new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 29

MalMixer: Few-Shot Malware Classification with Retrieval-Augmented Semi-Supervised Learning

Recent growth and proliferation of malware has tested practitioners' ability to promptly classify new samples according to malware families. In contrast to labor-intensive reverse engineering efforts, machine learning approaches have demonstrated increased speed and accuracy. However, most existing deep-learning malware family classifiers must be calibrated using a large number of samples that are painstakingly manually analyzed before training. Furthermore, as novel malware samples arise that are beyond the scope of the training set, additional reverse engineering effort must be employed to update the training set. The sheer volume of new samples found in the wild creates substantial pressure on practitioners' ability to reverse engineer enough malware to adequately train modern classifiers. In this paper, we present MalMixer, a malware family classifier using semi-supervised learning that achieves high accuracy with sparse training data. We present a novel domain-knowledge-aware technique for augmenting malware feature representations, enhancing few-shot performance of semi-supervised malware family classification. We show that MalMixer achieves state-of-the-art performance in few-shot malware family classification settings. Our research confirms the feasibility and effectiveness of lightweight, domain-knowledge-aware feature augmentation methods and highlights the capabilities of similar semi-supervised classifiers in addressing malware classification issues.

  • 4 authors
·
Sep 20, 2024

Automatic Malware Description via Attribute Tagging and Similarity Embedding

With the rapid proliferation and increased sophistication of malicious software (malware), detection methods no longer rely only on manually generated signatures but have also incorporated more general approaches like machine learning detection. Although powerful for conviction of malicious artifacts, these methods do not produce any further information about the type of threat that has been detected neither allows for identifying relationships between malware samples. In this work, we address the information gap between machine learning and signature-based detection methods by learning a representation space for malware samples in which files with similar malicious behaviors appear close to each other. We do so by introducing a deep learning based tagging model trained to generate human-interpretable semantic descriptions of malicious software, which, at the same time provides potentially more useful and flexible information than malware family names. We show that the malware descriptions generated with the proposed approach correctly identify more than 95% of eleven possible tag descriptions for a given sample, at a deployable false positive rate of 1% per tag. Furthermore, we use the learned representation space to introduce a similarity index between malware files, and empirically demonstrate using dynamic traces from files' execution, that is not only more effective at identifying samples from the same families, but also 32 times smaller than those based on raw feature vectors.

  • 5 authors
·
May 15, 2019

A Novel Approach to Malicious Code Detection Using CNN-BiLSTM and Feature Fusion

With the rapid advancement of Internet technology, the threat of malware to computer systems and network security has intensified. Malware affects individual privacy and security and poses risks to critical infrastructures of enterprises and nations. The increasing quantity and complexity of malware, along with its concealment and diversity, challenge traditional detection techniques. Static detection methods struggle against variants and packed malware, while dynamic methods face high costs and risks that limit their application. Consequently, there is an urgent need for novel and efficient malware detection techniques to improve accuracy and robustness. This study first employs the minhash algorithm to convert binary files of malware into grayscale images, followed by the extraction of global and local texture features using GIST and LBP algorithms. Additionally, the study utilizes IDA Pro to decompile and extract opcode sequences, applying N-gram and tf-idf algorithms for feature vectorization. The fusion of these features enables the model to comprehensively capture the behavioral characteristics of malware. In terms of model construction, a CNN-BiLSTM fusion model is designed to simultaneously process image features and opcode sequences, enhancing classification performance. Experimental validation on multiple public datasets demonstrates that the proposed method significantly outperforms traditional detection techniques in terms of accuracy, recall, and F1 score, particularly in detecting variants and obfuscated malware with greater stability. The research presented in this paper offers new insights into the development of malware detection technologies, validating the effectiveness of feature and model fusion, and holds promising application prospects.

  • 4 authors
·
Oct 12, 2024

Quo Vadis: Hybrid Machine Learning Meta-Model based on Contextual and Behavioral Malware Representations

We propose a hybrid machine learning architecture that simultaneously employs multiple deep learning models analyzing contextual and behavioral characteristics of Windows portable executable, producing a final prediction based on a decision from the meta-model. The detection heuristic in contemporary machine learning Windows malware classifiers is typically based on the static properties of the sample since dynamic analysis through virtualization is challenging for vast quantities of samples. To surpass this limitation, we employ a Windows kernel emulation that allows the acquisition of behavioral patterns across large corpora with minimal temporal and computational costs. We partner with a security vendor for a collection of more than 100k int-the-wild samples that resemble the contemporary threat landscape, containing raw PE files and filepaths of applications at the moment of execution. The acquired dataset is at least ten folds larger than reported in related works on behavioral malware analysis. Files in the training dataset are labeled by a professional threat intelligence team, utilizing manual and automated reverse engineering tools. We estimate the hybrid classifier's operational utility by collecting an out-of-sample test set three months later from the acquisition of the training set. We report an improved detection rate, above the capabilities of the current state-of-the-art model, especially under low false-positive requirements. Additionally, we uncover a meta-model's ability to identify malicious activity in validation and test sets even if none of the individual models express enough confidence to mark the sample as malevolent. We conclude that the meta-model can learn patterns typical to malicious samples from representation combinations produced by different analysis techniques. We publicly release pre-trained models and anonymized dataset of emulation reports.

  • 1 authors
·
Aug 20, 2022

Nebula: Self-Attention for Dynamic Malware Analysis

Dynamic analysis enables detecting Windows malware by executing programs in a controlled environment and logging their actions. Previous work has proposed training machine learning models, i.e., convolutional and long short-term memory networks, on homogeneous input features like runtime APIs to either detect or classify malware, neglecting other relevant information coming from heterogeneous data like network and file operations. To overcome these issues, we introduce Nebula, a versatile, self-attention Transformer-based neural architecture that generalizes across different behavioral representations and formats, combining diverse information from dynamic log reports. Nebula is composed by several components needed to tokenize, filter, normalize and encode data to feed the transformer architecture. We firstly perform a comprehensive ablation study to evaluate their impact on the performance of the whole system, highlighting which components can be used as-is, and which must be enriched with specific domain knowledge. We perform extensive experiments on both malware detection and classification tasks, using three datasets acquired from different dynamic analyses platforms, show that, on average, Nebula outperforms state-of-the-art models at low false positive rates, with a peak of 12% improvement. Moreover, we showcase how self-supervised learning pre-training matches the performance of fully-supervised models with only 20% of training data, and we inspect the output of Nebula through explainable AI techniques, pinpointing how attention is focusing on specific tokens correlated to malicious activities of malware families. To foster reproducibility, we open-source our findings and models at https://github.com/dtrizna/nebula.

  • 4 authors
·
Sep 19, 2023

MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels

Malware family classification is a significant issue with public safety and research implications that has been hindered by the high cost of expert labels. The vast majority of corpora use noisy labeling approaches that obstruct definitive quantification of results and study of deeper interactions. In order to provide the data needed to advance further, we have created the Malware Open-source Threat Intelligence Family (MOTIF) dataset. MOTIF contains 3,095 malware samples from 454 families, making it the largest and most diverse public malware dataset with ground truth family labels to date, nearly 3x larger than any prior expert-labeled corpus and 36x larger than the prior Windows malware corpus. MOTIF also comes with a mapping from malware samples to threat reports published by reputable industry sources, which both validates the labels and opens new research opportunities in connecting opaque malware samples to human-readable descriptions. This enables important evaluations that are normally infeasible due to non-standardized reporting in industry. For example, we provide aliases of the different names used to describe the same malware family, allowing us to benchmark for the first time accuracy of existing tools when names are obtained from differing sources. Evaluation results obtained using the MOTIF dataset indicate that existing tasks have significant room for improvement, with accuracy of antivirus majority voting measured at only 62.10% and the well-known AVClass tool having just 46.78% accuracy. Our findings indicate that malware family classification suffers a type of labeling noise unlike that studied in most ML literature, due to the large open set of classes that may not be known from the sample under consideration

  • 4 authors
·
Nov 29, 2021

Deep Learning Fusion For Effective Malware Detection: Leveraging Visual Features

Malware has become a formidable threat as it has been growing exponentially in number and sophistication, thus, it is imperative to have a solution that is easy to implement, reliable, and effective. While recent research has introduced deep learning multi-feature fusion algorithms, they lack a proper explanation. In this work, we investigate the power of fusing Convolutional Neural Network models trained on different modalities of a malware executable. We are proposing a novel multimodal fusion algorithm, leveraging three different visual malware features: Grayscale Image, Entropy Graph, and SimHash Image, with which we conducted exhaustive experiments independently on each feature and combinations of all three of them using fusion operators such as average, maximum, add, and concatenate for effective malware detection and classification. The proposed strategy has a detection rate of 1.00 (on a scale of 0-1) in identifying malware in the given dataset. We explained its interpretability with visualization techniques such as t-SNE and Grad-CAM. Experimental results show the model works even for a highly imbalanced dataset. We also assessed the effectiveness of the proposed method on obfuscated malware and achieved state-of-the-art results. The proposed methodology is more reliable as our findings prove VGG16 model can detect and classify malware in a matter of seconds in real-time.

  • 6 authors
·
May 23, 2024

EMBER2024 -- A Benchmark Dataset for Holistic Evaluation of Malware Classifiers

A lack of accessible data has historically restricted malware analysis research, and practitioners have relied heavily on datasets provided by industry sources to advance. Existing public datasets are limited by narrow scope - most include files targeting a single platform, have labels supporting just one type of malware classification task, and make no effort to capture the evasive files that make malware detection difficult in practice. We present EMBER2024, a new dataset that enables holistic evaluation of malware classifiers. Created in collaboration with the authors of EMBER2017 and EMBER2018, the EMBER2024 dataset includes hashes, metadata, feature vectors, and labels for more than 3.2 million files from six file formats. Our dataset supports the training and evaluation of machine learning models on seven malware classification tasks, including malware detection, malware family classification, and malware behavior identification. EMBER2024 is the first to include a collection of malicious files that initially went undetected by a set of antivirus products, creating a "challenge" set to assess classifier performance against evasive malware. This work also introduces EMBER feature version 3, with added support for several new feature types. We are releasing the EMBER2024 dataset to promote reproducibility and empower researchers in the pursuit of new malware research topics.

  • 8 authors
·
Jun 5

MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification

Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at https://github.com/MalwareReplayGAN/MalCLThe code will be made public upon the presentation of the paper.

  • 5 authors
·
Jan 2

DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified Robustness

Machine Learning (ML) models have been utilized for malware detection for over two decades. Consequently, this ignited an ongoing arms race between malware authors and antivirus systems, compelling researchers to propose defenses for malware-detection models against evasion attacks. However, most if not all existing defenses against evasion attacks suffer from sizable performance degradation and/or can defend against only specific attacks, which makes them less practical in real-world settings. In this work, we develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection. Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables. After showing how DRSM is theoretically robust against attacks with contiguous adversarial bytes, we verify its performance and certified robustness experimentally, where we observe only marginal accuracy drops as the cost of robustness. To our knowledge, we are the first to offer certified robustness in the realm of static detection of malware executables. More surprisingly, through evaluating DRSM against 9 empirical attacks of different types, we observe that the proposed defense is empirically robust to some extent against a diverse set of attacks, some of which even fall out of the scope of its original threat model. In addition, we collected 15.5K recent benign raw executables from diverse sources, which will be made public as a dataset called PACE (Publicly Accessible Collection(s) of Executables) to alleviate the scarcity of publicly available benign datasets for studying malware detection and provide future research with more representative data of the time.

