new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 29

ExoViP: Step-by-step Verification and Exploration with Exoskeleton Modules for Compositional Visual Reasoning

Compositional visual reasoning methods, which translate a complex query into a structured composition of feasible visual tasks, have exhibited a strong potential in complicated multi-modal tasks. Empowered by recent advances in large language models (LLMs), this multi-modal challenge has been brought to a new stage by treating LLMs as few-shot/zero-shot planners, i.e., vision-language (VL) programming. Such methods, despite their numerous merits, suffer from challenges due to LLM planning mistakes or inaccuracy of visual execution modules, lagging behind the non-compositional models. In this work, we devise a "plug-and-play" method, ExoViP, to correct errors in both the planning and execution stages through introspective verification. We employ verification modules as "exoskeletons" to enhance current VL programming schemes. Specifically, our proposed verification module utilizes a mixture of three sub-verifiers to validate predictions after each reasoning step, subsequently calibrating the visual module predictions and refining the reasoning trace planned by LLMs. Experimental results on two representative VL programming methods showcase consistent improvements on five compositional reasoning tasks on standard benchmarks. In light of this, we believe that ExoViP can foster better performance and generalization on open-domain multi-modal challenges.

  • 4 authors
·
Aug 4, 2024 2

Adaptive Computation Modules: Granular Conditional Computation For Efficient Inference

The computational cost of transformer models makes them inefficient in low-latency or low-power applications. While techniques such as quantization or linear attention can reduce the computational load, they may incur a reduction in accuracy. In addition, globally reducing the cost for all inputs may be sub-optimal. We observe that for each layer, the full width of the layer may be needed only for a small subset of tokens inside a batch and that the "effective" width needed to process a token can vary from layer to layer. Motivated by this observation, we introduce the Adaptive Computation Module (ACM), a generic module that dynamically adapts its computational load to match the estimated difficulty of the input on a per-token basis. An ACM consists of a sequence of learners that progressively refine the output of their preceding counterparts. An additional gating mechanism determines the optimal number of learners to execute for each token. We also describe a distillation technique to replace any pre-trained model with an "ACMized" variant. The distillation phase is designed to be highly parallelizable across layers while being simple to plug-and-play into existing networks. Our evaluation of transformer models in computer vision and speech recognition demonstrates that substituting layers with ACMs significantly reduces inference costs without degrading the downstream accuracy for a wide interval of user-defined budgets.

  • 5 authors
·
Dec 15, 2023

Learning to Collocate Neural Modules for Image Captioning

We do not speak word by word from scratch; our brain quickly structures a pattern like sth do sth at someplace and then fill in the detailed descriptions. To render existing encoder-decoder image captioners such human-like reasoning, we propose a novel framework: learning to Collocate Neural Modules (CNM), to generate the `inner pattern' connecting visual encoder and language decoder. Unlike the widely-used neural module networks in visual Q\&A, where the language (ie, question) is fully observable, CNM for captioning is more challenging as the language is being generated and thus is partially observable. To this end, we make the following technical contributions for CNM training: 1) compact module design --- one for function words and three for visual content words (eg, noun, adjective, and verb), 2) soft module fusion and multi-step module execution, robustifying the visual reasoning in partial observation, 3) a linguistic loss for module controller being faithful to part-of-speech collocations (eg, adjective is before noun). Extensive experiments on the challenging MS-COCO image captioning benchmark validate the effectiveness of our CNM image captioner. In particular, CNM achieves a new state-of-the-art 127.9 CIDEr-D on Karpathy split and a single-model 126.0 c40 on the official server. CNM is also robust to few training samples, eg, by training only one sentence per image, CNM can halve the performance loss compared to a strong baseline.

  • 3 authors
·
Apr 18, 2019

Learning to Collocate Visual-Linguistic Neural Modules for Image Captioning

Humans tend to decompose a sentence into different parts like sth do sth at someplace and then fill each part with certain content. Inspired by this, we follow the principle of modular design to propose a novel image captioner: learning to Collocate Visual-Linguistic Neural Modules (CVLNM). Unlike the widely used neural module networks in VQA, where the language (\ie, question) is fully observable, the task of collocating visual-linguistic modules is more challenging. This is because the language is only partially observable, for which we need to dynamically collocate the modules during the process of image captioning. To sum up, we make the following technical contributions to design and train our CVLNM: 1) distinguishable module design -- four modules in the encoder including one linguistic module for function words and three visual modules for different content words (\ie, noun, adjective, and verb) and another linguistic one in the decoder for commonsense reasoning, 2) a self-attention based module controller for robustifying the visual reasoning, 3) a part-of-speech based syntax loss imposed on the module controller for further regularizing the training of our CVLNM. Extensive experiments on the MS-COCO dataset show that our CVLNM is more effective, \eg, achieving a new state-of-the-art 129.5 CIDEr-D, and more robust, \eg, being less likely to overfit to dataset bias and suffering less when fewer training samples are available. Codes are available at https://github.com/GCYZSL/CVLMN

