Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribePrompt-Driven Contrastive Learning for Transferable Adversarial Attacks
Recent vision-language foundation models, such as CLIP, have demonstrated superior capabilities in learning representations that can be transferable across diverse range of downstream tasks and domains. With the emergence of such powerful models, it has become crucial to effectively leverage their capabilities in tackling challenging vision tasks. On the other hand, only a few works have focused on devising adversarial examples that transfer well to both unknown domains and model architectures. In this paper, we propose a novel transfer attack method called PDCL-Attack, which leverages the CLIP model to enhance the transferability of adversarial perturbations generated by a generative model-based attack framework. Specifically, we formulate an effective prompt-driven feature guidance by harnessing the semantic representation power of text, particularly from the ground-truth class labels of input images. To the best of our knowledge, we are the first to introduce prompt learning to enhance the transferable generative attacks. Extensive experiments conducted across various cross-domain and cross-model settings empirically validate our approach, demonstrating its superiority over state-of-the-art methods.
GREAT Score: Global Robustness Evaluation of Adversarial Perturbation using Generative Models
Current studies on adversarial robustness mainly focus on aggregating local robustness results from a set of data samples to evaluate and rank different models. However, the local statistics may not well represent the true global robustness of the underlying unknown data distribution. To address this challenge, this paper makes the first attempt to present a new framework, called GREAT Score , for global robustness evaluation of adversarial perturbation using generative models. Formally, GREAT Score carries the physical meaning of a global statistic capturing a mean certified attack-proof perturbation level over all samples drawn from a generative model. For finite-sample evaluation, we also derive a probabilistic guarantee on the sample complexity and the difference between the sample mean and the true mean. GREAT Score has several advantages: (1) Robustness evaluations using GREAT Score are efficient and scalable to large models, by sparing the need of running adversarial attacks. In particular, we show high correlation and significantly reduced computation cost of GREAT Score when compared to the attack-based model ranking on RobustBench (Croce,et. al. 2021). (2) The use of generative models facilitates the approximation of the unknown data distribution. In our ablation study with different generative adversarial networks (GANs), we observe consistency between global robustness evaluation and the quality of GANs. (3) GREAT Score can be used for remote auditing of privacy-sensitive black-box models, as demonstrated by our robustness evaluation on several online facial recognition services.
T-Miner: A Generative Approach to Defend Against Trojan Attacks on DNN-based Text Classification
Deep Neural Network (DNN) classifiers are known to be vulnerable to Trojan or backdoor attacks, where the classifier is manipulated such that it misclassifies any input containing an attacker-determined Trojan trigger. Backdoors compromise a model's integrity, thereby posing a severe threat to the landscape of DNN-based classification. While multiple defenses against such attacks exist for classifiers in the image domain, there have been limited efforts to protect classifiers in the text domain. We present Trojan-Miner (T-Miner) -- a defense framework for Trojan attacks on DNN-based text classifiers. T-Miner employs a sequence-to-sequence (seq-2-seq) generative model that probes the suspicious classifier and learns to produce text sequences that are likely to contain the Trojan trigger. T-Miner then analyzes the text produced by the generative model to determine if they contain trigger phrases, and correspondingly, whether the tested classifier has a backdoor. T-Miner requires no access to the training dataset or clean inputs of the suspicious classifier, and instead uses synthetically crafted "nonsensical" text inputs to train the generative model. We extensively evaluate T-Miner on 1100 model instances spanning 3 ubiquitous DNN model architectures, 5 different classification tasks, and a variety of trigger phrases. We show that T-Miner detects Trojan and clean models with a 98.75% overall accuracy, while achieving low false positives on clean models. We also show that T-Miner is robust against a variety of targeted, advanced attacks from an adaptive attacker.
Key Protected Classification for Collaborative Learning
Large-scale datasets play a fundamental role in training deep learning models. However, dataset collection is difficult in domains that involve sensitive information. Collaborative learning techniques provide a privacy-preserving solution, by enabling training over a number of private datasets that are not shared by their owners. However, recently, it has been shown that the existing collaborative learning frameworks are vulnerable to an active adversary that runs a generative adversarial network (GAN) attack. In this work, we propose a novel classification model that is resilient against such attacks by design. More specifically, we introduce a key-based classification model and a principled training scheme that protects class scores by using class-specific private keys, which effectively hide the information necessary for a GAN attack. We additionally show how to utilize high dimensional keys to improve the robustness against attacks without increasing the model complexity. Our detailed experiments demonstrate the effectiveness of the proposed technique. Source code is available at https://github.com/mbsariyildiz/key-protected-classification.
Label-Only Model Inversion Attacks via Knowledge Transfer
In a model inversion (MI) attack, an adversary abuses access to a machine learning (ML) model to infer and reconstruct private training data. Remarkable progress has been made in the white-box and black-box setups, where the adversary has access to the complete model or the model's soft output respectively. However, there is very limited study in the most challenging but practically important setup: Label-only MI attacks, where the adversary only has access to the model's predicted label (hard label) without confidence scores nor any other model information. In this work, we propose LOKT, a novel approach for label-only MI attacks. Our idea is based on transfer of knowledge from the opaque target model to surrogate models. Subsequently, using these surrogate models, our approach can harness advanced white-box attacks. We propose knowledge transfer based on generative modelling, and introduce a new model, Target model-assisted ACGAN (T-ACGAN), for effective knowledge transfer. Our method casts the challenging label-only MI into the more tractable white-box setup. We provide analysis to support that surrogate models based on our approach serve as effective proxies for the target model for MI. Our experiments show that our method significantly outperforms existing SOTA Label-only MI attack by more than 15% across all MI benchmarks. Furthermore, our method compares favorably in terms of query budget. Our study highlights rising privacy threats for ML models even when minimal information (i.e., hard labels) is exposed. Our study highlights rising privacy threats for ML models even when minimal information (i.e., hard labels) is exposed. Our code, demo, models and reconstructed data are available at our project page: https://ngoc-nguyen-0.github.io/lokt/
T2VSafetyBench: Evaluating the Safety of Text-to-Video Generative Models
The recent development of Sora leads to a new era in text-to-video (T2V) generation. Along with this comes the rising concern about its security risks. The generated videos may contain illegal or unethical content, and there is a lack of comprehensive quantitative understanding of their safety, posing a challenge to their reliability and practical deployment. Previous evaluations primarily focus on the quality of video generation. While some evaluations of text-to-image models have considered safety, they cover fewer aspects and do not address the unique temporal risk inherent in video generation. To bridge this research gap, we introduce T2VSafetyBench, a new benchmark designed for conducting safety-critical assessments of text-to-video models. We define 12 critical aspects of video generation safety and construct a malicious prompt dataset including real-world prompts, LLM-generated prompts and jailbreak attack-based prompts. Based on our evaluation results, we draw several important findings, including: 1) no single model excels in all aspects, with different models showing various strengths; 2) the correlation between GPT-4 assessments and manual reviews is generally high; 3) there is a trade-off between the usability and safety of text-to-video generative models. This indicates that as the field of video generation rapidly advances, safety risks are set to surge, highlighting the urgency of prioritizing video safety. We hope that T2VSafetyBench can provide insights for better understanding the safety of video generation in the era of generative AI.