  • 5 authors
·
Mar 20, 2023

LAMDA: A Longitudinal Android Malware Benchmark for Concept Drift Analysis

Machine learning (ML)-based malware detection systems often fail to account for the dynamic nature of real-world training and test data distributions. In practice, these distributions evolve due to frequent changes in the Android ecosystem, adversarial development of new malware families, and the continuous emergence of both benign and malicious applications. Prior studies have shown that such concept drift -- distributional shifts in benign and malicious samples, leads to significant degradation in detection performance over time. Despite the practical importance of this issue, existing datasets are often outdated and limited in temporal scope, diversity of malware families, and sample scale, making them insufficient for the systematic evaluation of concept drift in malware detection. To address this gap, we present LAMDA, the largest and most temporally diverse Android malware benchmark to date, designed specifically for concept drift analysis. LAMDA spans 12 years (2013-2025, excluding 2015), includes over 1 million samples (approximately 37% labeled as malware), and covers 1,380 malware families and 150,000 singleton samples, reflecting the natural distribution and evolution of real-world Android applications. We empirically demonstrate LAMDA's utility by quantifying the performance degradation of standard ML models over time and analyzing feature stability across years. As the most comprehensive Android malware dataset to date, LAMDA enables in-depth research into temporal drift, generalization, explainability, and evolving detection challenges. The dataset and code are available at: https://iqsec-lab.github.io/LAMDA/.

  • 7 authors
·
May 24

Transfer Learning in Pre-Trained Large Language Models for Malware Detection Based on System Calls

In the current cybersecurity landscape, protecting military devices such as communication and battlefield management systems against sophisticated cyber attacks is crucial. Malware exploits vulnerabilities through stealth methods, often evading traditional detection mechanisms such as software signatures. The application of ML/DL in vulnerability detection has been extensively explored in the literature. However, current ML/DL vulnerability detection methods struggle with understanding the context and intent behind complex attacks. Integrating large language models (LLMs) with system call analysis offers a promising approach to enhance malware detection. This work presents a novel framework leveraging LLMs to classify malware based on system call data. The framework uses transfer learning to adapt pre-trained LLMs for malware detection. By retraining LLMs on a dataset of benign and malicious system calls, the models are refined to detect signs of malware activity. Experiments with a dataset of over 1TB of system calls demonstrate that models with larger context sizes, such as BigBird and Longformer, achieve superior accuracy and F1-Score of approximately 0.86. The results highlight the importance of context size in improving detection rates and underscore the trade-offs between computational complexity and performance. This approach shows significant potential for real-time detection in high-stakes environments, offering a robust solution to evolving cyber threats.

  • 4 authors
·
May 15, 2024

Zero Day Malware Detection with Alpha: Fast DBI with Transformer Models for Real World Application

The effectiveness of an AI model in accurately classifying novel malware hinges on the quality of the features it is trained on, which in turn depends on the effectiveness of the analysis tool used. Peekaboo, a Dynamic Binary Instrumentation (DBI) tool, defeats malware evasion techniques to capture authentic behavior at the Assembly (ASM) instruction level. This behavior exhibits patterns consistent with Zipf's law, a distribution commonly seen in natural languages, making Transformer models particularly effective for binary classification tasks. We introduce Alpha, a framework for zero day malware detection that leverages Transformer models and ASM language. Alpha is trained on malware and benign software data collected through Peekaboo, enabling it to identify entirely new samples with exceptional accuracy. Alpha eliminates any common functions from the test samples that are in the training dataset. This forces the model to rely on contextual patterns and novel ASM instruction combinations to detect malicious behavior, rather than memorizing familiar features. By combining the strengths of DBI, ASM analysis, and Transformer architectures, Alpha offers a powerful approach to proactively addressing the evolving threat of malware. Alpha demonstrates perfect accuracy for Ransomware, Worms and APTs with flawless classification for both malicious and benign samples. The results highlight the model's exceptional performance in detecting truly new malware samples.

  • 3 authors
·
Apr 21

Towards Benchmark Datasets for Machine Learning Based Website Phishing Detection: An experimental study

In this paper, we present a general scheme for building reproducible and extensible datasets for website phishing detection. The aim is to (1) enable comparison of systems using different features, (2) overtake the short-lived nature of phishing websites, and (3) keep track of the evolution of phishing tactics. For experimenting the proposed scheme, we start by adopting a refined classification of website phishing features and we systematically select a total of 87 commonly recognized ones, we classify them, and we made them subjects for relevance and runtime analysis. We use the collected set of features to build a dataset in light of the proposed scheme. Thereafter, we use a conceptual replication approach to check the genericity of former findings for the built dataset. Specifically, we evaluate the performance of classifiers on individual classes and on combinations of classes, we investigate different combinations of models, and we explore the effects of filter and wrapper methods on the selection of discriminative features. The results show that Random Forest is the most predictive classifier. Features gathered from external services are found the most discriminative where features extracted from web page contents are found less distinguishing. Besides external service based features, some web page content features are found time consuming and not suitable for runtime detection. The use of hybrid features provided the best accuracy score of 96.61%. By investigating different feature selection methods, filter-based ranking together with incremental removal of less important features improved the performance up to 96.83% better than wrapper methods.

  • 2 authors
·
Oct 24, 2020

On building machine learning pipelines for Android malware detection: a procedural survey of practices, challenges and opportunities

As the smartphone market leader, Android has been a prominent target for malware attacks. The number of malicious applications (apps) identified for it has increased continually over the past decade, creating an immense challenge for all parties involved. For market holders and researchers, in particular, the large number of samples has made manual malware detection unfeasible, leading to an influx of research that investigate Machine Learning (ML) approaches to automate this process. However, while some of the proposed approaches achieve high performance, rapidly evolving Android malware has made them unable to maintain their accuracy over time. This has created a need in the community to conduct further research, and build more flexible ML pipelines. Doing so, however, is currently hindered by a lack of systematic overview of the existing literature, to learn from and improve upon the existing solutions. Existing survey papers often focus only on parts of the ML process (e.g., data collection or model deployment), while omitting other important stages, such as model evaluation and explanation. In this paper, we address this problem with a review of 42 highly-cited papers, spanning a decade of research (from 2011 to 2021). We introduce a novel procedural taxonomy of the published literature, covering how they have used ML algorithms, what features they have engineered, which dimensionality reduction techniques they have employed, what datasets they have employed for training, and what their evaluation and explanation strategies are. Drawing from this taxonomy, we also identify gaps in knowledge and provide ideas for improvement and future work.

  • 6 authors
·
Jun 12, 2023

Hallucinating AI Hijacking Attack: Large Language Models and Malicious Code Recommenders

The research builds and evaluates the adversarial potential to introduce copied code or hallucinated AI recommendations for malicious code in popular code repositories. While foundational large language models (LLMs) from OpenAI, Google, and Anthropic guard against both harmful behaviors and toxic strings, previous work on math solutions that embed harmful prompts demonstrate that the guardrails may differ between expert contexts. These loopholes would appear in mixture of expert's models when the context of the question changes and may offer fewer malicious training examples to filter toxic comments or recommended offensive actions. The present work demonstrates that foundational models may refuse to propose destructive actions correctly when prompted overtly but may unfortunately drop their guard when presented with a sudden change of context, like solving a computer programming challenge. We show empirical examples with trojan-hosting repositories like GitHub, NPM, NuGet, and popular content delivery networks (CDN) like jsDelivr which amplify the attack surface. In the LLM's directives to be helpful, example recommendations propose application programming interface (API) endpoints which a determined domain-squatter could acquire and setup attack mobile infrastructure that triggers from the naively copied code. We compare this attack to previous work on context-shifting and contrast the attack surface as a novel version of "living off the land" attacks in the malware literature. In the latter case, foundational language models can hijack otherwise innocent user prompts to recommend actions that violate their owners' safety policies when posed directly without the accompanying coding support request.

  • 2 authors
·
Oct 8, 2024 2

Signal-Based Malware Classification Using 1D CNNs

Malware classification is a contemporary and ongoing challenge in cyber-security: modern obfuscation techniques are able to evade traditional static analysis, while dynamic analysis is too resource intensive to be deployed at a large scale. One prominent line of research addresses these limitations by converting malware binaries into 2D images by heuristically reshaping them into a 2D grid before resizing using Lanczos resampling. These images can then be classified based on their textural information using computer vision approaches. While this approach can detect obfuscated malware more effectively than static analysis, the process of converting files into 2D images results in significant information loss due to both quantisation noise, caused by rounding to integer pixel values, and the introduction of 2D dependencies which do not exist in the original data. This loss of signal limits the classification performance of the downstream model. This work addresses these weaknesses by instead resizing the files into 1D signals which avoids the need for heuristic reshaping, and additionally these signals do not suffer from quantisation noise due to being stored in a floating-point format. It is shown that existing 2D CNN architectures can be readily adapted to classify these 1D signals for improved performance. Furthermore, a bespoke 1D convolutional neural network, based on the ResNet architecture and squeeze-and-excitation layers, was developed to classify these signals and evaluated on the MalNet dataset. It was found to achieve state-of-the-art performance on binary, type, and family level classification with F1 scores of 0.874, 0.503, and 0.507, respectively, paving the way for future models to operate on the proposed signal modality.

  • 5 authors
·
Sep 8

VulDeePecker: A Deep Learning-Based System for Vulnerability Detection

The automatic detection of software vulnerabilities is an important research problem. However, existing solutions to this problem rely on human experts to define features and often miss many vulnerabilities (i.e., incurring high false negative rate). In this paper, we initiate the study of using deep learning-based vulnerability detection to relieve human experts from the tedious and subjective task of manually defining features. Since deep learning is motivated to deal with problems that are very different from the problem of vulnerability detection, we need some guiding principles for applying deep learning to vulnerability detection. In particular, we need to find representations of software programs that are suitable for deep learning. For this purpose, we propose using code gadgets to represent programs and then transform them into vectors, where a code gadget is a number of (not necessarily consecutive) lines of code that are semantically related to each other. This leads to the design and implementation of a deep learning-based vulnerability detection system, called Vulnerability Deep Pecker (VulDeePecker). In order to evaluate VulDeePecker, we present the first vulnerability dataset for deep learning approaches. Experimental results show that VulDeePecker can achieve much fewer false negatives (with reasonable false positives) than other approaches. We further apply VulDeePecker to 3 software products (namely Xen, Seamonkey, and Libav) and detect 4 vulnerabilities, which are not reported in the National Vulnerability Database but were "silently" patched by the vendors when releasing later versions of these products; in contrast, these vulnerabilities are almost entirely missed by the other vulnerability detection systems we experimented with.