  • 4 authors
·
Oct 3, 2022

GENOME: GenerativE Neuro-symbOlic visual reasoning by growing and reusing ModulEs

Recent works have shown that Large Language Models (LLMs) could empower traditional neuro-symbolic models via programming capabilities to translate language into module descriptions, thus achieving strong visual reasoning results while maintaining the model's transparency and efficiency. However, these models usually exhaustively generate the entire code snippet given each new instance of a task, which is extremely ineffective. We propose generative neuro-symbolic visual reasoning by growing and reusing modules. Specifically, our model consists of three unique stages, module initialization, module generation, and module execution. First, given a vision-language task, we adopt LLMs to examine whether we could reuse and grow over established modules to handle this new task. If not, we initialize a new module needed by the task and specify the inputs and outputs of this new module. After that, the new module is created by querying LLMs to generate corresponding code snippets that match the requirements. In order to get a better sense of the new module's ability, we treat few-shot training examples as test cases to see if our new module could pass these cases. If yes, the new module is added to the module library for future reuse. Finally, we evaluate the performance of our model on the testing set by executing the parsed programs with the newly made visual modules to get the results. We find the proposed model possesses several advantages. First, it performs competitively on standard tasks like visual question answering and referring expression comprehension; Second, the modules learned from one task can be seamlessly transferred to new tasks; Last but not least, it is able to adapt to new visual reasoning tasks by observing a few training examples and reusing modules.

  • 5 authors
·
Nov 8, 2023

SwiftDiffusion: Efficient Diffusion Model Serving with Add-on Modules

This paper documents our characterization study and practices for serving text-to-image requests with stable diffusion models in production. We first comprehensively analyze inference request traces for commercial text-to-image applications. It commences with our observation that add-on modules, i.e., ControlNets and LoRAs, that augment the base stable diffusion models, are ubiquitous in generating images for commercial applications. Despite their efficacy, these add-on modules incur high loading overhead, prolong the serving latency, and swallow up expensive GPU resources. Driven by our characterization study, we present SwiftDiffusion, a system that efficiently generates high-quality images using stable diffusion models and add-on modules. To achieve this, SwiftDiffusion reconstructs the existing text-to-image serving workflow by identifying the opportunities for parallel computation and distributing ControlNet computations across multiple GPUs. Further, SwiftDiffusion thoroughly analyzes the dynamics of image generation and develops techniques to eliminate the overhead associated with LoRA loading and patching while preserving the image quality. Last, SwiftDiffusion proposes specialized optimizations in the backbone architecture of the stable diffusion models, which are also compatible with the efficient serving of add-on modules. Compared to state-of-the-art text-to-image serving systems, SwiftDiffusion reduces serving latency by up to 5x and improves serving throughput by up to 2x without compromising image quality.

  • 14 authors
·
Jul 2, 2024

Encoder-Decoder Based Convolutional Neural Networks with Multi-Scale-Aware Modules for Crowd Counting

In this paper, we propose two modified neural networks based on dual path multi-scale fusion networks (SFANet) and SegNet for accurate and efficient crowd counting. Inspired by SFANet, the first model, which is named M-SFANet, is attached with atrous spatial pyramid pooling (ASPP) and context-aware module (CAN). The encoder of M-SFANet is enhanced with ASPP containing parallel atrous convolutional layers with different sampling rates and hence able to extract multi-scale features of the target object and incorporate larger context. To further deal with scale variation throughout an input image, we leverage the CAN module which adaptively encodes the scales of the contextual information. The combination yields an effective model for counting in both dense and sparse crowd scenes. Based on the SFANet decoder structure, M-SFANet's decoder has dual paths, for density map and attention map generation. The second model is called M-SegNet, which is produced by replacing the bilinear upsampling in SFANet with max unpooling that is used in SegNet. This change provides a faster model while providing competitive counting performance. Designed for high-speed surveillance applications, M-SegNet has no additional multi-scale-aware module in order to not increase the complexity. Both models are encoder-decoder based architectures and are end-to-end trainable. We conduct extensive experiments on five crowd counting datasets and one vehicle counting dataset to show that these modifications yield algorithms that could improve state-of-the-art crowd counting methods. Codes are available at https://github.com/Pongpisit-Thanasutives/Variations-of-SFANet-for-Crowd-Counting.

