Our XPhoneBERT model is available at https://github.com/VinAIResearch/XPhoneBERT 3 authors · May 31, 2023
- SoundChoice: Grapheme-to-Phoneme Models with Semantic Disambiguation End-to-end speech synthesis models directly convert the input characters into an audio representation (e.g., spectrograms). Despite their impressive performance, such models have difficulty disambiguating the pronunciations of identically spelled words. To mitigate this issue, a separate Grapheme-to-Phoneme (G2P) model can be employed to convert the characters into phonemes before synthesizing the audio. This paper proposes SoundChoice, a novel G2P architecture that processes entire sentences rather than operating at the word level. The proposed architecture takes advantage of a weighted homograph loss (that improves disambiguation), exploits curriculum learning (that gradually switches from word-level to sentence-level G2P), and integrates word embeddings from BERT (for further performance improvement). Moreover, the model inherits the best practices in speech recognition, including multi-task learning with Connectionist Temporal Classification (CTC) and beam search with an embedded language model. As a result, SoundChoice achieves a Phoneme Error Rate (PER) of 2.65% on whole-sentence transcription using data from LibriSpeech and Wikipedia. Index Terms grapheme-to-phoneme, speech synthesis, text-tospeech, phonetics, pronunciation, disambiguation. 2 authors · Jul 26, 2022