new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 7

Tiled Flash Linear Attention: More Efficient Linear RNN and xLSTM Kernels

Linear RNNs with gating recently demonstrated competitive performance compared to Transformers in language modeling. Although their linear compute scaling in sequence length offers theoretical runtime advantages over Transformers, realizing these benefits in practice requires optimized custom kernels, as Transformers rely on the highly efficient Flash Attention kernels (Dao, 2024). Leveraging the chunkwise-parallel formulation of linear RNNs, Flash Linear Attention (FLA) (Yang & Zhang, 2024) shows that linear RNN kernels are faster than Flash Attention, by parallelizing over chunks of the input sequence. However, since the chunk size of FLA is limited, many intermediate states must be materialized in GPU memory. This leads to low arithmetic intensity and causes high memory consumption and IO cost, especially for long-context pre-training. In this work, we present Tiled Flash Linear Attention (TFLA), a novel kernel algorithm for linear RNNs, that enables arbitrary large chunk sizes and high arithmetic intensity by introducing an additional level of sequence parallelization within each chunk. First, we apply TFLA to the xLSTM with matrix memory, the mLSTM (Beck et al., 2024). Second, we propose an mLSTM variant with sigmoid input gate and reduced computation for even faster kernel runtimes at equal language modeling performance. In our speed benchmarks, we show that our new mLSTM kernels based on TFLA outperform highly optimized Flash Attention, Linear Attention and Mamba kernels, setting a new state of the art for efficient long-context sequence modeling primitives.

  • 4 authors
·
Mar 18, 2025

CAB: Comprehensive Attention Benchmarking on Long Sequence Modeling

Transformer has achieved remarkable success in language, image, and speech processing. Recently, various efficient attention architectures have been proposed to improve transformer's efficiency while largely preserving its efficacy, especially in modeling long sequences. A widely-used benchmark to test these efficient methods' capability on long-range modeling is Long Range Arena (LRA). However, LRA only focuses on the standard bidirectional (or noncausal) self attention, and completely ignores cross attentions and unidirectional (or causal) attentions, which are equally important to downstream applications. Although designing cross and causal variants of an attention method is straightforward for vanilla attention, it is often challenging for efficient attentions with subquadratic time and memory complexity. In this paper, we propose Comprehensive Attention Benchmark (CAB) under a fine-grained attention taxonomy with four distinguishable attention patterns, namely, noncausal self, causal self, noncausal cross, and causal cross attentions. CAB collects seven real-world tasks from different research areas to evaluate efficient attentions under the four attention patterns. Among these tasks, CAB validates efficient attentions in eight backbone networks to show their generalization across neural architectures. We conduct exhaustive experiments to benchmark the performances of nine widely-used efficient attention architectures designed with different philosophies on CAB. Extensive experimental results also shed light on the fundamental problems of efficient attentions, such as efficiency length against vanilla attention, performance consistency across attention patterns, the benefit of attention mechanisms, and interpolation/extrapolation on long-context language modeling.

  • 5 authors
·
Oct 14, 2022

A Unified View of Long-Sequence Models towards Modeling Million-Scale Dependencies

Ever since their conception, Transformers have taken over traditional sequence models in many tasks, such as NLP, image classification, and video/audio processing, for their fast training and superior performance. Much of the merit is attributable to positional encoding and multi-head attention. However, Transformers fall short in learning long-range dependencies mainly due to the quadratic complexity scaled with context length, in terms of both time and space. Consequently, over the past five years, a myriad of methods has been proposed to make Transformers more efficient. In this work, we first take a step back, study and compare existing solutions to long-sequence modeling in terms of their pure mathematical formulation. Specifically, we summarize them using a unified template, given their shared nature of token mixing. Through benchmarks, we then demonstrate that long context length does yield better performance, albeit application-dependent, and traditional Transformer models fall short in taking advantage of long-range dependencies. Next, inspired by emerging sparse models of huge capacity, we propose a machine learning system for handling million-scale dependencies. As a proof of concept, we evaluate the performance of one essential component of this system, namely, the distributed multi-head attention. We show that our algorithm can scale up attention computation by almost 40times using four GeForce RTX 4090 GPUs, compared to vanilla multi-head attention mechanism. We believe this study is an instrumental step towards modeling million-scale dependencies.