  • 8 authors
·
Jan 5, 2018

Evaluating the Effectiveness and Robustness of Visual Similarity-based Phishing Detection Models

Phishing attacks pose a significant threat to Internet users, with cybercriminals elaborately replicating the visual appearance of legitimate websites to deceive victims. Visual similarity-based detection systems have emerged as an effective countermeasure, but their effectiveness and robustness in real-world scenarios have been underexplored. In this paper, we comprehensively scrutinize and evaluate the effectiveness and robustness of popular visual similarity-based anti-phishing models using a large-scale dataset of 451k real-world phishing websites. Our analyses of the effectiveness reveal that while certain visual similarity-based models achieve high accuracy on curated datasets in the experimental settings, they exhibit notably low performance on real-world datasets, highlighting the importance of real-world evaluation. Furthermore, we find that the attackers evade the detectors mainly in three ways: (1) directly attacking the model pipelines, (2) mimicking benign logos, and (3) employing relatively simple strategies such as eliminating logos from screenshots. To statistically assess the resilience and robustness of existing models against adversarial attacks, we categorize the strategies attackers employ into visible and perturbation-based manipulations and apply them to website logos. We then evaluate the models' robustness using these adversarial samples. Our findings reveal potential vulnerabilities in several models, emphasizing the need for more robust visual similarity techniques capable of withstanding sophisticated evasion attempts. We provide actionable insights for enhancing the security of phishing defense systems, encouraging proactive actions.

  • 7 authors
·
May 29, 2024

Learned feature representations are biased by complexity, learning order, position, and more

Representation learning, and interpreting learned representations, are key areas of focus in machine learning and neuroscience. Both fields generally use representations as a means to understand or improve a system's computations. In this work, however, we explore surprising dissociations between representation and computation that may pose challenges for such efforts. We create datasets in which we attempt to match the computational role that different features play, while manipulating other properties of the features or the data. We train various deep learning architectures to compute these multiple abstract features about their inputs. We find that their learned feature representations are systematically biased towards representing some features more strongly than others, depending upon extraneous properties such as feature complexity, the order in which features are learned, and the distribution of features over the inputs. For example, features that are simpler to compute or learned first tend to be represented more strongly and densely than features that are more complex or learned later, even if all features are learned equally well. We also explore how these biases are affected by architectures, optimizers, and training regimes (e.g., in transformers, features decoded earlier in the output sequence also tend to be represented more strongly). Our results help to characterize the inductive biases of gradient-based representation learning. These results also highlight a key challenge for interpretability - or for comparing the representations of models and brains - disentangling extraneous biases from the computationally important aspects of a system's internal representations.

  • 3 authors
·
May 9, 2024

Unified Embedding: Battle-Tested Feature Representations for Web-Scale ML Systems

Learning high-quality feature embeddings efficiently and effectively is critical for the performance of web-scale machine learning systems. A typical model ingests hundreds of features with vocabularies on the order of millions to billions of tokens. The standard approach is to represent each feature value as a d-dimensional embedding, introducing hundreds of billions of parameters for extremely high-cardinality features. This bottleneck has led to substantial progress in alternative embedding algorithms. Many of these methods, however, make the assumption that each feature uses an independent embedding table. This work introduces a simple yet highly effective framework, Feature Multiplexing, where one single representation space is used across many different categorical features. Our theoretical and empirical analysis reveals that multiplexed embeddings can be decomposed into components from each constituent feature, allowing models to distinguish between features. We show that multiplexed representations lead to Pareto-optimal parameter-accuracy tradeoffs for three public benchmark datasets. Further, we propose a highly practical approach called Unified Embedding with three major benefits: simplified feature configuration, strong adaptation to dynamic data distributions, and compatibility with modern hardware. Unified embedding gives significant improvements in offline and online metrics compared to highly competitive baselines across five web-scale search, ads, and recommender systems, where it serves billions of users across the world in industry-leading products.

  • 7 authors
·
May 20, 2023

Large Language Models for Cyber Security: A Systematic Literature Review

The rapid advancement of Large Language Models (LLMs) has opened up new opportunities for leveraging artificial intelligence in various domains, including cybersecurity. As the volume and sophistication of cyber threats continue to grow, there is an increasing need for intelligent systems that can automatically detect vulnerabilities, analyze malware, and respond to attacks. In this survey, we conduct a comprehensive review of the literature on the application of LLMs in cybersecurity (LLM4Security). By comprehensively collecting over 30K relevant papers and systematically analyzing 127 papers from top security and software engineering venues, we aim to provide a holistic view of how LLMs are being used to solve diverse problems across the cybersecurity domain. Through our analysis, we identify several key findings. First, we observe that LLMs are being applied to a wide range of cybersecurity tasks, including vulnerability detection, malware analysis, network intrusion detection, and phishing detection. Second, we find that the datasets used for training and evaluating LLMs in these tasks are often limited in size and diversity, highlighting the need for more comprehensive and representative datasets. Third, we identify several promising techniques for adapting LLMs to specific cybersecurity domains, such as fine-tuning, transfer learning, and domain-specific pre-training. Finally, we discuss the main challenges and opportunities for future research in LLM4Security, including the need for more interpretable and explainable models, the importance of addressing data privacy and security concerns, and the potential for leveraging LLMs for proactive defense and threat hunting. Overall, our survey provides a comprehensive overview of the current state-of-the-art in LLM4Security and identifies several promising directions for future research.

  • 9 authors
·
May 7, 2024

AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks

Click-through rate (CTR) prediction, which aims to predict the probability of a user clicking on an ad or an item, is critical to many online applications such as online advertising and recommender systems. The problem is very challenging since (1) the input features (e.g., the user id, user age, item id, item category) are usually sparse and high-dimensional, and (2) an effective prediction relies on high-order combinatorial features (a.k.a. cross features), which are very time-consuming to hand-craft by domain experts and are impossible to be enumerated. Therefore, there have been efforts in finding low-dimensional representations of the sparse and high-dimensional raw features and their meaningful combinations. In this paper, we propose an effective and efficient method called the AutoInt to automatically learn the high-order feature interactions of input features. Our proposed algorithm is very general, which can be applied to both numerical and categorical input features. Specifically, we map both the numerical and categorical features into the same low-dimensional space. Afterwards, a multi-head self-attentive neural network with residual connections is proposed to explicitly model the feature interactions in the low-dimensional space. With different layers of the multi-head self-attentive neural networks, different orders of feature combinations of input features can be modeled. The whole model can be efficiently fit on large-scale raw data in an end-to-end fashion. Experimental results on four real-world datasets show that our proposed approach not only outperforms existing state-of-the-art approaches for prediction but also offers good explainability. Code is available at: https://github.com/DeepGraphLearning/RecommenderSystems.

  • 7 authors
·
Oct 28, 2018

Reliable Representations Make A Stronger Defender: Unsupervised Structure Refinement for Robust GNN

Benefiting from the message passing mechanism, Graph Neural Networks (GNNs) have been successful on flourish tasks over graph data. However, recent studies have shown that attackers can catastrophically degrade the performance of GNNs by maliciously modifying the graph structure. A straightforward solution to remedy this issue is to model the edge weights by learning a metric function between pairwise representations of two end nodes, which attempts to assign low weights to adversarial edges. The existing methods use either raw features or representations learned by supervised GNNs to model the edge weights. However, both strategies are faced with some immediate problems: raw features cannot represent various properties of nodes (e.g., structure information), and representations learned by supervised GNN may suffer from the poor performance of the classifier on the poisoned graph. We need representations that carry both feature information and as mush correct structure information as possible and are insensitive to structural perturbations. To this end, we propose an unsupervised pipeline, named STABLE, to optimize the graph structure. Finally, we input the well-refined graph into a downstream classifier. For this part, we design an advanced GCN that significantly enhances the robustness of vanilla GCN without increasing the time complexity. Extensive experiments on four real-world graph benchmarks demonstrate that STABLE outperforms the state-of-the-art methods and successfully defends against various attacks.

  • 7 authors
·
Jun 30, 2022

Malware Detection and Prevention using Artificial Intelligence Techniques

With the rapid technological advancement, security has become a major issue due to the increase in malware activity that poses a serious threat to the security and safety of both computer systems and stakeholders. To maintain stakeholders, particularly, end users security, protecting the data from fraudulent efforts is one of the most pressing concerns. A set of malicious programming code, scripts, active content, or intrusive software that is designed to destroy intended computer systems and programs or mobile and web applications is referred to as malware. According to a study, naive users are unable to distinguish between malicious and benign applications. Thus, computer systems and mobile applications should be designed to detect malicious activities towards protecting the stakeholders. A number of algorithms are available to detect malware activities by utilizing novel concepts including Artificial Intelligence, Machine Learning, and Deep Learning. In this study, we emphasize Artificial Intelligence (AI) based techniques for detecting and preventing malware activity. We present a detailed review of current malware detection technologies, their shortcomings, and ways to improve efficiency. Our study shows that adopting futuristic approaches for the development of malware detection applications shall provide significant advantages. The comprehension of this synthesis shall help researchers for further research on malware detection and prevention using AI.

  • 11 authors
·
Jun 25, 2022

Assemblage: Automatic Binary Dataset Construction for Machine Learning

Binary code is pervasive, and binary analysis is a key task in reverse engineering, malware classification, and vulnerability discovery. Unfortunately, while there exist large corpuses of malicious binaries, obtaining high-quality corpuses of benign binaries for modern systems has proven challenging (e.g., due to licensing issues). Consequently, machine learning based pipelines for binary analysis utilize either costly commercial corpuses (e.g., VirusTotal) or open-source binaries (e.g., coreutils) available in limited quantities. To address these issues, we present Assemblage: an extensible cloud-based distributed system that crawls, configures, and builds Windows PE binaries to obtain high-quality binary corpuses suitable for training state-of-the-art models in binary analysis. We have run Assemblage on AWS over the past year, producing 890k Windows PE and 428k Linux ELF binaries across 29 configurations. Assemblage is designed to be both reproducible and extensible, enabling users to publish "recipes" for their datasets, and facilitating the extraction of a wide array of features. We evaluated Assemblage by using its data to train modern learning-based pipelines for compiler provenance and binary function similarity. Our results illustrate the practical need for robust corpuses of high-quality Windows PE binaries in training modern learning-based binary analyses. Assemblage can be downloaded from https://assemblage-dataset.net

  • 8 authors
·
May 7, 2024

LLM-Assisted Proactive Threat Intelligence for Automated Reasoning

Successful defense against dynamically evolving cyber threats requires advanced and sophisticated techniques. This research presents a novel approach to enhance real-time cybersecurity threat detection and response by integrating large language models (LLMs) and Retrieval-Augmented Generation (RAG) systems with continuous threat intelligence feeds. Leveraging recent advancements in LLMs, specifically GPT-4o, and the innovative application of RAG techniques, our approach addresses the limitations of traditional static threat analysis by incorporating dynamic, real-time data sources. We leveraged RAG to get the latest information in real-time for threat intelligence, which is not possible in the existing GPT-4o model. We employ the Patrowl framework to automate the retrieval of diverse cybersecurity threat intelligence feeds, including Common Vulnerabilities and Exposures (CVE), Common Weakness Enumeration (CWE), Exploit Prediction Scoring System (EPSS), and Known Exploited Vulnerabilities (KEV) databases, and integrate these with the all-mpnet-base-v2 model for high-dimensional vector embeddings, stored and queried in Milvus. We demonstrate our system's efficacy through a series of case studies, revealing significant improvements in addressing recently disclosed vulnerabilities, KEVs, and high-EPSS-score CVEs compared to the baseline GPT-4o. This work not only advances the role of LLMs in cybersecurity but also establishes a robust foundation for the development of automated intelligent cyberthreat information management systems, addressing crucial gaps in current cybersecurity practices.