GenMol: A Drug Discovery Generalist with Discrete Diffusion
Drug discovery is a complex process that involves multiple scenarios and stages, such as fragment-constrained molecule generation, hit generation and lead optimization. However, existing molecular generative models can only tackle one or two of these scenarios and lack the flexibility to address various aspects of the drug discovery pipeline. In this paper, we present Generalist Molecular generative model (GenMol), a versatile framework that addresses these limitations by applying discrete diffusion to the Sequential Attachment-based Fragment Embedding (SAFE) molecular representation. GenMol generates SAFE sequences through non-autoregressive bidirectional parallel decoding, thereby allowing utilization of a molecular context that does not rely on the specific token ordering and enhanced computational efficiency. Moreover, under the discrete diffusion framework, we introduce fragment remasking, a strategy that optimizes molecules by replacing fragments with masked tokens and regenerating them, enabling effective exploration of chemical space. GenMol significantly outperforms the previous GPT-based model trained on SAFE representations in de novo generation and fragment-constrained generation, and achieves state-of-the-art performance in goal-directed hit generation and lead optimization. These experimental results demonstrate that GenMol can tackle a wide range of drug discovery tasks, providing a unified and versatile approach for molecular design.
Are Diffusion Models Vulnerable to Membership Inference Attacks?
Diffusion-based generative models have shown great potential for image synthesis, but there is a lack of research on the security and privacy risks they may pose. In this paper, we investigate the vulnerability of diffusion models to Membership Inference Attacks (MIAs), a common privacy concern. Our results indicate that existing MIAs designed for GANs or VAE are largely ineffective on diffusion models, either due to inapplicable scenarios (e.g., requiring the discriminator of GANs) or inappropriate assumptions (e.g., closer distances between synthetic samples and member samples). To address this gap, we propose Step-wise Error Comparing Membership Inference (SecMI), a query-based MIA that infers memberships by assessing the matching of forward process posterior estimation at each timestep. SecMI follows the common overfitting assumption in MIA where member samples normally have smaller estimation errors, compared with hold-out samples. We consider both the standard diffusion models, e.g., DDPM, and the text-to-image diffusion models, e.g., Latent Diffusion Models and Stable Diffusion. Experimental results demonstrate that our methods precisely infer the membership with high confidence on both of the two scenarios across multiple different datasets. Code is available at https://github.com/jinhaoduan/SecMI.
Dimension-Reduction Attack! Video Generative Models are Experts on Controllable Image Synthesis
Video generative models can be regarded as world simulators due to their ability to capture dynamic, continuous changes inherent in real-world environments. These models integrate high-dimensional information across visual, temporal, spatial, and causal dimensions, enabling predictions of subjects in various status. A natural and valuable research direction is to explore whether a fully trained video generative model in high-dimensional space can effectively support lower-dimensional tasks such as controllable image generation. In this work, we propose a paradigm for video-to-image knowledge compression and task adaptation, termed Dimension-Reduction Attack (DRA-Ctrl), which utilizes the strengths of video models, including long-range context modeling and flatten full-attention, to perform various generation tasks. Specially, to address the challenging gap between continuous video frames and discrete image generation, we introduce a mixup-based transition strategy that ensures smooth adaptation. Moreover, we redesign the attention structure with a tailored masking mechanism to better align text prompts with image-level control. Experiments across diverse image generation tasks, such as subject-driven and spatially conditioned generation, show that repurposed video models outperform those trained directly on images. These results highlight the untapped potential of large-scale video generators for broader visual applications. DRA-Ctrl provides new insights into reusing resource-intensive video models and lays foundation for future unified generative models across visual modalities. The project page is https://dra-ctrl-2025.github.io/DRA-Ctrl/.
Pixel Is Not a Barrier: An Effective Evasion Attack for Pixel-Domain Diffusion Models
Diffusion Models have emerged as powerful generative models for high-quality image synthesis, with many subsequent image editing techniques based on them. However, the ease of text-based image editing introduces significant risks, such as malicious editing for scams or intellectual property infringement. Previous works have attempted to safeguard images from diffusion-based editing by adding imperceptible perturbations. These methods are costly and specifically target prevalent Latent Diffusion Models (LDMs), while Pixel-domain Diffusion Models (PDMs) remain largely unexplored and robust against such attacks. Our work addresses this gap by proposing a novel attack framework, AtkPDM. AtkPDM is mainly composed of a feature representation attacking loss that exploits vulnerabilities in denoising UNets and a latent optimization strategy to enhance the naturalness of adversarial images. Extensive experiments demonstrate the effectiveness of our approach in attacking dominant PDM-based editing methods (e.g., SDEdit) while maintaining reasonable fidelity and robustness against common defense methods. Additionally, our framework is extensible to LDMs, achieving comparable performance to existing approaches.
Against The Achilles' Heel: A Survey on Red Teaming for Generative Models
Generative models are rapidly gaining popularity and being integrated into everyday applications, raising concerns over their safe use as various vulnerabilities are exposed. In light of this, the field of red teaming is undergoing fast-paced growth, highlighting the need for a comprehensive survey covering the entire pipeline and addressing emerging topics. Our extensive survey, which examines over 120 papers, introduces a taxonomy of fine-grained attack strategies grounded in the inherent capabilities of language models. Additionally, we have developed the "searcher" framework to unify various automatic red teaming approaches. Moreover, our survey covers novel areas including multimodal attacks and defenses, risks around LLM-based agents, overkill of harmless queries, and the balance between harmlessness and helpfulness.
Robustness of Watermarking on Text-to-Image Diffusion Models
Watermarking has become one of promising techniques to not only aid in identifying AI-generated images but also serve as a deterrent against the unethical use of these models. However, the robustness of watermarking techniques has not been extensively studied recently. In this paper, we investigate the robustness of generative watermarking, which is created from the integration of watermarking embedding and text-to-image generation processing in generative models, e.g., latent diffusion models. Specifically, we propose three attacking methods, i.e., discriminator-based attacks, edge prediction-based attacks, and fine-tune-based attacks, under the scenario where the watermark decoder is not accessible. The model is allowed to be fine-tuned to created AI agents with specific generative tasks for personalizing or specializing. We found that generative watermarking methods are robust to direct evasion attacks, like discriminator-based attacks, or manipulation based on the edge information in edge prediction-based attacks but vulnerable to malicious fine-tuning. Experimental results show that our fine-tune-based attacks can decrease the accuracy of the watermark detection to nearly 67.92%. In addition, We conduct an ablation study on the length of fine-tuned messages, encoder/decoder's depth and structure to identify key factors that impact the performance of fine-tune-based attacks.