  • 4 authors
·
Mar 11, 2020

SINet: Extreme Lightweight Portrait Segmentation Networks with Spatial Squeeze Modules and Information Blocking Decoder

Designing a lightweight and robust portrait segmentation algorithm is an important task for a wide range of face applications. However, the problem has been considered as a subset of the object segmentation problem and less handled in the semantic segmentation field. Obviously, portrait segmentation has its unique requirements. First, because the portrait segmentation is performed in the middle of a whole process of many real-world applications, it requires extremely lightweight models. Second, there has not been any public datasets in this domain that contain a sufficient number of images with unbiased statistics. To solve the first problem, we introduce the new extremely lightweight portrait segmentation model SINet, containing an information blocking decoder and spatial squeeze modules. The information blocking decoder uses confidence estimates to recover local spatial information without spoiling global consistency. The spatial squeeze module uses multiple receptive fields to cope with various sizes of consistency in the image. To tackle the second problem, we propose a simple method to create additional portrait segmentation data which can improve accuracy on the EG1800 dataset. In our qualitative and quantitative analysis on the EG1800 dataset, we show that our method outperforms various existing lightweight segmentation models. Our method reduces the number of parameters from 2.1M to 86.9K (around 95.9% reduction), while maintaining the accuracy under an 1% margin from the state-of-the-art portrait segmentation method. We also show our model is successfully executed on a real mobile device with 100.6 FPS. In addition, we demonstrate that our method can be used for general semantic segmentation on the Cityscapes dataset. The code and dataset are available in https://github.com/HYOJINPARK/ExtPortraitSeg .

  • 6 authors
·
Nov 20, 2019

CodeChain: Towards Modular Code Generation Through Chain of Self-revisions with Representative Sub-modules

Large Language Models (LLMs) have already become quite proficient at solving simpler programming tasks like those in HumanEval or MBPP benchmarks. However, solving more complex and competitive programming tasks is still quite challenging for these models - possibly due to their tendency to generate solutions as monolithic code blocks instead of decomposing them into logical sub-tasks and sub-modules. On the other hand, experienced programmers instinctively write modularized code with abstraction for solving complex tasks, often reusing previously developed modules. To address this gap, we propose CodeChain, a novel framework for inference that elicits modularized code generation through a chain of self-revisions, each being guided by some representative sub-modules generated in previous iterations. Concretely, CodeChain first instructs the LLM to generate modularized codes through chain-of-thought prompting. Then it applies a chain of self-revisions by iterating the two steps: 1) extracting and clustering the generated sub-modules and selecting the cluster representatives as the more generic and re-usable implementations, and 2) augmenting the original chain-of-thought prompt with these selected module-implementations and instructing the LLM to re-generate new modularized solutions. We find that by naturally encouraging the LLM to reuse the previously developed and verified sub-modules, CodeChain can significantly boost both modularity as well as correctness of the generated solutions, achieving relative pass@1 improvements of 35% on APPS and 76% on CodeContests. It is shown to be effective on both OpenAI LLMs as well as open-sourced LLMs like WizardCoder. We also conduct comprehensive ablation studies with different methods of prompting, number of clusters, model sizes, program qualities, etc., to provide useful insights that underpin CodeChain's success.

  • 6 authors
·
Oct 13, 2023 1

Revisiting Plasticity in Visual Reinforcement Learning: Data, Modules and Training Stages

Plasticity, the ability of a neural network to evolve with new data, is crucial for high-performance and sample-efficient visual reinforcement learning (VRL). Although methods like resetting and regularization can potentially mitigate plasticity loss, the influences of various components within the VRL framework on the agent's plasticity are still poorly understood. In this work, we conduct a systematic empirical exploration focusing on three primary underexplored facets and derive the following insightful conclusions: (1) data augmentation is essential in maintaining plasticity; (2) the critic's plasticity loss serves as the principal bottleneck impeding efficient training; and (3) without timely intervention to recover critic's plasticity in the early stages, its loss becomes catastrophic. These insights suggest a novel strategy to address the high replay ratio (RR) dilemma, where exacerbated plasticity loss hinders the potential improvements of sample efficiency brought by increased reuse frequency. Rather than setting a static RR for the entire training process, we propose Adaptive RR, which dynamically adjusts the RR based on the critic's plasticity level. Extensive evaluations indicate that Adaptive RR not only avoids catastrophic plasticity loss in the early stages but also benefits from more frequent reuse in later phases, resulting in superior sample efficiency.

  • 9 authors
·
Oct 11, 2023