  • 3 authors
·
Apr 1

AntiPhishStack: LSTM-based Stacked Generalization Model for Optimized Phishing URL Detection

The escalating reliance on revolutionary online web services has introduced heightened security risks, with persistent challenges posed by phishing despite extensive security measures. Traditional phishing systems, reliant on machine learning and manual features, struggle with evolving tactics. Recent advances in deep learning offer promising avenues for tackling novel phishing challenges and malicious URLs. This paper introduces a two-phase stack generalized model named AntiPhishStack, designed to detect phishing sites. The model leverages the learning of URLs and character-level TF-IDF features symmetrically, enhancing its ability to combat emerging phishing threats. In Phase I, features are trained on a base machine learning classifier, employing K-fold cross-validation for robust mean prediction. Phase II employs a two-layered stacked-based LSTM network with five adaptive optimizers for dynamic compilation, ensuring premier prediction on these features. Additionally, the symmetrical predictions from both phases are optimized and integrated to train a meta-XGBoost classifier, contributing to a final robust prediction. The significance of this work lies in advancing phishing detection with AntiPhishStack, operating without prior phishing-specific feature knowledge. Experimental validation on two benchmark datasets, comprising benign and phishing or malicious URLs, demonstrates the model's exceptional performance, achieving a notable 96.04% accuracy compared to existing studies. This research adds value to the ongoing discourse on symmetry and asymmetry in information security and provides a forward-thinking solution for enhancing network security in the face of evolving cyber threats.

  • 5 authors
·
Jan 16, 2024

Stealth edits for provably fixing or attacking large language models

We reveal new methods and the theoretical foundations of techniques for editing large language models. We also show how the new theory can be used to assess the editability of models and to expose their susceptibility to previously unknown malicious attacks. Our theoretical approach shows that a single metric (a specific measure of the intrinsic dimensionality of the model's features) is fundamental to predicting the success of popular editing approaches, and reveals new bridges between disparate families of editing methods. We collectively refer to these approaches as stealth editing methods, because they aim to directly and inexpensively update a model's weights to correct the model's responses to known hallucinating prompts without otherwise affecting the model's behaviour, without requiring retraining. By carefully applying the insight gleaned from our theoretical investigation, we are able to introduce a new network block -- named a jet-pack block -- which is optimised for highly selective model editing, uses only standard network operations, and can be inserted into existing networks. The intrinsic dimensionality metric also determines the vulnerability of a language model to a stealth attack: a small change to a model's weights which changes its response to a single attacker-chosen prompt. Stealth attacks do not require access to or knowledge of the model's training data, therefore representing a potent yet previously unrecognised threat to redistributed foundation models. They are computationally simple enough to be implemented in malware in many cases. Extensive experimental results illustrate and support the method and its theoretical underpinnings. Demos and source code for editing language models are available at https://github.com/qinghua-zhou/stealth-edits.

  • 7 authors
·
Jun 18, 2024

Few-Shot Class-Incremental Learning via Training-Free Prototype Calibration

Real-world scenarios are usually accompanied by continuously appearing classes with scare labeled samples, which require the machine learning model to incrementally learn new classes and maintain the knowledge of base classes. In this Few-Shot Class-Incremental Learning (FSCIL) scenario, existing methods either introduce extra learnable components or rely on a frozen feature extractor to mitigate catastrophic forgetting and overfitting problems. However, we find a tendency for existing methods to misclassify the samples of new classes into base classes, which leads to the poor performance of new classes. In other words, the strong discriminability of base classes distracts the classification of new classes. To figure out this intriguing phenomenon, we observe that although the feature extractor is only trained on base classes, it can surprisingly represent the semantic similarity between the base and unseen new classes. Building upon these analyses, we propose a simple yet effective Training-frEE calibratioN (TEEN) strategy to enhance the discriminability of new classes by fusing the new prototypes (i.e., mean features of a class) with weighted base prototypes. In addition to standard benchmarks in FSCIL, TEEN demonstrates remarkable performance and consistent improvements over baseline methods in the few-shot learning scenario. Code is available at: https://github.com/wangkiw/TEEN

  • 5 authors
·
Dec 8, 2023

Learning to Quantize Vulnerability Patterns and Match to Locate Statement-Level Vulnerabilities

Deep learning (DL) models have become increasingly popular in identifying software vulnerabilities. Prior studies found that vulnerabilities across different vulnerable programs may exhibit similar vulnerable scopes, implicitly forming discernible vulnerability patterns that can be learned by DL models through supervised training. However, vulnerable scopes still manifest in various spatial locations and formats within a program, posing challenges for models to accurately identify vulnerable statements. Despite this challenge, state-of-the-art vulnerability detection approaches fail to exploit the vulnerability patterns that arise in vulnerable programs. To take full advantage of vulnerability patterns and unleash the ability of DL models, we propose a novel vulnerability-matching approach in this paper, drawing inspiration from program analysis tools that locate vulnerabilities based on pre-defined patterns. Specifically, a vulnerability codebook is learned, which consists of quantized vectors representing various vulnerability patterns. During inference, the codebook is iterated to match all learned patterns and predict the presence of potential vulnerabilities within a given program. Our approach was extensively evaluated on a real-world dataset comprising more than 188,000 C/C++ functions. The evaluation results show that our approach achieves an F1-score of 94% (6% higher than the previous best) and 82% (19% higher than the previous best) for function and statement-level vulnerability identification, respectively. These substantial enhancements highlight the effectiveness of our approach to identifying vulnerabilities. The training code and pre-trained models are available at https://github.com/optimatch/optimatch.

  • 5 authors
·
May 26, 2023

TRCE: Towards Reliable Malicious Concept Erasure in Text-to-Image Diffusion Models

Recent advances in text-to-image diffusion models enable photorealistic image generation, but they also risk producing malicious content, such as NSFW images. To mitigate risk, concept erasure methods are studied to facilitate the model to unlearn specific concepts. However, current studies struggle to fully erase malicious concepts implicitly embedded in prompts (e.g., metaphorical expressions or adversarial prompts) while preserving the model's normal generation capability. To address this challenge, our study proposes TRCE, using a two-stage concept erasure strategy to achieve an effective trade-off between reliable erasure and knowledge preservation. Firstly, TRCE starts by erasing the malicious semantics implicitly embedded in textual prompts. By identifying a critical mapping objective(i.e., the [EoT] embedding), we optimize the cross-attention layers to map malicious prompts to contextually similar prompts but with safe concepts. This step prevents the model from being overly influenced by malicious semantics during the denoising process. Following this, considering the deterministic properties of the sampling trajectory of the diffusion model, TRCE further steers the early denoising prediction toward the safe direction and away from the unsafe one through contrastive learning, thus further avoiding the generation of malicious content. Finally, we conduct comprehensive evaluations of TRCE on multiple malicious concept erasure benchmarks, and the results demonstrate its effectiveness in erasing malicious concepts while better preserving the model's original generation ability. The code is available at: http://github.com/ddgoodgood/TRCE. CAUTION: This paper includes model-generated content that may contain offensive material.

  • 6 authors
·
Mar 10 1

CVE-driven Attack Technique Prediction with Semantic Information Extraction and a Domain-specific Language Model

This paper addresses a critical challenge in cybersecurity: the gap between vulnerability information represented by Common Vulnerabilities and Exposures (CVEs) and the resulting cyberattack actions. CVEs provide insights into vulnerabilities, but often lack details on potential threat actions (tactics, techniques, and procedures, or TTPs) within the ATT&CK framework. This gap hinders accurate CVE categorization and proactive countermeasure initiation. The paper introduces the TTPpredictor tool, which uses innovative techniques to analyze CVE descriptions and infer plausible TTP attacks resulting from CVE exploitation. TTPpredictor overcomes challenges posed by limited labeled data and semantic disparities between CVE and TTP descriptions. It initially extracts threat actions from unstructured cyber threat reports using Semantic Role Labeling (SRL) techniques. These actions, along with their contextual attributes, are correlated with MITRE's attack functionality classes. This automated correlation facilitates the creation of labeled data, essential for categorizing novel threat actions into threat functionality classes and TTPs. The paper presents an empirical assessment, demonstrating TTPpredictor's effectiveness with accuracy rates of approximately 98% and F1-scores ranging from 95% to 98% in precise CVE classification to ATT&CK techniques. TTPpredictor outperforms state-of-the-art language model tools like ChatGPT. Overall, this paper offers a robust solution for linking CVEs to potential attack techniques, enhancing cybersecurity practitioners' ability to proactively identify and mitigate threats.

  • 2 authors
·
Sep 6, 2023

Symbolic Synthesis of Neural Networks

Neural networks adapt very well to distributed and continuous representations, but struggle to generalize from small amounts of data. Symbolic systems commonly achieve data efficient generalization by exploiting modularity to benefit from local and discrete features of a representation. These features allow symbolic programs to be improved one module at a time and to experience combinatorial growth in the values they can successfully process. However, it is difficult to design a component that can be used to form symbolic abstractions and which is adequately overparametrized to learn arbitrary high-dimensional transformations. I present Graph-based Symbolically Synthesized Neural Networks (G-SSNNs), a class of neural modules that operate on representations modified with synthesized symbolic programs to include a fixed set of local and discrete features. I demonstrate that the choice of injected features within a G-SSNN module modulates the data efficiency and generalization of baseline neural models, creating predictable patterns of both heightened and curtailed generalization. By training G-SSNNs, we also derive information about desirable semantics of symbolic programs without manual engineering. This information is compact and amenable to abstraction, but can also be flexibly recontextualized for other high-dimensional settings. In future work, I will investigate data efficient generalization and the transferability of learned symbolic representations in more complex G-SSNN designs based on more complex classes of symbolic programs. Experimental code and data are available at https://github.com/shlomenu/symbolically_synthesized_networks .

  • 1 authors
·
Mar 6, 2023

Deep Learning based Vulnerability Detection: Are We There Yet?

Automated detection of software vulnerabilities is a fundamental problem in software security. Existing program analysis techniques either suffer from high false positives or false negatives. Recent progress in Deep Learning (DL) has resulted in a surge of interest in applying DL for automated vulnerability detection. Several recent studies have demonstrated promising results achieving an accuracy of up to 95% at detecting vulnerabilities. In this paper, we ask, "how well do the state-of-the-art DL-based techniques perform in a real-world vulnerability prediction scenario?". To our surprise, we find that their performance drops by more than 50%. A systematic investigation of what causes such precipitous performance drop reveals that existing DL-based vulnerability prediction approaches suffer from challenges with the training data (e.g., data duplication, unrealistic distribution of vulnerable classes, etc.) and with the model choices (e.g., simple token-based models). As a result, these approaches often do not learn features related to the actual cause of the vulnerabilities. Instead, they learn unrelated artifacts from the dataset (e.g., specific variable/function names, etc.). Leveraging these empirical findings, we demonstrate how a more principled approach to data collection and model design, based on realistic settings of vulnerability prediction, can lead to better solutions. The resulting tools perform significantly better than the studied baseline: up to 33.57% boost in precision and 128.38% boost in recall compared to the best performing model in the literature. Overall, this paper elucidates existing DL-based vulnerability prediction systems' potential issues and draws a roadmap for future DL-based vulnerability prediction research. In that spirit, we make available all the artifacts supporting our results: https://git.io/Jf6IA.