AdvDiff: Generating Unrestricted Adversarial Examples using Diffusion Models
Unrestricted adversarial attacks present a serious threat to deep learning models and adversarial defense techniques. They pose severe security problems for deep learning applications because they can effectively bypass defense mechanisms. However, previous attack methods often directly inject Projected Gradient Descent (PGD) gradients into the sampling of generative models, which are not theoretically provable and thus generate unrealistic examples by incorporating adversarial objectives, especially for GAN-based methods on large-scale datasets like ImageNet. In this paper, we propose a new method, called AdvDiff, to generate unrestricted adversarial examples with diffusion models. We design two novel adversarial guidance techniques to conduct adversarial sampling in the reverse generation process of diffusion models. These two techniques are effective and stable in generating high-quality, realistic adversarial examples by integrating gradients of the target classifier interpretably. Experimental results on MNIST and ImageNet datasets demonstrate that AdvDiff is effective in generating unrestricted adversarial examples, which outperforms state-of-the-art unrestricted adversarial attack methods in terms of attack performance and generation quality.
I'm Afraid I Can't Do That: Predicting Prompt Refusal in Black-Box Generative Language Models
Since the release of OpenAI's ChatGPT, generative language models have attracted extensive public attention. The increased usage has highlighted generative models' broad utility, but also revealed several forms of embedded bias. Some is induced by the pre-training corpus; but additional bias specific to generative models arises from the use of subjective fine-tuning to avoid generating harmful content. Fine-tuning bias may come from individual engineers and company policies, and affects which prompts the model chooses to refuse. In this experiment, we characterize ChatGPT's refusal behavior using a black-box attack. We first query ChatGPT with a variety of offensive and benign prompts (n=1,706), then manually label each response as compliance or refusal. Manual examination of responses reveals that refusal is not cleanly binary, and lies on a continuum; as such, we map several different kinds of responses to a binary of compliance or refusal. The small manually-labeled dataset is used to train a refusal classifier, which achieves an accuracy of 96%. Second, we use this refusal classifier to bootstrap a larger (n=10,000) dataset adapted from the Quora Insincere Questions dataset. With this machine-labeled data, we train a prompt classifier to predict whether ChatGPT will refuse a given question, without seeing ChatGPT's response. This prompt classifier achieves 76% accuracy on a test set of manually labeled questions (n=985). We examine our classifiers and the prompt n-grams that are most predictive of either compliance or refusal. Our datasets and code are available at https://github.com/maxwellreuter/chatgpt-refusals.
Was it Slander? Towards Exact Inversion of Generative Language Models
Training large language models (LLMs) requires a substantial investment of time and money. To get a good return on investment, the developers spend considerable effort ensuring that the model never produces harmful and offensive outputs. However, bad-faith actors may still try to slander the reputation of an LLM by publicly reporting a forged output. In this paper, we show that defending against such slander attacks requires reconstructing the input of the forged output or proving that it does not exist. To do so, we propose and evaluate a search based approach for targeted adversarial attacks for LLMs. Our experiments show that we are rarely able to reconstruct the exact input of an arbitrary output, thus demonstrating that LLMs are still vulnerable to slander attacks.
Gotta be SAFE: A New Framework for Molecular Design
Traditional molecular string representations, such as SMILES, often pose challenges for AI-driven molecular design due to their non-sequential depiction of molecular substructures. To address this issue, we introduce Sequential Attachment-based Fragment Embedding (SAFE), a novel line notation for chemical structures. SAFE reimagines SMILES strings as an unordered sequence of interconnected fragment blocks while maintaining full compatibility with existing SMILES parsers. It streamlines complex generative tasks, including scaffold decoration, fragment linking, polymer generation, and scaffold hopping, while facilitating autoregressive generation for fragment-constrained design, thereby eliminating the need for intricate decoding or graph-based models. We demonstrate the effectiveness of SAFE by training an 87-million-parameter GPT2-like model on a dataset containing 1.1 billion SAFE representations. Through extensive experimentation, we show that our SAFE-GPT model exhibits versatile and robust optimization performance. SAFE opens up new avenues for the rapid exploration of chemical space under various constraints, promising breakthroughs in AI-driven molecular design.
CySecBench: Generative AI-based CyberSecurity-focused Prompt Dataset for Benchmarking Large Language Models
Numerous studies have investigated methods for jailbreaking Large Language Models (LLMs) to generate harmful content. Typically, these methods are evaluated using datasets of malicious prompts designed to bypass security policies established by LLM providers. However, the generally broad scope and open-ended nature of existing datasets can complicate the assessment of jailbreaking effectiveness, particularly in specific domains, notably cybersecurity. To address this issue, we present and publicly release CySecBench, a comprehensive dataset containing 12662 prompts specifically designed to evaluate jailbreaking techniques in the cybersecurity domain. The dataset is organized into 10 distinct attack-type categories, featuring close-ended prompts to enable a more consistent and accurate assessment of jailbreaking attempts. Furthermore, we detail our methodology for dataset generation and filtration, which can be adapted to create similar datasets in other domains. To demonstrate the utility of CySecBench, we propose and evaluate a jailbreaking approach based on prompt obfuscation. Our experimental results show that this method successfully elicits harmful content from commercial black-box LLMs, achieving Success Rates (SRs) of 65% with ChatGPT and 88% with Gemini; in contrast, Claude demonstrated greater resilience with a jailbreaking SR of 17%. Compared to existing benchmark approaches, our method shows superior performance, highlighting the value of domain-specific evaluation datasets for assessing LLM security measures. Moreover, when evaluated using prompts from a widely used dataset (i.e., AdvBench), it achieved an SR of 78.5%, higher than the state-of-the-art methods.
Embedding-based classifiers can detect prompt injection attacks
Large Language Models (LLMs) are seeing significant adoption in every type of organization due to their exceptional generative capabilities. However, LLMs are found to be vulnerable to various adversarial attacks, particularly prompt injection attacks, which trick them into producing harmful or inappropriate content. Adversaries execute such attacks by crafting malicious prompts to deceive the LLMs. In this paper, we propose a novel approach based on embedding-based Machine Learning (ML) classifiers to protect LLM-based applications against this severe threat. We leverage three commonly used embedding models to generate embeddings of malicious and benign prompts and utilize ML classifiers to predict whether an input prompt is malicious. Out of several traditional ML methods, we achieve the best performance with classifiers built using Random Forest and XGBoost. Our classifiers outperform state-of-the-art prompt injection classifiers available in open-source implementations, which use encoder-only neural networks.
