- Torchhd: An Open Source Python Library to Support Research on Hyperdimensional Computing and Vector Symbolic Architectures Hyperdimensional computing (HD), also known as vector symbolic architectures (VSA), is a framework for computing with distributed representations by exploiting properties of random high-dimensional vector spaces. The commitment of the scientific community to aggregate and disseminate research in this particularly multidisciplinary area has been fundamental for its advancement. Joining these efforts, we present Torchhd, a high-performance open source Python library for HD/VSA. Torchhd seeks to make HD/VSA more accessible and serves as an efficient foundation for further research and application development. The easy-to-use library builds on top of PyTorch and features state-of-the-art HD/VSA functionality, clear documentation, and implementation examples from well-known publications. Comparing publicly available code with their corresponding Torchhd implementation shows that experiments can run up to 100x faster. Torchhd is available at: https://github.com/hyperdimensional-computing/torchhd. 8 authors · May 18, 2022
- NLI4VolVis: Natural Language Interaction for Volume Visualization via LLM Multi-Agents and Editable 3D Gaussian Splatting Traditional volume visualization (VolVis) methods, like direct volume rendering, suffer from rigid transfer function designs and high computational costs. Although novel view synthesis approaches enhance rendering efficiency, they require additional learning effort for non-experts and lack support for semantic-level interaction. To bridge this gap, we propose NLI4VolVis, an interactive system that enables users to explore, query, and edit volumetric scenes using natural language. NLI4VolVis integrates multi-view semantic segmentation and vision-language models to extract and understand semantic components in a scene. We introduce a multi-agent large language model architecture equipped with extensive function-calling tools to interpret user intents and execute visualization tasks. The agents leverage external tools and declarative VolVis commands to interact with the VolVis engine powered by 3D editable Gaussians, enabling open-vocabulary object querying, real-time scene editing, best-view selection, and 2D stylization. We validate our system through case studies and a user study, highlighting its improved accessibility and usability in volumetric data exploration. We strongly recommend readers check our case studies, demo video, and source code at https://nli4volvis.github.io/. 3 authors · Jul 16