  • 4 authors
·
Sep 3, 2020

Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models

Motivated by ethical and legal concerns, the scientific community is actively developing methods to limit the misuse of Text-to-Image diffusion models for reproducing copyrighted, violent, explicit, or personal information in the generated images. Simultaneously, researchers put these newly developed safety measures to the test by assuming the role of an adversary to find vulnerabilities and backdoors in them. We use compositional property of diffusion models, which allows to leverage multiple prompts in a single image generation. This property allows us to combine other concepts, that should not have been affected by the inhibition, to reconstruct the vector, responsible for target concept generation, even though the direct computation of this vector is no longer accessible. We provide theoretical and empirical evidence why the proposed attacks are possible and discuss the implications of these findings for safe model deployment. We argue that it is essential to consider all possible approaches to image generation with diffusion models that can be employed by an adversary. Our work opens up the discussion about the implications of concept arithmetics and compositional inference for safety mechanisms in diffusion models. Content Advisory: This paper contains discussions and model-generated content that may be considered offensive. Reader discretion is advised. Project page: https://cs-people.bu.edu/vpetsiuk/arc

  • 2 authors
·
Apr 21, 2024

JBShield: Defending Large Language Models from Jailbreak Attacks through Activated Concept Analysis and Manipulation

Despite the implementation of safety alignment strategies, large language models (LLMs) remain vulnerable to jailbreak attacks, which undermine these safety guardrails and pose significant security threats. Some defenses have been proposed to detect or mitigate jailbreaks, but they are unable to withstand the test of time due to an insufficient understanding of jailbreak mechanisms. In this work, we investigate the mechanisms behind jailbreaks based on the Linear Representation Hypothesis (LRH), which states that neural networks encode high-level concepts as subspaces in their hidden representations. We define the toxic semantics in harmful and jailbreak prompts as toxic concepts and describe the semantics in jailbreak prompts that manipulate LLMs to comply with unsafe requests as jailbreak concepts. Through concept extraction and analysis, we reveal that LLMs can recognize the toxic concepts in both harmful and jailbreak prompts. However, unlike harmful prompts, jailbreak prompts activate the jailbreak concepts and alter the LLM output from rejection to compliance. Building on our analysis, we propose a comprehensive jailbreak defense framework, JBShield, consisting of two key components: jailbreak detection JBShield-D and mitigation JBShield-M. JBShield-D identifies jailbreak prompts by determining whether the input activates both toxic and jailbreak concepts. When a jailbreak prompt is detected, JBShield-M adjusts the hidden representations of the target LLM by enhancing the toxic concept and weakening the jailbreak concept, ensuring LLMs produce safe content. Extensive experiments demonstrate the superior performance of JBShield, achieving an average detection accuracy of 0.95 and reducing the average attack success rate of various jailbreak attacks to 2% from 61% across distinct LLMs.

  • 10 authors
·
Feb 11

DomURLs_BERT: Pre-trained BERT-based Model for Malicious Domains and URLs Detection and Classification

Detecting and classifying suspicious or malicious domain names and URLs is fundamental task in cybersecurity. To leverage such indicators of compromise, cybersecurity vendors and practitioners often maintain and update blacklists of known malicious domains and URLs. However, blacklists frequently fail to identify emerging and obfuscated threats. Over the past few decades, there has been significant interest in developing machine learning models that automatically detect malicious domains and URLs, addressing the limitations of blacklists maintenance and updates. In this paper, we introduce DomURLs_BERT, a pre-trained BERT-based encoder adapted for detecting and classifying suspicious/malicious domains and URLs. DomURLs_BERT is pre-trained using the Masked Language Modeling (MLM) objective on a large multilingual corpus of URLs, domain names, and Domain Generation Algorithms (DGA) dataset. In order to assess the performance of DomURLs_BERT, we have conducted experiments on several binary and multi-class classification tasks involving domain names and URLs, covering phishing, malware, DGA, and DNS tunneling. The evaluations results show that the proposed encoder outperforms state-of-the-art character-based deep learning models and cybersecurity-focused BERT models across multiple tasks and datasets. The pre-training dataset, the pre-trained DomURLs_BERT encoder, and the experiments source code are publicly available.

  • 6 authors
·
Sep 13, 2024

Explainable Deep Behavioral Sequence Clustering for Transaction Fraud Detection

In e-commerce industry, user behavior sequence data has been widely used in many business units such as search and merchandising to improve their products. However, it is rarely used in financial services not only due to its 3V characteristics - i.e. Volume, Velocity and Variety - but also due to its unstructured nature. In this paper, we propose a Financial Service scenario Deep learning based Behavior data representation method for Clustering (FinDeepBehaviorCluster) to detect fraudulent transactions. To utilize the behavior sequence data, we treat click stream data as event sequence, use time attention based Bi-LSTM to learn the sequence embedding in an unsupervised fashion, and combine them with intuitive features generated by risk experts to form a hybrid feature representation. We also propose a GPU powered HDBSCAN (pHDBSCAN) algorithm, which is an engineering optimization for the original HDBSCAN algorithm based on FAISS project, so that clustering can be carried out on hundreds of millions of transactions within a few minutes. The computation efficiency of the algorithm has increased 500 times compared with the original implementation, which makes flash fraud pattern detection feasible. Our experimental results show that the proposed FinDeepBehaviorCluster framework is able to catch missed fraudulent transactions with considerable business values. In addition, rule extraction method is applied to extract patterns from risky clusters using intuitive features, so that narrative descriptions can be attached to the risky clusters for case investigation, and unknown risk patterns can be mined for real-time fraud detection. In summary, FinDeepBehaviorCluster as a complementary risk management strategy to the existing real-time fraud detection engine, can further increase our fraud detection and proactive risk defense capabilities.

  • 6 authors
·
Jan 11, 2021

Featherweight Assisted Vulnerability Discovery

Predicting vulnerable source code helps to focus attention on those parts of the code that need to be examined with more scrutiny. Recent work proposed the use of function names as semantic cues that can be learned by a deep neural network (DNN) to aid in the hunt for vulnerability of functions. Combining identifier splitting, which splits each function name into its constituent words, with a novel frequency-based algorithm, we explore the extent to which the words that make up a function's name can predict potentially vulnerable functions. In contrast to *lightweight* predictions by a DNN that considers only function names, avoiding the use of a DNN provides *featherweight* predictions. The underlying idea is that function names that contain certain "dangerous" words are more likely to accompany vulnerable functions. Of course, this assumes that the frequency-based algorithm can be properly tuned to focus on truly dangerous words. Because it is more transparent than a DNN, the frequency-based algorithm enables us to investigate the inner workings of the DNN. If successful, this investigation into what the DNN does and does not learn will help us train more effective future models. We empirically evaluate our approach on a heterogeneous dataset containing over 73000 functions labeled vulnerable, and over 950000 functions labeled benign. Our analysis shows that words alone account for a significant portion of the DNN's classification ability. We also find that words are of greatest value in the datasets with a more homogeneous vocabulary. Thus, when working within the scope of a given project, where the vocabulary is unavoidably homogeneous, our approach provides a cheaper, potentially complementary, technique to aid in the hunt for source-code vulnerabilities. Finally, this approach has the advantage that it is viable with orders of magnitude less training data.

  • 3 authors
·
Feb 5, 2022

Jailbreaking Leading Safety-Aligned LLMs with Simple Adaptive Attacks

We show that even the most recent safety-aligned LLMs are not robust to simple adaptive jailbreaking attacks. First, we demonstrate how to successfully leverage access to logprobs for jailbreaking: we initially design an adversarial prompt template (sometimes adapted to the target LLM), and then we apply random search on a suffix to maximize the target logprob (e.g., of the token "Sure"), potentially with multiple restarts. In this way, we achieve nearly 100\% attack success rate -- according to GPT-4 as a judge -- on GPT-3.5/4, Llama-2-Chat-7B/13B/70B, Gemma-7B, and R2D2 from HarmBench that was adversarially trained against the GCG attack. We also show how to jailbreak all Claude models -- that do not expose logprobs -- via either a transfer or prefilling attack with 100\% success rate. In addition, we show how to use random search on a restricted set of tokens for finding trojan strings in poisoned models -- a task that shares many similarities with jailbreaking -- which is the algorithm that brought us the first place in the SaTML'24 Trojan Detection Competition. The common theme behind these attacks is that adaptivity is crucial: different models are vulnerable to different prompting templates (e.g., R2D2 is very sensitive to in-context learning prompts), some models have unique vulnerabilities based on their APIs (e.g., prefilling for Claude), and in some settings it is crucial to restrict the token search space based on prior knowledge (e.g., for trojan detection). We provide the code, prompts, and logs of the attacks at https://github.com/tml-epfl/llm-adaptive-attacks.

  • 3 authors
·
Apr 2, 2024

A Vulnerability Code Intent Summary Dataset

In the era of Large Language Models (LLMs), the code summarization technique boosts a lot, along with the emergence of many new significant works. However, the potential of code summarization in the Computer Security Area still remains explored. Can we generate a code summary of a code snippet for its security intention? Thus, this work proposes an innovative large-scale multi-perspective Code Intent Summary Dataset named BADS , aiming to increase the understanding of a given code snippet and reduce the risk in the code developing process. The procedure of establishing a dataset can be divided into four steps: First, we collect samples of codes with known vulnerabilities as well as code generated by AI from multiple sources. Second, we do the data clean and format unification, then do the data combination. Third, we utilize the LLM to automatically Annotate the code snippet. Last, We do the human evaluation to double-check. The dataset contains X code examples which cover Y categories of vulnerability. Our data are from Z open-source projects and CVE entries, and compared to existing work, our dataset not only contains original code but also code function summary and security intent summary, providing context information for research in code security analysis. All information is in CSV format. The contributions of this paper are four-fold: the establishment of a high-quality, multi-perspective Code Intent Summary Dataset; an innovative method in data collection and processing; A new multi-perspective code analysis framework that promotes cross-disciplinary research in the fields of software engineering and cybersecurity; improving the practicality and scalability of the research outcomes by considering the code length limitations in real-world applications. Our dataset and related tools have been publicly released on GitHub.