Counterfactual Explanations for Face Forgery Detection via Adversarial Removal of Artifacts
Highly realistic AI generated face forgeries known as deepfakes have raised serious social concerns. Although DNN-based face forgery detection models have achieved good performance, they are vulnerable to latest generative methods that have less forgery traces and adversarial attacks. This limitation of generalization and robustness hinders the credibility of detection results and requires more explanations. In this work, we provide counterfactual explanations for face forgery detection from an artifact removal perspective. Specifically, we first invert the forgery images into the StyleGAN latent space, and then adversarially optimize their latent representations with the discrimination supervision from the target detection model. We verify the effectiveness of the proposed explanations from two aspects: (1) Counterfactual Trace Visualization: the enhanced forgery images are useful to reveal artifacts by visually contrasting the original images and two different visualization methods; (2) Transferable Adversarial Attacks: the adversarial forgery images generated by attacking the detection model are able to mislead other detection models, implying the removed artifacts are general. Extensive experiments demonstrate that our method achieves over 90% attack success rate and superior attack transferability. Compared with naive adversarial noise methods, our method adopts both generative and discriminative model priors, and optimize the latent representations in a synthesis-by-analysis way, which forces the search of counterfactual explanations on the natural face manifold. Thus, more general counterfactual traces can be found and better adversarial attack transferability can be achieved.
Nightshade: Prompt-Specific Poisoning Attacks on Text-to-Image Generative Models
Data poisoning attacks manipulate training data to introduce unexpected behaviors into machine learning models at training time. For text-to-image generative models with massive training datasets, current understanding of poisoning attacks suggests that a successful attack would require injecting millions of poison samples into their training pipeline. In this paper, we show that poisoning attacks can be successful on generative models. We observe that training data per concept can be quite limited in these models, making them vulnerable to prompt-specific poisoning attacks, which target a model's ability to respond to individual prompts. We introduce Nightshade, an optimized prompt-specific poisoning attack where poison samples look visually identical to benign images with matching text prompts. Nightshade poison samples are also optimized for potency and can corrupt an Stable Diffusion SDXL prompt in <100 poison samples. Nightshade poison effects "bleed through" to related concepts, and multiple attacks can composed together in a single prompt. Surprisingly, we show that a moderate number of Nightshade attacks can destabilize general features in a text-to-image generative model, effectively disabling its ability to generate meaningful images. Finally, we propose the use of Nightshade and similar tools as a last defense for content creators against web scrapers that ignore opt-out/do-not-crawl directives, and discuss possible implications for model trainers and content creators.
Plug & Play Attacks: Towards Robust and Flexible Model Inversion Attacks
Model inversion attacks (MIAs) aim to create synthetic images that reflect the class-wise characteristics from a target classifier's private training data by exploiting the model's learned knowledge. Previous research has developed generative MIAs that use generative adversarial networks (GANs) as image priors tailored to a specific target model. This makes the attacks time- and resource-consuming, inflexible, and susceptible to distributional shifts between datasets. To overcome these drawbacks, we present Plug & Play Attacks, which relax the dependency between the target model and image prior, and enable the use of a single GAN to attack a wide range of targets, requiring only minor adjustments to the attack. Moreover, we show that powerful MIAs are possible even with publicly available pre-trained GANs and under strong distributional shifts, for which previous approaches fail to produce meaningful results. Our extensive evaluation confirms the improved robustness and flexibility of Plug & Play Attacks and their ability to create high-quality images revealing sensitive class characteristics.
CLIP-Guided Networks for Transferable Targeted Attacks
Transferable targeted adversarial attacks aim to mislead models into outputting adversary-specified predictions in black-box scenarios. Recent studies have introduced single-target generative attacks that train a generator for each target class to generate highly transferable perturbations, resulting in substantial computational overhead when handling multiple classes. Multi-target attacks address this by training only one class-conditional generator for multiple classes. However, the generator simply uses class labels as conditions, failing to leverage the rich semantic information of the target class. To this end, we design a CLIP-guided Generative Network with Cross-attention modules (CGNC) to enhance multi-target attacks by incorporating textual knowledge of CLIP into the generator. Extensive experiments demonstrate that CGNC yields significant improvements over previous multi-target generative attacks, e.g., a 21.46\% improvement in success rate from ResNet-152 to DenseNet-121. Moreover, we propose a masked fine-tuning mechanism to further strengthen our method in attacking a single class, which surpasses existing single-target methods.
If generative AI is the answer, what is the question?
Beginning with text and images, generative AI has expanded to audio, video, computer code, and molecules. Yet, if generative AI is the answer, what is the question? We explore the foundations of generation as a distinct machine learning task with connections to prediction, compression, and decision-making. We survey five major generative model families: autoregressive models, variational autoencoders, normalizing flows, generative adversarial networks, and diffusion models. We then introduce a probabilistic framework that emphasizes the distinction between density estimation and generation. We review a game-theoretic framework with a two-player adversary-learner setup to study generation. We discuss post-training modifications that prepare generative models for deployment. We end by highlighting some important topics in socially responsible generation such as privacy, detection of AI-generated content, and copyright and IP. We adopt a task-first framing of generation, focusing on what generation is as a machine learning problem, rather than only on how models implement it.
GAMA: Generative Adversarial Multi-Object Scene Attacks
The majority of methods for crafting adversarial attacks have focused on scenes with a single dominant object (e.g., images from ImageNet). On the other hand, natural scenes include multiple dominant objects that are semantically related. Thus, it is crucial to explore designing attack strategies that look beyond learning on single-object scenes or attack single-object victim classifiers. Due to their inherent property of strong transferability of perturbations to unknown models, this paper presents the first approach of using generative models for adversarial attacks on multi-object scenes. In order to represent the relationships between different objects in the input scene, we leverage upon the open-sourced pre-trained vision-language model CLIP (Contrastive Language-Image Pre-training), with the motivation to exploit the encoded semantics in the language space along with the visual space. We call this attack approach Generative Adversarial Multi-object scene Attacks (GAMA). GAMA demonstrates the utility of the CLIP model as an attacker's tool to train formidable perturbation generators for multi-object scenes. Using the joint image-text features to train the generator, we show that GAMA can craft potent transferable perturbations in order to fool victim classifiers in various attack settings. For example, GAMA triggers ~16% more misclassification than state-of-the-art generative approaches in black-box settings where both the classifier architecture and data distribution of the attacker are different from the victim. Our code is available here: https://abhishekaich27.github.io/gama.html
Attack Atlas: A Practitioner's Perspective on Challenges and Pitfalls in Red Teaming GenAI
As generative AI, particularly large language models (LLMs), become increasingly integrated into production applications, new attack surfaces and vulnerabilities emerge and put a focus on adversarial threats in natural language and multi-modal systems. Red-teaming has gained importance in proactively identifying weaknesses in these systems, while blue-teaming works to protect against such adversarial attacks. Despite growing academic interest in adversarial risks for generative AI, there is limited guidance tailored for practitioners to assess and mitigate these challenges in real-world environments. To address this, our contributions include: (1) a practical examination of red- and blue-teaming strategies for securing generative AI, (2) identification of key challenges and open questions in defense development and evaluation, and (3) the Attack Atlas, an intuitive framework that brings a practical approach to analyzing single-turn input attacks, placing it at the forefront for practitioners. This work aims to bridge the gap between academic insights and practical security measures for the protection of generative AI systems.