  • 2 authors
·
Feb 13, 2023

HyenaDNA: Long-Range Genomic Sequence Modeling at Single Nucleotide Resolution

Genomic (DNA) sequences encode an enormous amount of information for gene regulation and protein synthesis. Similar to natural language models, researchers have proposed foundation models in genomics to learn generalizable features from unlabeled genome data that can then be fine-tuned for downstream tasks such as identifying regulatory elements. Due to the quadratic scaling of attention, previous Transformer-based genomic models have used 512 to 4k tokens as context (<0.001% of the human genome), significantly limiting the modeling of long-range interactions in DNA. In addition, these methods rely on tokenizers to aggregate meaningful DNA units, losing single nucleotide resolution where subtle genetic variations can completely alter protein function via single nucleotide polymorphisms (SNPs). Recently, Hyena, a large language model based on implicit convolutions was shown to match attention in quality while allowing longer context lengths and lower time complexity. Leveraging Hyenas new long-range capabilities, we present HyenaDNA, a genomic foundation model pretrained on the human reference genome with context lengths of up to 1 million tokens at the single nucleotide-level, an up to 500x increase over previous dense attention-based models. HyenaDNA scales sub-quadratically in sequence length (training up to 160x faster than Transformer), uses single nucleotide tokens, and has full global context at each layer. We explore what longer context enables - including the first use of in-context learning in genomics for simple adaptation to novel tasks without updating pretrained model weights. On fine-tuned benchmarks from the Nucleotide Transformer, HyenaDNA reaches state-of-the-art (SotA) on 12 of 17 datasets using a model with orders of magnitude less parameters and pretraining data. On the GenomicBenchmarks, HyenaDNA surpasses SotA on all 8 datasets on average by +9 accuracy points.

  • 13 authors
·
Jun 27, 2023 2

LaCache: Ladder-Shaped KV Caching for Efficient Long-Context Modeling of Large Language Models

Recent advancements in Large Language Models (LLMs) have spurred interest in numerous applications requiring robust long-range capabilities, essential for processing extensive input contexts and continuously generating extended outputs. As sequence lengths increase, the number of Key-Value (KV) pairs in LLMs escalates, creating a significant efficiency bottleneck. In this paper, we propose a new KV cache optimization paradigm called LaCache, a training-free method for efficient and accurate generative inference of LLMs. LaCache enables LLMs to simultaneously address both of the critical challenges in long-range modeling: robust long-range capabilities and continuous generation without running out-of-memory (OOM). Specifically, LaCache integrates two key innovations: (1) a ladder-shaped KV cache pattern that stores KV pairs not only sequentially (left-to-right within each layer) but also across layers (from shallow to deep), providing an extended span for capturing long-range dependencies under a fixed storage budget, thereby boosting long-range capabilities; and (2) an iterative compaction mechanism that progressively compresses older caches, freeing up space for new tokens within a fixed cache size. This token distance-based dynamic compression enables more effective continuous generation under constrained cache budgets. Experiments across various tasks, benchmarks, and LLM models consistently validate LaCache's effectiveness in enhancing LLMs' long-range capabilities. Our code is available at https://github.com/GATECH-EIC/LaCache.