  • 3 authors
·
Apr 10

Interpreting Black-box Machine Learning Models for High Dimensional Datasets

Deep neural networks (DNNs) have been shown to outperform traditional machine learning algorithms in a broad variety of application domains due to their effectiveness in modeling complex problems and handling high-dimensional datasets. Many real-life datasets, however, are of increasingly high dimensionality, where a large number of features may be irrelevant for both supervised and unsupervised learning tasks. The inclusion of such features would not only introduce unwanted noise but also increase computational complexity. Furthermore, due to high non-linearity and dependency among a large number of features, DNN models tend to be unavoidably opaque and perceived as black-box methods because of their not well-understood internal functioning. Their algorithmic complexity is often simply beyond the capacities of humans to understand the interplay among myriads of hyperparameters. A well-interpretable model can identify statistically significant features and explain the way they affect the model's outcome. In this paper, we propose an efficient method to improve the interpretability of black-box models for classification tasks in the case of high-dimensional datasets. First, we train a black-box model on a high-dimensional dataset to learn the embeddings on which the classification is performed. To decompose the inner working principles of the black-box model and to identify top-k important features, we employ different probing and perturbing techniques. We then approximate the behavior of the black-box model by means of an interpretable surrogate model on the top-k feature space. Finally, we derive decision rules and local explanations from the surrogate model to explain individual decisions. Our approach outperforms state-of-the-art methods like TabNet and XGboost when tested on different datasets with varying dimensionality between 50 and 20,000 w.r.t metrics and explainability.

  • 7 authors
·
Aug 29, 2022

Feature Coding in the Era of Large Models: Dataset, Test Conditions, and Benchmark

Large models have achieved remarkable performance across various tasks, yet they incur significant computational costs and privacy concerns during both training and inference. Distributed deployment has emerged as a potential solution, but it necessitates the exchange of intermediate information between model segments, with feature representations serving as crucial information carriers. To optimize information exchange, feature coding methods are applied to reduce transmission and storage overhead. Despite its importance, feature coding for large models remains an under-explored area. In this paper, we draw attention to large model feature coding and make three contributions to this field. First, we introduce a comprehensive dataset encompassing diverse features generated by three representative types of large models. Second, we establish unified test conditions, enabling standardized evaluation pipelines and fair comparisons across future feature coding studies. Third, we introduce two baseline methods derived from widely used image coding techniques and benchmark their performance on the proposed dataset. These contributions aim to advance the field of feature coding, facilitating more efficient large model deployment. All source code and the dataset are now available at https://github.com/chansongoal/FCM-LM/tree/master{https://github.com/chansongoal/FCM-LM/tree/master}.

  • 6 authors
·
Dec 5, 2024

VLMGuard: Defending VLMs against Malicious Prompts via Unlabeled Data

Vision-language models (VLMs) are essential for contextual understanding of both visual and textual information. However, their vulnerability to adversarially manipulated inputs presents significant risks, leading to compromised outputs and raising concerns about the reliability in VLM-integrated applications. Detecting these malicious prompts is thus crucial for maintaining trust in VLM generations. A major challenge in developing a safeguarding prompt classifier is the lack of a large amount of labeled benign and malicious data. To address the issue, we introduce VLMGuard, a novel learning framework that leverages the unlabeled user prompts in the wild for malicious prompt detection. These unlabeled prompts, which naturally arise when VLMs are deployed in the open world, consist of both benign and malicious information. To harness the unlabeled data, we present an automated maliciousness estimation score for distinguishing between benign and malicious samples within this unlabeled mixture, thereby enabling the training of a binary prompt classifier on top. Notably, our framework does not require extra human annotations, offering strong flexibility and practicality for real-world applications. Extensive experiment shows VLMGuard achieves superior detection results, significantly outperforming state-of-the-art methods. Disclaimer: This paper may contain offensive examples; reader discretion is advised.

  • 8 authors
·
Sep 30, 2024 2

Modeling the Distribution of Normal Data in Pre-Trained Deep Features for Anomaly Detection

Anomaly Detection (AD) in images is a fundamental computer vision problem and refers to identifying images and image substructures that deviate significantly from the norm. Popular AD algorithms commonly try to learn a model of normality from scratch using task specific datasets, but are limited to semi-supervised approaches employing mostly normal data due to the inaccessibility of anomalies on a large scale combined with the ambiguous nature of anomaly appearance. We follow an alternative approach and demonstrate that deep feature representations learned by discriminative models on large natural image datasets are well suited to describe normality and detect even subtle anomalies in a transfer learning setting. Our model of normality is established by fitting a multivariate Gaussian (MVG) to deep feature representations of classification networks trained on ImageNet using normal data only. By subsequently applying the Mahalanobis distance as the anomaly score we outperform the current state of the art on the public MVTec AD dataset, achieving an AUROC value of 95.8 pm 1.2 (mean pm SEM) over all 15 classes. We further investigate why the learned representations are discriminative to the AD task using Principal Component Analysis. We find that the principal components containing little variance in normal data are the ones crucial for discriminating between normal and anomalous instances. This gives a possible explanation to the often sub-par performance of AD approaches trained from scratch using normal data only. By selectively fitting a MVG to these most relevant components only, we are able to further reduce model complexity while retaining AD performance. We also investigate setting the working point by selecting acceptable False Positive Rate thresholds based on the MVG assumption. Code available at https://github.com/ORippler/gaussian-ad-mvtec

  • 3 authors
·
May 28, 2020

Going Beyond Neural Network Feature Similarity: The Network Feature Complexity and Its Interpretation Using Category Theory

The behavior of neural networks still remains opaque, and a recently widely noted phenomenon is that networks often achieve similar performance when initialized with different random parameters. This phenomenon has attracted significant attention in measuring the similarity between features learned by distinct networks. However, feature similarity could be vague in describing the same feature since equivalent features hardly exist. In this paper, we expand the concept of equivalent feature and provide the definition of what we call functionally equivalent features. These features produce equivalent output under certain transformations. Using this definition, we aim to derive a more intrinsic metric for the so-called feature complexity regarding the redundancy of features learned by a neural network at each layer. We offer a formal interpretation of our approach through the lens of category theory, a well-developed area in mathematics. To quantify the feature complexity, we further propose an efficient algorithm named Iterative Feature Merging. Our experimental results validate our ideas and theories from various perspectives. We empirically demonstrate that the functionally equivalence widely exists among different features learned by the same neural network and we could reduce the number of parameters of the network without affecting the performance.The IFM shows great potential as a data-agnostic model prune method. We have also drawn several interesting empirical findings regarding the defined feature complexity.

  • 3 authors
·
Oct 10, 2023

OutRank: Speeding up AutoML-based Model Search for Large Sparse Data sets with Cardinality-aware Feature Ranking

The design of modern recommender systems relies on understanding which parts of the feature space are relevant for solving a given recommendation task. However, real-world data sets in this domain are often characterized by their large size, sparsity, and noise, making it challenging to identify meaningful signals. Feature ranking represents an efficient branch of algorithms that can help address these challenges by identifying the most informative features and facilitating the automated search for more compact and better-performing models (AutoML). We introduce OutRank, a system for versatile feature ranking and data quality-related anomaly detection. OutRank was built with categorical data in mind, utilizing a variant of mutual information that is normalized with regard to the noise produced by features of the same cardinality. We further extend the similarity measure by incorporating information on feature similarity and combined relevance. The proposed approach's feasibility is demonstrated by speeding up the state-of-the-art AutoML system on a synthetic data set with no performance loss. Furthermore, we considered a real-life click-through-rate prediction data set where it outperformed strong baselines such as random forest-based approaches. The proposed approach enables exploration of up to 300% larger feature spaces compared to AutoML-only approaches, enabling faster search for better models on off-the-shelf hardware.

  • 2 authors
·
Sep 4, 2023

T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification

Deep Neural Network (DNN) classifiers are known to be vulnerable to Trojan or backdoor attacks, where the classifier is manipulated such that it misclassifies any input containing an attacker-determined Trojan trigger. Backdoors compromise a model's integrity, thereby posing a severe threat to the landscape of DNN-based classification. While multiple defenses against such attacks exist for classifiers in the image domain, there have been limited efforts to protect classifiers in the text domain. We present Trojan-Miner (T-Miner) -- a defense framework for Trojan attacks on DNN-based text classifiers. T-Miner employs a sequence-to-sequence (seq-2-seq) generative model that probes the suspicious classifier and learns to produce text sequences that are likely to contain the Trojan trigger. T-Miner then analyzes the text produced by the generative model to determine if they contain trigger phrases, and correspondingly, whether the tested classifier has a backdoor. T-Miner requires no access to the training dataset or clean inputs of the suspicious classifier, and instead uses synthetically crafted "nonsensical" text inputs to train the generative model. We extensively evaluate T-Miner on 1100 model instances spanning 3 ubiquitous DNN model architectures, 5 different classification tasks, and a variety of trigger phrases. We show that T-Miner detects Trojan and clean models with a 98.75% overall accuracy, while achieving low false positives on clean models. We also show that T-Miner is robust against a variety of targeted, advanced attacks from an adaptive attacker.

  • 8 authors
·
Mar 6, 2021

URLBERT:A Contrastive and Adversarial Pre-trained Model for URL Classification

URLs play a crucial role in understanding and categorizing web content, particularly in tasks related to security control and online recommendations. While pre-trained models are currently dominating various fields, the domain of URL analysis still lacks specialized pre-trained models. To address this gap, this paper introduces URLBERT, the first pre-trained representation learning model applied to a variety of URL classification or detection tasks. We first train a URL tokenizer on a corpus of billions of URLs to address URL data tokenization. Additionally, we propose two novel pre-training tasks: (1) self-supervised contrastive learning tasks, which strengthen the model's understanding of URL structure and the capture of category differences by distinguishing different variants of the same URL; (2) virtual adversarial training, aimed at improving the model's robustness in extracting semantic features from URLs. Finally, our proposed methods are evaluated on tasks including phishing URL detection, web page classification, and ad filtering, achieving state-of-the-art performance. Importantly, we also explore multi-task learning with URLBERT, and experimental results demonstrate that multi-task learning model based on URLBERT exhibit equivalent effectiveness compared to independently fine-tuned models, showing the simplicity of URLBERT in handling complex task requirements. The code for our work is available at https://github.com/Davidup1/URLBERT.

  • 6 authors
·
Feb 18, 2024

Deep Interest Network for Click-Through Rate Prediction

Click-through rate prediction is an essential task in industrial applications, such as online advertising. Recently deep learning based models have been proposed, which follow a similar Embedding\&MLP paradigm. In these methods large scale sparse input features are first mapped into low dimensional embedding vectors, and then transformed into fixed-length vectors in a group-wise manner, finally concatenated together to fed into a multilayer perceptron (MLP) to learn the nonlinear relations among features. In this way, user features are compressed into a fixed-length representation vector, in regardless of what candidate ads are. The use of fixed-length vector will be a bottleneck, which brings difficulty for Embedding\&MLP methods to capture user's diverse interests effectively from rich historical behaviors. In this paper, we propose a novel model: Deep Interest Network (DIN) which tackles this challenge by designing a local activation unit to adaptively learn the representation of user interests from historical behaviors with respect to a certain ad. This representation vector varies over different ads, improving the expressive ability of model greatly. Besides, we develop two techniques: mini-batch aware regularization and data adaptive activation function which can help training industrial deep networks with hundreds of millions of parameters. Experiments on two public datasets as well as an Alibaba real production dataset with over 2 billion samples demonstrate the effectiveness of proposed approaches, which achieve superior performance compared with state-of-the-art methods. DIN now has been successfully deployed in the online display advertising system in Alibaba, serving the main traffic.