Stochastic Parrots Looking for Stochastic Parrots: LLMs are Easy to Fine-Tune and Hard to Detect with other LLMs
The self-attention revolution allowed generative language models to scale and achieve increasingly impressive abilities. Such models - commonly referred to as Large Language Models (LLMs) - have recently gained prominence with the general public, thanks to conversational fine-tuning, putting their behavior in line with public expectations regarding AI. This prominence amplified prior concerns regarding the misuse of LLMs and led to the emergence of numerous tools to detect LLMs in the wild. Unfortunately, most such tools are critically flawed. While major publications in the LLM detectability field suggested that LLMs were easy to detect with fine-tuned autoencoders, the limitations of their results are easy to overlook. Specifically, they assumed publicly available generative models without fine-tunes or non-trivial prompts. While the importance of these assumptions has been demonstrated, until now, it remained unclear how well such detection could be countered. Here, we show that an attacker with access to such detectors' reference human texts and output not only evades detection but can fully frustrate the detector training - with a reasonable budget and all its outputs labeled as such. Achieving it required combining common "reinforcement from critic" loss function modification and AdamW optimizer, which led to surprisingly good fine-tuning generalization. Finally, we warn against the temptation to transpose the conclusions obtained in RNN-driven text GANs to LLMs due to their better representative ability. These results have critical implications for the detection and prevention of malicious use of generative language models, and we hope they will aid the designers of generative models and detectors.
A Closer Look at GAN Priors: Exploiting Intermediate Features for Enhanced Model Inversion Attacks
Model Inversion (MI) attacks aim to reconstruct privacy-sensitive training data from released models by utilizing output information, raising extensive concerns about the security of Deep Neural Networks (DNNs). Recent advances in generative adversarial networks (GANs) have contributed significantly to the improved performance of MI attacks due to their powerful ability to generate realistic images with high fidelity and appropriate semantics. However, previous MI attacks have solely disclosed private information in the latent space of GAN priors, limiting their semantic extraction and transferability across multiple target models and datasets. To address this challenge, we propose a novel method, Intermediate Features enhanced Generative Model Inversion (IF-GMI), which disassembles the GAN structure and exploits features between intermediate blocks. This allows us to extend the optimization space from latent code to intermediate features with enhanced expressive capabilities. To prevent GAN priors from generating unrealistic images, we apply a L1 ball constraint to the optimization process. Experiments on multiple benchmarks demonstrate that our method significantly outperforms previous approaches and achieves state-of-the-art results under various settings, especially in the out-of-distribution (OOD) scenario. Our code is available at: https://github.com/final-solution/IF-GMI
Achieving Model Robustness through Discrete Adversarial Training
Discrete adversarial attacks are symbolic perturbations to a language input that preserve the output label but lead to a prediction error. While such attacks have been extensively explored for the purpose of evaluating model robustness, their utility for improving robustness has been limited to offline augmentation only. Concretely, given a trained model, attacks are used to generate perturbed (adversarial) examples, and the model is re-trained exactly once. In this work, we address this gap and leverage discrete attacks for online augmentation, where adversarial examples are generated at every training step, adapting to the changing nature of the model. We propose (i) a new discrete attack, based on best-first search, and (ii) random sampling attacks that unlike prior work are not based on expensive search-based procedures. Surprisingly, we find that random sampling leads to impressive gains in robustness, outperforming the commonly-used offline augmentation, while leading to a speedup at training time of ~10x. Furthermore, online augmentation with search-based attacks justifies the higher training cost, significantly improving robustness on three datasets. Last, we show that our new attack substantially improves robustness compared to prior methods.
Downstream-agnostic Adversarial Examples
Self-supervised learning usually uses a large amount of unlabeled data to pre-train an encoder which can be used as a general-purpose feature extractor, such that downstream users only need to perform fine-tuning operations to enjoy the benefit of "large model". Despite this promising prospect, the security of pre-trained encoder has not been thoroughly investigated yet, especially when the pre-trained encoder is publicly available for commercial use. In this paper, we propose AdvEncoder, the first framework for generating downstream-agnostic universal adversarial examples based on the pre-trained encoder. AdvEncoder aims to construct a universal adversarial perturbation or patch for a set of natural images that can fool all the downstream tasks inheriting the victim pre-trained encoder. Unlike traditional adversarial example works, the pre-trained encoder only outputs feature vectors rather than classification labels. Therefore, we first exploit the high frequency component information of the image to guide the generation of adversarial examples. Then we design a generative attack framework to construct adversarial perturbations/patches by learning the distribution of the attack surrogate dataset to improve their attack success rates and transferability. Our results show that an attacker can successfully attack downstream tasks without knowing either the pre-training dataset or the downstream dataset. We also tailor four defenses for pre-trained encoders, the results of which further prove the attack ability of AdvEncoder.
Generative AI and Large Language Models for Cyber Security: All Insights You Need
This paper provides a comprehensive review of the future of cybersecurity through Generative AI and Large Language Models (LLMs). We explore LLM applications across various domains, including hardware design security, intrusion detection, software engineering, design verification, cyber threat intelligence, malware detection, and phishing detection. We present an overview of LLM evolution and its current state, focusing on advancements in models such as GPT-4, GPT-3.5, Mixtral-8x7B, BERT, Falcon2, and LLaMA. Our analysis extends to LLM vulnerabilities, such as prompt injection, insecure output handling, data poisoning, DDoS attacks, and adversarial instructions. We delve into mitigation strategies to protect these models, providing a comprehensive look at potential attack scenarios and prevention techniques. Furthermore, we evaluate the performance of 42 LLM models in cybersecurity knowledge and hardware security, highlighting their strengths and weaknesses. We thoroughly evaluate cybersecurity datasets for LLM training and testing, covering the lifecycle from data creation to usage and identifying gaps for future research. In addition, we review new strategies for leveraging LLMs, including techniques like Half-Quadratic Quantization (HQQ), Reinforcement Learning with Human Feedback (RLHF), Direct Preference Optimization (DPO), Quantized Low-Rank Adapters (QLoRA), and Retrieval-Augmented Generation (RAG). These insights aim to enhance real-time cybersecurity defenses and improve the sophistication of LLM applications in threat detection and response. Our paper provides a foundational understanding and strategic direction for integrating LLMs into future cybersecurity frameworks, emphasizing innovation and robust model deployment to safeguard against evolving cyber threats.
FLIRT: Feedback Loop In-context Red Teaming
Warning: this paper contains content that may be inappropriate or offensive. As generative models become available for public use in various applications, testing and analyzing vulnerabilities of these models has become a priority. Here we propose an automatic red teaming framework that evaluates a given model and exposes its vulnerabilities against unsafe and inappropriate content generation. Our framework uses in-context learning in a feedback loop to red team models and trigger them into unsafe content generation. We propose different in-context attack strategies to automatically learn effective and diverse adversarial prompts for text-to-image models. Our experiments demonstrate that compared to baseline approaches, our proposed strategy is significantly more effective in exposing vulnerabilities in Stable Diffusion (SD) model, even when the latter is enhanced with safety features. Furthermore, we demonstrate that the proposed framework is effective for red teaming text-to-text models, resulting in significantly higher toxic response generation rate compared to previously reported numbers.