  • 11 authors
·
Jul 14, 2025

Training-free Context-adaptive Attention for Efficient Long Context Modeling

Large Language Models (LLMs) have demonstrated remarkable capabilities across a wide range of natural language processing tasks. These capabilities stem primarily from the self-attention mechanism, which enables modeling of long-range dependencies. However, the quadratic complexity of self-attention with respect to sequence length poses significant computational and memory challenges, especially as sequence length extends to extremes. While various sparse attention and KV cache compression methods have been proposed to improve efficiency, they often suffer from limitations such as reliance on fixed patterns, inability to handle both prefilling and decoding stages, or the requirement for additional training. In this paper, we propose Training-free Context-adaptive Attention (TCA-Attention), a training-free sparse attention mechanism that selectively attends to only the informative tokens for efficient long-context inference. Our method consists of two lightweight phases: i) an offline calibration phase that determines head-specific sparsity budgets via a single forward pass, and ii) an online token selection phase that adaptively retains core context tokens using a lightweight redundancy metric. TCA-Attention provides a unified solution that accelerates both prefilling and decoding while reducing KV cache memory footprint, without requiring parameter updates or architectural changes. Theoretical analysis shows that our approach maintains bounded approximation error. Extensive experiments demonstrate that TCA-Attention achieves a 2.8times speedup and reduces KV cache by 61% at 128K context length while maintaining performance comparable to full attention across various benchmarks, offering a practical plug-and-play solution for efficient long-context inference.

  • 8 authors
·
Dec 9, 2025

Stuffed Mamba: State Collapse and State Capacity of RNN-Based Long-Context Modeling

One essential advantage of recurrent neural networks (RNNs) over transformer-based language models is their linear computational complexity concerning the sequence length, which makes them much faster in handling long sequences during inference. However, most publicly available RNNs (e.g., Mamba and RWKV) are trained on sequences with less than 10K tokens, and their effectiveness in longer contexts remains largely unsatisfying so far. In this paper, we study the cause of the inability to process long context for RNNs and suggest critical mitigations. We examine two practical concerns when applying state-of-the-art RNNs to long contexts: (1) the inability to extrapolate to inputs longer than the training length and (2) the upper bound of memory capacity. Addressing the first concern, we first investigate *state collapse* (SC), a phenomenon that causes severe performance degradation on sequence lengths not encountered during training. With controlled experiments, we attribute this to overfitting due to the recurrent state being overparameterized for the training length. For the second concern, we train a series of Mamba-2 models on long documents to empirically estimate the recurrent state capacity in language modeling and passkey retrieval. Then, three SC mitigation methods are proposed to improve Mamba-2's length generalizability, allowing the model to process more than 1M tokens without SC. We also find that the recurrent state capacity in passkey retrieval scales exponentially to the state size, and we empirically train a Mamba-2 370M with near-perfect passkey retrieval accuracy on 256K context length. This suggests a promising future for RNN-based long-context modeling.

  • 6 authors
·
Oct 9, 2024 3

LAWCAT: Efficient Distillation from Quadratic to Linear Attention with Convolution across Tokens for Long Context Modeling

Although transformer architectures have achieved state-of-the-art performance across diverse domains, their quadratic computational complexity with respect to sequence length remains a significant bottleneck, particularly for latency-sensitive long-context applications. While recent linear-complexity alternatives are increasingly powerful, effectively training them from scratch is still resource-intensive. To overcome these limitations, we propose LAWCAT (Linear Attention with Convolution Across Time), a novel linearization framework designed to efficiently transfer the capabilities of pre-trained transformers into a performant linear attention architecture. LAWCAT integrates causal Conv1D layers to enhance local dependency modeling and employs normalized gated linear attention to improve generalization across varying context lengths. Our comprehensive evaluations demonstrate that, distilling Mistral-7B with only 1K-length sequences yields over 90\% passkey retrieval accuracy up to 22K tokens, significantly extending its effective context window. Similarly, Llama3.2-1B LAWCAT variant achieves competitive performance on S-NIAH 1\&2\&3 tasks (1K-8K context length) and BABILong benchmark (QA2\&QA3, 0K-16K context length), requiring less than 0.1\% pre-training tokens compared with pre-training models. Furthermore, LAWCAT exhibits faster prefill speeds than FlashAttention-2 for sequences exceeding 8K tokens. LAWCAT thus provides an efficient pathway to high-performance, long-context linear models suitable for edge deployment, reducing reliance on extensive long-sequence training data and computational resources.