  • 10 authors
·
Jun 21, 2017

Models Are Codes: Towards Measuring Malicious Code Poisoning Attacks on Pre-trained Model Hubs

The proliferation of pre-trained models (PTMs) and datasets has led to the emergence of centralized model hubs like Hugging Face, which facilitate collaborative development and reuse. However, recent security reports have uncovered vulnerabilities and instances of malicious attacks within these platforms, highlighting growing security concerns. This paper presents the first systematic study of malicious code poisoning attacks on pre-trained model hubs, focusing on the Hugging Face platform. We conduct a comprehensive threat analysis, develop a taxonomy of model formats, and perform root cause analysis of vulnerable formats. While existing tools like Fickling and ModelScan offer some protection, they face limitations in semantic-level analysis and comprehensive threat detection. To address these challenges, we propose MalHug, an end-to-end pipeline tailored for Hugging Face that combines dataset loading script extraction, model deserialization, in-depth taint analysis, and heuristic pattern matching to detect and classify malicious code poisoning attacks in datasets and models. In collaboration with Ant Group, a leading financial technology company, we have implemented and deployed MalHug on a mirrored Hugging Face instance within their infrastructure, where it has been operational for over three months. During this period, MalHug has monitored more than 705K models and 176K datasets, uncovering 91 malicious models and 9 malicious dataset loading scripts. These findings reveal a range of security threats, including reverse shell, browser credential theft, and system reconnaissance. This work not only bridges a critical gap in understanding the security of the PTM supply chain but also provides a practical, industry-tested solution for enhancing the security of pre-trained model hubs.

  • 9 authors
·
Sep 14, 2024

ResAD++: Towards Class Agnostic Anomaly Detection via Residual Feature Learning

This paper explores the problem of class-agnostic anomaly detection (AD), where the objective is to train one class-agnostic AD model that can generalize to detect anomalies in diverse new classes from different domains without any retraining or fine-tuning on the target data. When applied for new classes, the performance of current single- and multi-class AD methods is still unsatisfactory. One fundamental reason is that representation learning in existing methods is still class-related, namely, feature correlation. To address this issue, we propose residual features and construct a simple but effective framework, termed ResAD. Our core insight is to learn the residual feature distribution rather than the initial feature distribution. Residual features are formed by matching and then subtracting normal reference features. In this way, we can effectively realize feature decorrelation. Even in new classes, the distribution of normal residual features would not remarkably shift from the learned distribution. In addition, we think that residual features still have one issue: scale correlation. To this end, we propose a feature hypersphere constraining approach, which learns to constrain initial normal residual features into a spatial hypersphere for enabling the feature scales of different classes as consistent as possible. Furthermore, we propose a novel logbarrier bidirectional contraction OCC loss and vector quantization based feature distribution matching module to enhance ResAD, leading to the improved version of ResAD (ResAD++). Comprehensive experiments on eight real-world AD datasets demonstrate that our ResAD++ can achieve remarkable AD results when directly used in new classes, outperforming state-of-the-art competing methods and also surpassing ResAD. The code is available at https://github.com/xcyao00/ResAD.

  • 5 authors
·
Sep 28

PhishNet: A Phishing Website Detection Tool using XGBoost

PhisNet is a cutting-edge web application designed to detect phishing websites using advanced machine learning. It aims to help individuals and organizations identify and prevent phishing attacks through a robust AI framework. PhisNet utilizes Python to apply various machine learning algorithms and feature extraction techniques for high accuracy and efficiency. The project starts by collecting and preprocessing a comprehensive dataset of URLs, comprising both phishing and legitimate sites. Key features such as URL length, special characters, and domain age are extracted to effectively train the model. Multiple machine learning algorithms, including logistic regression, decision trees, and neural networks, are evaluated to determine the best performance in phishing detection. The model is finely tuned to optimize metrics like accuracy, precision, recall, and the F1 score, ensuring reliable detection of both common and sophisticated phishing tactics. PhisNet's web application is developed using React.js, which allows for client-side rendering and smooth integration with backend services, creating a responsive and user-friendly interface. Users can input URLs and receive immediate predictions with confidence scores, thanks to a robust backend infrastructure that processes data and provides real-time results. The model is deployed using Google Colab and AWS EC2 for their computational power and scalability, ensuring the application remains accessible and functional under varying loads. In summary, PhisNet represents a significant advancement in cybersecurity, showcasing the effective use of machine learning and web development technologies to enhance user security. It empowers users to prevent phishing attacks and highlights AI's potential in transforming cybersecurity.

  • 4 authors
·
Jun 29, 2024

CyberLLMInstruct: A New Dataset for Analysing Safety of Fine-Tuned LLMs Using Cyber Security Data

The integration of large language models (LLMs) into cyber security applications presents significant opportunities, such as enhancing threat analysis and malware detection, but can also introduce critical risks and safety concerns, including personal data leakage and automated generation of new malware. To address these challenges, we developed CyberLLMInstruct, a dataset of 54,928 instruction-response pairs spanning cyber security tasks such as malware analysis, phishing simulations, and zero-day vulnerabilities. The dataset was constructed through a multi-stage process. This involved sourcing data from multiple resources, filtering and structuring it into instruction-response pairs, and aligning it with real-world scenarios to enhance its applicability. Seven open-source LLMs were chosen to test the usefulness of CyberLLMInstruct: Phi 3 Mini 3.8B, Mistral 7B, Qwen 2.5 7B, Llama 3 8B, Llama 3.1 8B, Gemma 2 9B, and Llama 2 70B. In our primary example, we rigorously assess the safety of fine-tuned models using the OWASP top 10 framework, finding that fine-tuning reduces safety resilience across all tested LLMs and every adversarial attack (e.g., the security score of Llama 3.1 8B against prompt injection drops from 0.95 to 0.15). In our second example, we show that these same fine-tuned models can also achieve up to 92.50 percent accuracy on the CyberMetric benchmark. These findings highlight a trade-off between performance and safety, showing the importance of adversarial testing and further research into fine-tuning methodologies that can mitigate safety risks while still improving performance across diverse datasets and domains. The dataset creation pipeline, along with comprehensive documentation, examples, and resources for reproducing our results, is publicly available at https://github.com/Adelsamir01/CyberLLMInstruct.

  • 3 authors
·
Mar 12

On the Provable Advantage of Unsupervised Pretraining

Unsupervised pretraining, which learns a useful representation using a large amount of unlabeled data to facilitate the learning of downstream tasks, is a critical component of modern large-scale machine learning systems. Despite its tremendous empirical success, the rigorous theoretical understanding of why unsupervised pretraining generally helps remains rather limited -- most existing results are restricted to particular methods or approaches for unsupervised pretraining with specialized structural assumptions. This paper studies a generic framework, where the unsupervised representation learning task is specified by an abstract class of latent variable models Phi and the downstream task is specified by a class of prediction functions Psi. We consider a natural approach of using Maximum Likelihood Estimation (MLE) for unsupervised pretraining and Empirical Risk Minimization (ERM) for learning downstream tasks. We prove that, under a mild ''informative'' condition, our algorithm achieves an excess risk of mathcal{O}(mathcal{C_Phi/m} + mathcal{C_Psi/n}) for downstream tasks, where C_Phi, C_Psi are complexity measures of function classes Phi, Psi, and m, n are the number of unlabeled and labeled data respectively. Comparing to the baseline of mathcal{O}(mathcal{C_{Phi circ Psi}/n}) achieved by performing supervised learning using only the labeled data, our result rigorously shows the benefit of unsupervised pretraining when m gg n and C_{Phicirc Psi} > C_Psi. This paper further shows that our generic framework covers a wide range of approaches for unsupervised pretraining, including factor models, Gaussian mixture models, and contrastive learning.

  • 4 authors
·
Mar 2, 2023

Tracing the Origin of Adversarial Attack for Forensic Investigation and Deterrence

Deep neural networks are vulnerable to adversarial attacks. In this paper, we take the role of investigators who want to trace the attack and identify the source, that is, the particular model which the adversarial examples are generated from. Techniques derived would aid forensic investigation of attack incidents and serve as deterrence to potential attacks. We consider the buyers-seller setting where a machine learning model is to be distributed to various buyers and each buyer receives a slightly different copy with same functionality. A malicious buyer generates adversarial examples from a particular copy M_i and uses them to attack other copies. From these adversarial examples, the investigator wants to identify the source M_i. To address this problem, we propose a two-stage separate-and-trace framework. The model separation stage generates multiple copies of a model for a same classification task. This process injects unique characteristics into each copy so that adversarial examples generated have distinct and traceable features. We give a parallel structure which embeds a ``tracer'' in each copy, and a noise-sensitive training loss to achieve this goal. The tracing stage takes in adversarial examples and a few candidate models, and identifies the likely source. Based on the unique features induced by the noise-sensitive loss function, we could effectively trace the potential adversarial copy by considering the output logits from each tracer. Empirical results show that it is possible to trace the origin of the adversarial example and the mechanism can be applied to a wide range of architectures and datasets.

  • 6 authors
·
Dec 30, 2022

PETGEN: Personalized Text Generation Attack on Deep Sequence Embedding-based Classification Models

What should a malicious user write next to fool a detection model? Identifying malicious users is critical to ensure the safety and integrity of internet platforms. Several deep learning-based detection models have been created. However, malicious users can evade deep detection models by manipulating their behavior, rendering these models of little use. The vulnerability of such deep detection models against adversarial attacks is unknown. Here we create a novel adversarial attack model against deep user sequence embedding based classification models, which use the sequence of user posts to generate user embeddings and detect malicious users. In the attack, the adversary generates a new post to fool the classifier. We propose a novel end-to-end Personalized Text Generation Attack model, called PETGEN, that simultaneously reduces the efficacy of the detection model and generates posts that have several key desirable properties. Specifically, PETGEN generates posts that are personalized to the user's writing style, have knowledge about a given target context, are aware of the user's historical posts on the target context, and encapsulate the user's recent topical interests. We conduct extensive experiments on two real-world datasets (Yelp and Wikipedia, both with ground-truth of malicious users) to show that PETGEN significantly reduces the performance of popular deep user sequence embedding-based classification models. PETGEN outperforms five attack baselines in terms of text quality and attack efficacy in both white-box and black-box classifier settings. Overall, this work paves the path towards the next generation of adversary-aware sequence classification models.