PRADA: Practical Black-Box Adversarial Attacks against Neural Ranking Models
Neural ranking models (NRMs) have shown remarkable success in recent years, especially with pre-trained language models. However, deep neural models are notorious for their vulnerability to adversarial examples. Adversarial attacks may become a new type of web spamming technique given our increased reliance on neural information retrieval models. Therefore, it is important to study potential adversarial attacks to identify vulnerabilities of NRMs before they are deployed. In this paper, we introduce the Word Substitution Ranking Attack (WSRA) task against NRMs, which aims to promote a target document in rankings by adding adversarial perturbations to its text. We focus on the decision-based black-box attack setting, where the attackers cannot directly get access to the model information, but can only query the target model to obtain the rank positions of the partial retrieved list. This attack setting is realistic in real-world search engines. We propose a novel Pseudo Relevance-based ADversarial ranking Attack method (PRADA) that learns a surrogate model based on Pseudo Relevance Feedback (PRF) to generate gradients for finding the adversarial perturbations. Experiments on two web search benchmark datasets show that PRADA can outperform existing attack strategies and successfully fool the NRM with small indiscernible perturbations of text.
Scaling Laws for Adversarial Attacks on Language Model Activations
We explore a class of adversarial attacks targeting the activations of language models. By manipulating a relatively small subset of model activations, a, we demonstrate the ability to control the exact prediction of a significant number (in some cases up to 1000) of subsequent tokens t. We empirically verify a scaling law where the maximum number of target tokens t_max predicted depends linearly on the number of tokens a whose activations the attacker controls as t_max = kappa a. We find that the number of bits of control in the input space needed to control a single bit in the output space (what we call attack resistance chi) is remarkably constant between approx 16 and approx 25 over 2 orders of magnitude of model sizes for different language models. Compared to attacks on tokens, attacks on activations are predictably much stronger, however, we identify a surprising regularity where one bit of input steered either via activations or via tokens is able to exert control over a similar amount of output bits. This gives support for the hypothesis that adversarial attacks are a consequence of dimensionality mismatch between the input and output spaces. A practical implication of the ease of attacking language model activations instead of tokens is for multi-modal and selected retrieval models, where additional data sources are added as activations directly, sidestepping the tokenized input. This opens up a new, broad attack surface. By using language models as a controllable test-bed to study adversarial attacks, we were able to experiment with input-output dimensions that are inaccessible in computer vision, especially where the output dimension dominates.
Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis
Artificial Intelligence (AI) research often aims to develop models that can generalize reliably across complex datasets, yet this remains challenging in fields where data is scarce, intricate, or inaccessible. This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize one of the most demanding structured datasets: Malicious Network Traffic. Our approach uniquely transforms numerical data into text, re-framing data generation as a language modeling task, which not only enhances data regularization but also significantly improves generalization and the quality of the synthetic data. Extensive statistical analyses demonstrate that our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data. Additionally, we conduct a comprehensive study on synthetic data applications, effectiveness, and evaluation strategies, offering valuable insights into its role across various domains. Our code and pre-trained models are openly accessible at Github, enabling further exploration and application of our methodology. Index Terms: Data synthesis, machine learning, traffic generation, privacy preserving data, generative models.
BadRAG: Identifying Vulnerabilities in Retrieval Augmented Generation of Large Language Models
Large Language Models (LLMs) are constrained by outdated information and a tendency to generate incorrect data, commonly referred to as "hallucinations." Retrieval-Augmented Generation (RAG) addresses these limitations by combining the strengths of retrieval-based methods and generative models. This approach involves retrieving relevant information from a large, up-to-date dataset and using it to enhance the generation process, leading to more accurate and contextually appropriate responses. Despite its benefits, RAG introduces a new attack surface for LLMs, particularly because RAG databases are often sourced from public data, such as the web. In this paper, we propose to identify the vulnerabilities and attacks on retrieval parts (RAG database) and their indirect attacks on generative parts (LLMs). Specifically, we identify that poisoning several customized content passages could achieve a retrieval backdoor, where the retrieval works well for clean queries but always returns customized poisoned adversarial queries. Triggers and poisoned passages can be highly customized to implement various attacks. For example, a trigger could be a semantic group like "The Republican Party, Donald Trump, etc." Adversarial passages can be tailored to different contents, not only linked to the triggers but also used to indirectly attack generative LLMs without modifying them. These attacks can include denial-of-service attacks on RAG and semantic steering attacks on LLM generations conditioned by the triggers. Our experiments demonstrate that by just poisoning 10 adversarial passages can induce 98.2\% success rate to retrieve the adversarial passages. Then, these passages can increase the reject ratio of RAG-based GPT-4 from 0.01\% to 74.6\% or increase the rate of negative responses from 0.22\% to 72\% for targeted queries.
Attributing Image Generative Models using Latent Fingerprints
Generative models have enabled the creation of contents that are indistinguishable from those taken from nature. Open-source development of such models raised concerns about the risks of their misuse for malicious purposes. One potential risk mitigation strategy is to attribute generative models via fingerprinting. Current fingerprinting methods exhibit a significant tradeoff between robust attribution accuracy and generation quality while lacking design principles to improve this tradeoff. This paper investigates the use of latent semantic dimensions as fingerprints, from where we can analyze the effects of design variables, including the choice of fingerprinting dimensions, strength, and capacity, on the accuracy-quality tradeoff. Compared with previous SOTA, our method requires minimum computation and is more applicable to large-scale models. We use StyleGAN2 and the latent diffusion model to demonstrate the efficacy of our method.
ART: Automatic Red-teaming for Text-to-Image Models to Protect Benign Users
Large-scale pre-trained generative models are taking the world by storm, due to their abilities in generating creative content. Meanwhile, safeguards for these generative models are developed, to protect users' rights and safety, most of which are designed for large language models. Existing methods primarily focus on jailbreak and adversarial attacks, which mainly evaluate the model's safety under malicious prompts. Recent work found that manually crafted safe prompts can unintentionally trigger unsafe generations. To further systematically evaluate the safety risks of text-to-image models, we propose a novel Automatic Red-Teaming framework, ART. Our method leverages both vision language model and large language model to establish a connection between unsafe generations and their prompts, thereby more efficiently identifying the model's vulnerabilities. With our comprehensive experiments, we reveal the toxicity of the popular open-source text-to-image models. The experiments also validate the effectiveness, adaptability, and great diversity of ART. Additionally, we introduce three large-scale red-teaming datasets for studying the safety risks associated with text-to-image models. Datasets and models can be found in https://github.com/GuanlinLee/ART.