  • 8 authors
·
Sep 22, 2025

Overcoming Long-Context Limitations of State-Space Models via Context-Dependent Sparse Attention

Efficient long-context modeling remains a critical challenge for natural language processing (NLP), as the time complexity of the predominant Transformer architecture scales quadratically with the sequence length. While state-space models (SSMs) offer alternative sub-quadratic solutions, they struggle to capture long-range dependencies effectively. In this work, we focus on analyzing and improving the long-context modeling capabilities of SSMs. We show that the widely used synthetic task, associative recall, which requires a model to recall a value associated with a single key without context, insufficiently represents the complexities of real-world long-context modeling. To address this limitation, we extend the associative recall to a novel synthetic task, joint recall, which requires a model to recall the value associated with a key given in a specified context. Theoretically, we prove that SSMs do not have the expressiveness to solve multi-query joint recall in sub-quadratic time complexity. To resolve this issue, we propose a solution based on integrating SSMs with Context-Dependent Sparse Attention (CDSA), which has the expressiveness to solve multi-query joint recall with sub-quadratic computation. To bridge the gap between theoretical analysis and real-world applications, we propose locality-sensitive Hashing Attention with sparse Key Selection (HAX), which instantiates the theoretical solution and is further tailored to natural language domains. Extensive experiments on both synthetic and real-world long-context benchmarks show that HAX consistently outperforms SSM baselines and SSMs integrated with context-independent sparse attention (CISA).

  • 4 authors
·
Jul 1, 2025

Mamba-360: Survey of State Space Models as Transformer Alternative for Long Sequence Modelling: Methods, Applications, and Challenges

Sequence modeling is a crucial area across various domains, including Natural Language Processing (NLP), speech recognition, time series forecasting, music generation, and bioinformatics. Recurrent Neural Networks (RNNs) and Long Short Term Memory Networks (LSTMs) have historically dominated sequence modeling tasks like Machine Translation, Named Entity Recognition (NER), etc. However, the advancement of transformers has led to a shift in this paradigm, given their superior performance. Yet, transformers suffer from O(N^2) attention complexity and challenges in handling inductive bias. Several variations have been proposed to address these issues which use spectral networks or convolutions and have performed well on a range of tasks. However, they still have difficulty in dealing with long sequences. State Space Models(SSMs) have emerged as promising alternatives for sequence modeling paradigms in this context, especially with the advent of S4 and its variants, such as S4nd, Hippo, Hyena, Diagnol State Spaces (DSS), Gated State Spaces (GSS), Linear Recurrent Unit (LRU), Liquid-S4, Mamba, etc. In this survey, we categorize the foundational SSMs based on three paradigms namely, Gating architectures, Structural architectures, and Recurrent architectures. This survey also highlights diverse applications of SSMs across domains such as vision, video, audio, speech, language (especially long sequence modeling), medical (including genomics), chemical (like drug design), recommendation systems, and time series analysis, including tabular data. Moreover, we consolidate the performance of SSMs on benchmark datasets like Long Range Arena (LRA), WikiText, Glue, Pile, ImageNet, Kinetics-400, sstv2, as well as video datasets such as Breakfast, COIN, LVU, and various time series datasets. The project page for Mamba-360 work is available on this webpage.https://github.com/badripatro/mamba360.