  • 3 authors
·
Sep 14, 2021

Understanding Adversarial Transfer: Why Representation-Space Attacks Fail Where Data-Space Attacks Succeed

The field of adversarial robustness has long established that adversarial examples can successfully transfer between image classifiers and that text jailbreaks can successfully transfer between language models (LMs). However, a pair of recent studies reported being unable to successfully transfer image jailbreaks between vision-language models (VLMs). To explain this striking difference, we propose a fundamental distinction regarding the transferability of attacks against machine learning models: attacks in the input data-space can transfer, whereas attacks in model representation space do not, at least not without geometric alignment of representations. We then provide theoretical and empirical evidence of this hypothesis in four different settings. First, we mathematically prove this distinction in a simple setting where two networks compute the same input-output map but via different representations. Second, we construct representation-space attacks against image classifiers that are as successful as well-known data-space attacks, but fail to transfer. Third, we construct representation-space attacks against LMs that successfully jailbreak the attacked models but again fail to transfer. Fourth, we construct data-space attacks against VLMs that successfully transfer to new VLMs, and we show that representation space attacks can transfer when VLMs' latent geometries are sufficiently aligned in post-projector space. Our work reveals that adversarial transfer is not an inherent property of all attacks but contingent on their operational domain - the shared data-space versus models' unique representation spaces - a critical insight for building more robust models.

  • 5 authors
·
Oct 1

Contrastive Self-Supervised Network Intrusion Detection using Augmented Negative Pairs

Network intrusion detection remains a critical challenge in cybersecurity. While supervised machine learning models achieve state-of-the-art performance, their reliance on large labelled datasets makes them impractical for many real-world applications. Anomaly detection methods, which train exclusively on benign traffic to identify malicious activity, suffer from high false positive rates, limiting their usability. Recently, self-supervised learning techniques have demonstrated improved performance with lower false positive rates by learning discriminative latent representations of benign traffic. In particular, contrastive self-supervised models achieve this by minimizing the distance between similar (positive) views of benign traffic while maximizing it between dissimilar (negative) views. Existing approaches generate positive views through data augmentation and treat other samples as negative. In contrast, this work introduces Contrastive Learning using Augmented Negative pairs (CLAN), a novel paradigm for network intrusion detection where augmented samples are treated as negative views - representing potentially malicious distributions - while other benign samples serve as positive views. This approach enhances both classification accuracy and inference efficiency after pretraining on benign traffic. Experimental evaluation on the Lycos2017 dataset demonstrates that the proposed method surpasses existing self-supervised and anomaly detection techniques in a binary classification task. Furthermore, when fine-tuned on a limited labelled dataset, the proposed approach achieves superior multi-class classification performance compared to existing self-supervised models.

  • 4 authors
·
Sep 8

Contrastive Mutual Information Learning: Toward Robust Representations without Positive-Pair Augmentations

Learning representations that transfer well to diverse downstream tasks remains a central challenge in representation learning. Existing paradigms -- contrastive learning, self-supervised masking, and denoising auto-encoders -- balance this challenge with different trade-offs. We introduce the {contrastive Mutual Information Machine} (cMIM), a probabilistic framework that extends the Mutual Information Machine (MIM) with a contrastive objective. While MIM maximizes mutual information between inputs and latents and promotes clustering of codes, it falls short on discriminative tasks. cMIM addresses this gap by imposing global discriminative structure while retaining MIM's generative fidelity. Our contributions are threefold. First, we propose cMIM, a contrastive extension of MIM that removes the need for positive data augmentation and is substantially less sensitive to batch size than InfoNCE. Second, we introduce {informative embeddings}, a general technique for extracting enriched features from encoder-decoder models that boosts discriminative performance without additional training and applies broadly beyond MIM. Third, we provide empirical evidence across vision and molecular benchmarks showing that cMIM outperforms MIM and InfoNCE on classification and regression tasks while preserving competitive reconstruction quality. These results position cMIM as a unified framework for representation learning, advancing the goal of models that serve both discriminative and generative applications effectively.

  • 1 authors
·
Sep 25

CySecBERT: A Domain-Adapted Language Model for the Cybersecurity Domain

The field of cybersecurity is evolving fast. Experts need to be informed about past, current and - in the best case - upcoming threats, because attacks are becoming more advanced, targets bigger and systems more complex. As this cannot be addressed manually, cybersecurity experts need to rely on machine learning techniques. In the texutual domain, pre-trained language models like BERT have shown to be helpful, by providing a good baseline for further fine-tuning. However, due to the domain-knowledge and many technical terms in cybersecurity general language models might miss the gist of textual information, hence doing more harm than good. For this reason, we create a high-quality dataset and present a language model specifically tailored to the cybersecurity domain, which can serve as a basic building block for cybersecurity systems that deal with natural language. The model is compared with other models based on 15 different domain-dependent extrinsic and intrinsic tasks as well as general tasks from the SuperGLUE benchmark. On the one hand, the results of the intrinsic tasks show that our model improves the internal representation space of words compared to the other models. On the other hand, the extrinsic, domain-dependent tasks, consisting of sequence tagging and classification, show that the model is best in specific application scenarios, in contrast to the others. Furthermore, we show that our approach against catastrophic forgetting works, as the model is able to retrieve the previously trained domain-independent knowledge. The used dataset and trained model are made publicly available

  • 4 authors
·
Dec 6, 2022

Convergent Learning: Do different neural networks learn the same representations?

Recent success in training deep neural networks have prompted active investigation into the features learned on their intermediate layers. Such research is difficult because it requires making sense of non-linear computations performed by millions of parameters, but valuable because it increases our ability to understand current models and create improved versions of them. In this paper we investigate the extent to which neural networks exhibit what we call convergent learning, which is when the representations learned by multiple nets converge to a set of features which are either individually similar between networks or where subsets of features span similar low-dimensional spaces. We propose a specific method of probing representations: training multiple networks and then comparing and contrasting their individual, learned representations at the level of neurons or groups of neurons. We begin research into this question using three techniques to approximately align different neural networks on a feature level: a bipartite matching approach that makes one-to-one assignments between neurons, a sparse prediction approach that finds one-to-many mappings, and a spectral clustering approach that finds many-to-many mappings. This initial investigation reveals a few previously unknown properties of neural networks, and we argue that future research into the question of convergent learning will yield many more. The insights described here include (1) that some features are learned reliably in multiple networks, yet other features are not consistently learned; (2) that units learn to span low-dimensional subspaces and, while these subspaces are common to multiple networks, the specific basis vectors learned are not; (3) that the representation codes show evidence of being a mix between a local code and slightly, but not fully, distributed codes across multiple units.

  • 5 authors
·
Nov 23, 2015

Exploring the cloud of feature interaction scores in a Rashomon set

Interactions among features are central to understanding the behavior of machine learning models. Recent research has made significant strides in detecting and quantifying feature interactions in single predictive models. However, we argue that the feature interactions extracted from a single pre-specified model may not be trustworthy since: a well-trained predictive model may not preserve the true feature interactions and there exist multiple well-performing predictive models that differ in feature interaction strengths. Thus, we recommend exploring feature interaction strengths in a model class of approximately equally accurate predictive models. In this work, we introduce the feature interaction score (FIS) in the context of a Rashomon set, representing a collection of models that achieve similar accuracy on a given task. We propose a general and practical algorithm to calculate the FIS in the model class. We demonstrate the properties of the FIS via synthetic data and draw connections to other areas of statistics. Additionally, we introduce a Halo plot for visualizing the feature interaction variance in high-dimensional space and a swarm plot for analyzing FIS in a Rashomon set. Experiments with recidivism prediction and image classification illustrate how feature interactions can vary dramatically in importance for similarly accurate predictive models. Our results suggest that the proposed FIS can provide valuable insights into the nature of feature interactions in machine learning models.

  • 4 authors
·
May 17, 2023

Understanding Visual Feature Reliance through the Lens of Complexity

Recent studies suggest that deep learning models inductive bias towards favoring simpler features may be one of the sources of shortcut learning. Yet, there has been limited focus on understanding the complexity of the myriad features that models learn. In this work, we introduce a new metric for quantifying feature complexity, based on V-information and capturing whether a feature requires complex computational transformations to be extracted. Using this V-information metric, we analyze the complexities of 10,000 features, represented as directions in the penultimate layer, that were extracted from a standard ImageNet-trained vision model. Our study addresses four key questions: First, we ask what features look like as a function of complexity and find a spectrum of simple to complex features present within the model. Second, we ask when features are learned during training. We find that simpler features dominate early in training, and more complex features emerge gradually. Third, we investigate where within the network simple and complex features flow, and find that simpler features tend to bypass the visual hierarchy via residual connections. Fourth, we explore the connection between features complexity and their importance in driving the networks decision. We find that complex features tend to be less important. Surprisingly, important features become accessible at earlier layers during training, like a sedimentation process, allowing the model to build upon these foundational elements.

  • 5 authors
·
Jul 8, 2024 1

Optimizing Feature Set for Click-Through Rate Prediction

Click-through prediction (CTR) models transform features into latent vectors and enumerate possible feature interactions to improve performance based on the input feature set. Therefore, when selecting an optimal feature set, we should consider the influence of both feature and its interaction. However, most previous works focus on either feature field selection or only select feature interaction based on the fixed feature set to produce the feature set. The former restricts search space to the feature field, which is too coarse to determine subtle features. They also do not filter useless feature interactions, leading to higher computation costs and degraded model performance. The latter identifies useful feature interaction from all available features, resulting in many redundant features in the feature set. In this paper, we propose a novel method named OptFS to address these problems. To unify the selection of feature and its interaction, we decompose the selection of each feature interaction into the selection of two correlated features. Such a decomposition makes the model end-to-end trainable given various feature interaction operations. By adopting feature-level search space, we set a learnable gate to determine whether each feature should be within the feature set. Because of the large-scale search space, we develop a learning-by-continuation training scheme to learn such gates. Hence, OptFS generates the feature set only containing features which improve the final prediction results. Experimentally, we evaluate OptFS on three public datasets, demonstrating OptFS can optimize feature sets which enhance the model performance and further reduce both the storage and computational cost.

  • 6 authors
·
Jan 25, 2023

LookAhead: Preventing DeFi Attacks via Unveiling Adversarial Contracts

Decentralized Finance (DeFi) incidents stemming from the exploitation of smart contract vulnerabilities have culminated in financial damages exceeding 3 billion US dollars. Existing defense mechanisms typically focus on detecting and reacting to malicious transactions executed by attackers that target victim contracts. However, with the emergence of private transaction pools where transactions are sent directly to miners without first appearing in public mempools, current detection tools face significant challenges in identifying attack activities effectively. Based on the fact that most attack logic rely on deploying one or more intermediate smart contracts as supporting components to the exploitation of victim contracts, in this paper, we propose a new direction for detecting DeFi attacks that focuses on identifying adversarial contracts instead of adversarial transactions. Our approach allows us to leverage common attack patterns, code semantics and intrinsic characteristics found in malicious smart contracts to build the LookAhead system based on Machine Learning (ML) classifiers and a transformer model that is able to effectively distinguish adversarial contracts from benign ones, and make just-in-time predictions of potential zero-day attacks. Our contributions are three-fold: First, we construct a comprehensive dataset consisting of features extracted and constructed from recent contracts deployed on the Ethereum and BSC blockchains. Secondly, we design a condensed representation of smart contract programs called Pruned Semantic-Control Flow Tokenization (PSCFT) and use it to train a combination of ML models that understand the behaviour of malicious codes based on function calls, control flows and other pattern-conforming features. Lastly, we provide the complete implementation of LookAhead and the evaluation of its performance metrics for detecting adversarial contracts.

  • 7 authors
·
Jan 14, 2024