Catastrophic Jailbreak of Open-source LLMs via Exploiting Generation
The rapid progress in open-source large language models (LLMs) is significantly advancing AI development. Extensive efforts have been made before model release to align their behavior with human values, with the primary goal of ensuring their helpfulness and harmlessness. However, even carefully aligned models can be manipulated maliciously, leading to unintended behaviors, known as "jailbreaks". These jailbreaks are typically triggered by specific text inputs, often referred to as adversarial prompts. In this work, we propose the generation exploitation attack, an extremely simple approach that disrupts model alignment by only manipulating variations of decoding methods. By exploiting different generation strategies, including varying decoding hyper-parameters and sampling methods, we increase the misalignment rate from 0% to more than 95% across 11 language models including LLaMA2, Vicuna, Falcon, and MPT families, outperforming state-of-the-art attacks with 30times lower computational cost. Finally, we propose an effective alignment method that explores diverse generation strategies, which can reasonably reduce the misalignment rate under our attack. Altogether, our study underscores a major failure in current safety evaluation and alignment procedures for open-source LLMs, strongly advocating for more comprehensive red teaming and better alignment before releasing such models. Our code is available at https://github.com/Princeton-SysML/Jailbreak_LLM.
Evading Forensic Classifiers with Attribute-Conditioned Adversarial Faces
The ability of generative models to produce highly realistic synthetic face images has raised security and ethical concerns. As a first line of defense against such fake faces, deep learning based forensic classifiers have been developed. While these forensic models can detect whether a face image is synthetic or real with high accuracy, they are also vulnerable to adversarial attacks. Although such attacks can be highly successful in evading detection by forensic classifiers, they introduce visible noise patterns that are detectable through careful human scrutiny. Additionally, these attacks assume access to the target model(s) which may not always be true. Attempts have been made to directly perturb the latent space of GANs to produce adversarial fake faces that can circumvent forensic classifiers. In this work, we go one step further and show that it is possible to successfully generate adversarial fake faces with a specified set of attributes (e.g., hair color, eye size, race, gender, etc.). To achieve this goal, we leverage the state-of-the-art generative model StyleGAN with disentangled representations, which enables a range of modifications without leaving the manifold of natural images. We propose a framework to search for adversarial latent codes within the feature space of StyleGAN, where the search can be guided either by a text prompt or a reference image. We also propose a meta-learning based optimization strategy to achieve transferable performance on unknown target models. Extensive experiments demonstrate that the proposed approach can produce semantically manipulated adversarial fake faces, which are true to the specified attribute set and can successfully fool forensic face classifiers, while remaining undetectable by humans. Code: https://github.com/koushiksrivats/face_attribute_attack.
Query-Based Adversarial Prompt Generation
Recent work has shown it is possible to construct adversarial examples that cause an aligned language model to emit harmful strings or perform harmful behavior. Existing attacks work either in the white-box setting (with full access to the model weights), or through transferability: the phenomenon that adversarial examples crafted on one model often remain effective on other models. We improve on prior work with a query-based attack that leverages API access to a remote language model to construct adversarial examples that cause the model to emit harmful strings with (much) higher probability than with transfer-only attacks. We validate our attack on GPT-3.5 and OpenAI's safety classifier; we can cause GPT-3.5 to emit harmful strings that current transfer attacks fail at, and we can evade the safety classifier with nearly 100% probability.
AnyAttack: Targeted Adversarial Attacks on Vision-Language Models toward Any Images
Due to their multimodal capabilities, Vision-Language Models (VLMs) have found numerous impactful applications in real-world scenarios. However, recent studies have revealed that VLMs are vulnerable to image-based adversarial attacks, particularly targeted adversarial images that manipulate the model to generate harmful content specified by the adversary. Current attack methods rely on predefined target labels to create targeted adversarial attacks, which limits their scalability and applicability for large-scale robustness evaluations. In this paper, we propose AnyAttack, a self-supervised framework that generates targeted adversarial images for VLMs without label supervision, allowing any image to serve as a target for the attack. Our framework employs the pre-training and fine-tuning paradigm, with the adversarial noise generator pre-trained on the large-scale LAION-400M dataset. This large-scale pre-training endows our method with powerful transferability across a wide range of VLMs. Extensive experiments on five mainstream open-source VLMs (CLIP, BLIP, BLIP2, InstructBLIP, and MiniGPT-4) across three multimodal tasks (image-text retrieval, multimodal classification, and image captioning) demonstrate the effectiveness of our attack. Additionally, we successfully transfer AnyAttack to multiple commercial VLMs, including Google Gemini, Claude Sonnet, Microsoft Copilot and OpenAI GPT. These results reveal an unprecedented risk to VLMs, highlighting the need for effective countermeasures.
Sealing The Backdoor: Unlearning Adversarial Text Triggers In Diffusion Models Using Knowledge Distillation
Text-to-image diffusion models have revolutionized generative AI, but their vulnerability to backdoor attacks poses significant security risks. Adversaries can inject imperceptible textual triggers into training data, causing models to generate manipulated outputs. Although text-based backdoor defenses in classification models are well-explored, generative models lack effective mitigation techniques against. We address this by selectively erasing the model's learned associations between adversarial text triggers and poisoned outputs, while preserving overall generation quality. Our approach, Self-Knowledge Distillation with Cross-Attention Guidance (SKD-CAG), uses knowledge distillation to guide the model in correcting responses to poisoned prompts while maintaining image quality by exploiting the fact that the backdoored model still produces clean outputs in the absence of triggers. Using the cross-attention mechanism, SKD-CAG neutralizes backdoor influences at the attention level, ensuring the targeted removal of adversarial effects. Extensive experiments show that our method outperforms existing approaches, achieving removal accuracy 100\% for pixel backdoors and 93\% for style-based attacks, without sacrificing robustness or image fidelity. Our findings highlight targeted unlearning as a promising defense to secure generative models. Code and model weights can be found at https://github.com/Mystic-Slice/Sealing-The-Backdoor .
Red Teaming Language Model Detectors with Language Models
The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent works have proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM's output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems.
Unraveling Hidden Representations: A Multi-Modal Layer Analysis for Better Synthetic Content Forensics
Generative models achieve remarkable results in multiple data domains, including images and texts, among other examples. Unfortunately, malicious users exploit synthetic media for spreading misinformation and disseminating deepfakes. Consequently, the need for robust and stable fake detectors is pressing, especially when new generative models appear everyday. While the majority of existing work train classifiers that discriminate between real and fake information, such tools typically generalize only within the same family of generators and data modalities, yielding poor results on other generative classes and data domains. Towards a universal classifier, we propose the use of large pre-trained multi-modal models for the detection of generative content. Effectively, we show that the latent code of these models naturally captures information discriminating real from fake. Building on this observation, we demonstrate that linear classifiers trained on these features can achieve state-of-the-art results across various modalities, while remaining computationally efficient, fast to train, and effective even in few-shot settings. Our work primarily focuses on fake detection in audio and images, achieving performance that surpasses or matches that of strong baseline methods.
Adversarial Attacks of Vision Tasks in the Past 10 Years: A Survey
With the advent of Large Vision-Language Models (LVLMs), new attack vectors, such as cognitive bias, prompt injection, and jailbreaking, have emerged. Understanding these attacks promotes system robustness improvement and neural networks demystification. However, existing surveys often target attack taxonomy and lack in-depth analysis like 1) unified insights into adversariality, transferability, and generalization; 2) detailed evaluations framework; 3) motivation-driven attack categorizations; and 4) an integrated perspective on both traditional and LVLM attacks. This article addresses these gaps by offering a thorough summary of traditional and LVLM adversarial attacks, emphasizing their connections and distinctions, and providing actionable insights for future research.