  • 2 authors
·
Apr 24, 2024 1

Orchid: Flexible and Data-Dependent Convolution for Sequence Modeling

In the rapidly evolving landscape of deep learning, the quest for models that balance expressivity with computational efficiency has never been more critical. This paper introduces Orchid, a novel architecture that reimagines sequence modeling by incorporating a new data-dependent convolution mechanism. Orchid is designed to address the inherent limitations of traditional attention mechanisms, particularly their quadratic complexity, without compromising the ability to capture long-range dependencies and in-context learning. At the core of Orchid lies the data-dependent convolution layer, which dynamically adjusts its kernel conditioned on input data using a dedicated conditioning neural network. We design two simple conditioning networks that maintain shift equivariance in the adaptive convolution operation. The dynamic nature of data-dependent convolution kernel, coupled with gating operations, grants Orchid high expressivity while maintaining efficiency and quasilinear scalability for long sequences. We rigorously evaluate Orchid across multiple domains, including language modeling and image classification, to showcase its performance and generality. Our experiments demonstrate that Orchid architecture not only outperforms traditional attention-based architectures such as BERT and Vision Transformers with smaller model sizes, but also extends the feasible sequence length beyond the limitations of the dense attention layers. This achievement represents a significant step towards more efficient and scalable deep learning models for sequence modeling.

  • 2 authors
·
Feb 28, 2024 2

Structured State Space Models for In-Context Reinforcement Learning

Structured state space sequence (S4) models have recently achieved state-of-the-art performance on long-range sequence modeling tasks. These models also have fast inference speeds and parallelisable training, making them potentially useful in many reinforcement learning settings. We propose a modification to a variant of S4 that enables us to initialise and reset the hidden state in parallel, allowing us to tackle reinforcement learning tasks. We show that our modified architecture runs asymptotically faster than Transformers in sequence length and performs better than RNN's on a simple memory-based task. We evaluate our modified architecture on a set of partially-observable environments and find that, in practice, our model outperforms RNN's while also running over five times faster. Then, by leveraging the model's ability to handle long-range sequences, we achieve strong performance on a challenging meta-learning task in which the agent is given a randomly-sampled continuous control environment, combined with a randomly-sampled linear projection of the environment's observations and actions. Furthermore, we show the resulting model can adapt to out-of-distribution held-out tasks. Overall, the results presented in this paper show that structured state space models are fast and performant for in-context reinforcement learning tasks. We provide code at https://github.com/luchris429/popjaxrl.

  • 7 authors
·
Mar 7, 2023

HyperZ$\cdot$Z$\cdot$W Operator Connects Slow-Fast Networks for Full Context Interaction

The self-attention mechanism utilizes large implicit weight matrices, programmed through dot product-based activations with very few trainable parameters, to enable long sequence modeling. In this paper, we investigate the possibility of discarding residual learning by employing large implicit kernels to achieve full context interaction at each layer of the network. To accomplish it, we introduce coordinate-based implicit MLPs as a slow network to generate hyper-kernels for another fast convolutional network. To get context-varying weights for fast dynamic encoding, we propose a HyperZ{cdotZ{cdot}W} operator that connects hyper-kernels (W) and hidden activations (Z) through simple elementwise multiplication, followed by convolution of Z using the context-dependent W. Based on this design, we present a novel Terminator architecture that integrates hyper-kernels of different sizes to produce multi-branch hidden representations for enhancing the feature extraction capability of each layer. Additionally, a bottleneck layer is employed to compress the concatenated channels, allowing only valuable information to propagate to the subsequent layers. Notably, our model incorporates several innovative components and exhibits excellent properties, such as introducing local feedback error for updating the slow network, stable zero-mean features, faster training convergence, and fewer model parameters. Extensive experimental results on pixel-level 1D and 2D image classification benchmarks demonstrate the superior performance of our architecture.

  • 1 authors
·
Jan 31, 2024 1

Nested Learning: The Illusion of Deep Learning Architectures

Despite the recent progresses, particularly in developing Language Models, there are fundamental challenges and unanswered questions about how such models can continually learn/memorize, self-improve, and find effective solutions. In this paper, we present a new learning paradigm, called Nested Learning (NL), that coherently represents a machine learning model with a set of nested, multi-level, and/or parallel optimization problems, each of which with its own context flow. Through the lenses of NL, existing deep learning methods learns from data through compressing their own context flow, and in-context learning naturally emerges in large models. NL suggests a philosophy to design more expressive learning algorithms with more levels, resulting in higher-order in-context learning and potentially unlocking effective continual learning capabilities. We advocate for NL by presenting three core contributions: (1) Expressive Optimizers: We show that known gradient-based optimizers, such as Adam, SGD with Momentum, etc., are in fact associative memory modules that aim to compress the gradients' information (by gradient descent). Building on this insight, we present other more expressive optimizers with deep memory and/or more powerful learning rules; (2) Self-Modifying Learning Module: Taking advantage of NL's insights on learning algorithms, we present a sequence model that learns how to modify itself by learning its own update algorithm; and (3) Continuum Memory System: We present a new formulation for memory system that generalizes the traditional viewpoint of long/short-term memory. Combining our self-modifying sequence model with the continuum memory system, we present a continual learning module, called Hope, showing promising results in language modeling, knowledge incorporation, and few-shot generalization tasks, continual learning, and long-context reasoning tasks.

  • 4 authors
·
Dec 31, 2025 5

Bio-xLSTM: Generative modeling, representation and in-context learning of biological and chemical sequences

Language models for biological and chemical sequences enable crucial applications such as drug discovery, protein engineering, and precision medicine. Currently, these language models are predominantly based on Transformer architectures. While Transformers have yielded impressive results, their quadratic runtime dependency on the sequence length complicates their use for long genomic sequences and in-context learning on proteins and chemical sequences. Recently, the recurrent xLSTM architecture has been shown to perform favorably compared to Transformers and modern state-space model (SSM) architectures in the natural language domain. Similar to SSMs, xLSTMs have a linear runtime dependency on the sequence length and allow for constant-memory decoding at inference time, which makes them prime candidates for modeling long-range dependencies in biological and chemical sequences. In this work, we tailor xLSTM towards these domains and propose a suite of architectural variants called Bio-xLSTM. Extensive experiments in three large domains, genomics, proteins, and chemistry, were performed to assess xLSTM's ability to model biological and chemical sequences. The results show that models based on Bio-xLSTM a) can serve as proficient generative models for DNA, protein, and chemical sequences, b) learn rich representations for those modalities, and c) can perform in-context learning for proteins and small molecules.

  • 10 authors
·
Nov 6, 2024

Long-Context Modeling with Dynamic Hierarchical Sparse Attention for On-Device LLMs

The quadratic cost of attention hinders the scalability of long-context LLMs, especially in resource-constrained settings. Existing static sparse methods such as sliding windows or global tokens utilizes the sparsity of attention to reduce the cost of attention, but poorly adapts to the content-dependent variations in attention due to their staticity. While previous work has proposed several dynamic approaches to improve flexibility, they still depend on predefined templates or heuristic mechanisms. Such strategies reduce generality and prune tokens that remain contextually important, limiting their accuracy across diverse tasks. To tackle these bottlenecks of existing methods for long-context modeling, we introduce Dynamic Hierarchical Sparse Attention (DHSA), a data-driven framework that dynamically predicts attention sparsity online without retraining. Our proposed DHSA adaptively segments sequences into variable-length chunks, then computes chunk representations by aggregating the token embeddings within each chunk. To avoid the bias introduced by varying chunk lengths, we apply length-normalized aggregation that scales the averaged embeddings by the square root of the chunk size. Finally, DHSA upsamples the chunk-level similarity scores to token level similarities to calculate importance scores that determine which token-level interactions should be preserved. Our experiments on Gemma2 with Needle-in-a-Haystack Test and LongBench show that DHSA matches dense attention in accuracy, while reducing prefill latency by 20-60% and peak memory usage by 35%. Compared to other representative baselines such as block sparse attention, DHSA achieves consistently higher accuracy (6-18% relative gains) with comparable or lower cost, offering an efficient and adaptable solution for long-context on-device LLMs.

  • 4 authors
·
Oct 28, 2025

Long-Context Autoregressive Video Modeling with Next-Frame Prediction

Long-context autoregressive modeling has significantly advanced language generation, but video generation still struggles to fully utilize extended temporal contexts. To investigate long-context video modeling, we introduce Frame AutoRegressive (FAR), a strong baseline for video autoregressive modeling. Just as language models learn causal dependencies between tokens (i.e., Token AR), FAR models temporal causal dependencies between continuous frames, achieving better convergence than Token AR and video diffusion transformers. Building on FAR, we observe that long-context vision modeling faces challenges due to visual redundancy. Existing RoPE lacks effective temporal decay for remote context and fails to extrapolate well to long video sequences. Additionally, training on long videos is computationally expensive, as vision tokens grow much faster than language tokens. To tackle these issues, we propose balancing locality and long-range dependency. We introduce FlexRoPE, an test-time technique that adds flexible temporal decay to RoPE, enabling extrapolation to 16x longer vision contexts. Furthermore, we propose long short-term context modeling, where a high-resolution short-term context window ensures fine-grained temporal consistency, while an unlimited long-term context window encodes long-range information using fewer tokens. With this approach, we can train on long video sequences with a manageable token context length. We demonstrate that FAR achieves state-of-the-art performance in both short- and long-video generation, providing a simple yet effective baseline for video autoregressive modeling.

  • 3 authors
·
Mar 24, 2025 2

Imagination is All You Need! Curved Contrastive Learning for Abstract Sequence Modeling Utilized on Long Short-Term Dialogue Planning

Inspired by the curvature of space-time (Einstein, 1921), we introduce Curved Contrastive Learning (CCL), a novel representation learning technique for learning the relative turn distance between utterance pairs in multi-turn dialogues. The resulting bi-encoder models can guide transformers as a response ranking model towards a goal in a zero-shot fashion by projecting the goal utterance and the corresponding reply candidates into a latent space. Here the cosine similarity indicates the distance/reachability of a candidate utterance toward the corresponding goal. Furthermore, we explore how these forward-entailing language representations can be utilized for assessing the likelihood of sequences by the entailment strength i.e. through the cosine similarity of its individual members (encoded separately) as an emergent property in the curved space. These non-local properties allow us to imagine the likelihood of future patterns in dialogues, specifically by ordering/identifying future goal utterances that are multiple turns away, given a dialogue context. As part of our analysis, we investigate characteristics that make conversations (un)plannable and find strong evidence of planning capability over multiple turns (in 61.56% over 3 turns) in conversations from the DailyDialog (Li et al., 2017) dataset. Finally, we show how we achieve higher efficiency in sequence modeling tasks compared to previous work thanks to our relativistic approach, where only the last utterance needs to be encoded and computed during inference.

  • 3 authors
·
Nov 14, 2022

Foundation Models for Music: A Survey

In recent years, foundation models (FMs) such as large language models (LLMs) and latent diffusion models (LDMs) have profoundly impacted diverse sectors, including music. This comprehensive review examines state-of-the-art (SOTA) pre-trained models and foundation models in music, spanning from representation learning, generative learning and multimodal learning. We first contextualise the significance of music in various industries and trace the evolution of AI in music. By delineating the modalities targeted by foundation models, we discover many of the music representations are underexplored in FM development. Then, emphasis is placed on the lack of versatility of previous methods on diverse music applications, along with the potential of FMs in music understanding, generation and medical application. By comprehensively exploring the details of the model pre-training paradigm, architectural choices, tokenisation, finetuning methodologies and controllability, we emphasise the important topics that should have been well explored, like instruction tuning and in-context learning, scaling law and emergent ability, as well as long-sequence modelling etc. A dedicated section presents insights into music agents, accompanied by a thorough analysis of datasets and evaluations essential for pre-training and downstream tasks. Finally, by underscoring the vital importance of ethical considerations, we advocate that following research on FM for music should focus more on such issues as interpretability, transparency, human responsibility, and copyright issues. The paper offers insights into future challenges and trends on FMs for music, aiming to shape the trajectory of human-AI collaboration in the music realm.

  • 43 authors
·
Aug 26, 2024 2