Exploring the Universal Vulnerability of Prompt-based Learning Paradigm
Prompt-based learning paradigm bridges the gap between pre-training and fine-tuning, and works effectively under the few-shot setting. However, we find that this learning paradigm inherits the vulnerability from the pre-training stage, where model predictions can be misled by inserting certain triggers into the text. In this paper, we explore this universal vulnerability by either injecting backdoor triggers or searching for adversarial triggers on pre-trained language models using only plain text. In both scenarios, we demonstrate that our triggers can totally control or severely decrease the performance of prompt-based models fine-tuned on arbitrary downstream tasks, reflecting the universal vulnerability of the prompt-based learning paradigm. Further experiments show that adversarial triggers have good transferability among language models. We also find conventional fine-tuning models are not vulnerable to adversarial triggers constructed from pre-trained language models. We conclude by proposing a potential solution to mitigate our attack methods. Code and data are publicly available at https://github.com/leix28/prompt-universal-vulnerability
Variational Inference with Latent Space Quantization for Adversarial Resilience
Despite their tremendous success in modelling high-dimensional data manifolds, deep neural networks suffer from the threat of adversarial attacks - Existence of perceptually valid input-like samples obtained through careful perturbation that lead to degradation in the performance of the underlying model. Major concerns with existing defense mechanisms include non-generalizability across different attacks, models and large inference time. In this paper, we propose a generalized defense mechanism capitalizing on the expressive power of regularized latent space based generative models. We design an adversarial filter, devoid of access to classifier and adversaries, which makes it usable in tandem with any classifier. The basic idea is to learn a Lipschitz constrained mapping from the data manifold, incorporating adversarial perturbations, to a quantized latent space and re-map it to the true data manifold. Specifically, we simultaneously auto-encode the data manifold and its perturbations implicitly through the perturbations of the regularized and quantized generative latent space, realized using variational inference. We demonstrate the efficacy of the proposed formulation in providing resilience against multiple attack types (black and white box) and methods, while being almost real-time. Our experiments show that the proposed method surpasses the state-of-the-art techniques in several cases.
Coercing LLMs to do and reveal (almost) anything
It has recently been shown that adversarial attacks on large language models (LLMs) can "jailbreak" the model into making harmful statements. In this work, we argue that the spectrum of adversarial attacks on LLMs is much larger than merely jailbreaking. We provide a broad overview of possible attack surfaces and attack goals. Based on a series of concrete examples, we discuss, categorize and systematize attacks that coerce varied unintended behaviors, such as misdirection, model control, denial-of-service, or data extraction. We analyze these attacks in controlled experiments, and find that many of them stem from the practice of pre-training LLMs with coding capabilities, as well as the continued existence of strange "glitch" tokens in common LLM vocabularies that should be removed for security reasons.
Model Tampering Attacks Enable More Rigorous Evaluations of LLM Capabilities
Evaluations of large language model (LLM) risks and capabilities are increasingly being incorporated into AI risk management and governance frameworks. Currently, most risk evaluations are conducted by designing inputs that elicit harmful behaviors from the system. However, a fundamental limitation of this approach is that the harmfulness of the behaviors identified during any particular evaluation can only lower bound the model's worst-possible-case behavior. As a complementary method for eliciting harmful behaviors, we propose evaluating LLMs with model tampering attacks which allow for modifications to latent activations or weights. We pit state-of-the-art techniques for removing harmful LLM capabilities against a suite of 5 input-space and 6 model tampering attacks. In addition to benchmarking these methods against each other, we show that (1) model resilience to capability elicitation attacks lies on a low-dimensional robustness subspace; (2) the attack success rate of model tampering attacks can empirically predict and offer conservative estimates for the success of held-out input-space attacks; and (3) state-of-the-art unlearning methods can easily be undone within 16 steps of fine-tuning. Together these results highlight the difficulty of removing harmful LLM capabilities and show that model tampering attacks enable substantially more rigorous evaluations than input-space attacks alone. We release models at https://huggingface.co/LLM-GAT
Survey of Vulnerabilities in Large Language Models Revealed by Adversarial Attacks
Large Language Models (LLMs) are swiftly advancing in architecture and capability, and as they integrate more deeply into complex systems, the urgency to scrutinize their security properties grows. This paper surveys research in the emerging interdisciplinary field of adversarial attacks on LLMs, a subfield of trustworthy ML, combining the perspectives of Natural Language Processing and Security. Prior work has shown that even safety-aligned LLMs (via instruction tuning and reinforcement learning through human feedback) can be susceptible to adversarial attacks, which exploit weaknesses and mislead AI systems, as evidenced by the prevalence of `jailbreak' attacks on models like ChatGPT and Bard. In this survey, we first provide an overview of large language models, describe their safety alignment, and categorize existing research based on various learning structures: textual-only attacks, multi-modal attacks, and additional attack methods specifically targeting complex systems, such as federated learning or multi-agent systems. We also offer comprehensive remarks on works that focus on the fundamental sources of vulnerabilities and potential defenses. To make this field more accessible to newcomers, we present a systematic review of existing works, a structured typology of adversarial attack concepts, and additional resources, including slides for presentations on related topics at the 62nd Annual Meeting of the Association for Computational Linguistics (ACL'24).
Visual Adversarial Examples Jailbreak Large Language Models
Recently, there has been a surge of interest in introducing vision into Large Language Models (LLMs). The proliferation of large Visual Language Models (VLMs), such as Flamingo, BLIP-2, and GPT-4, signifies an exciting convergence of advancements in both visual and language foundation models. Yet, the risks associated with this integrative approach are largely unexamined. In this paper, we shed light on the security and safety implications of this trend. First, we underscore that the continuous and high-dimensional nature of the additional visual input space intrinsically makes it a fertile ground for adversarial attacks. This unavoidably expands the attack surfaces of LLMs. Second, we highlight that the broad functionality of LLMs also presents visual attackers with a wider array of achievable adversarial objectives, extending the implications of security failures beyond mere misclassification. To elucidate these risks, we study adversarial examples in the visual input space of a VLM. Specifically, against MiniGPT-4, which incorporates safety mechanisms that can refuse harmful instructions, we present visual adversarial examples that can circumvent the safety mechanisms and provoke harmful behaviors of the model. Remarkably, we discover that adversarial examples, even if optimized on a narrow, manually curated derogatory corpus against specific social groups, can universally jailbreak the model's safety mechanisms. A single such adversarial example can generally undermine MiniGPT-4's safety, enabling it to heed a wide range of harmful instructions and produce harmful content far beyond simply imitating the derogatory corpus used in optimization. Unveiling these risks, we accentuate the urgent need for comprehensive risk assessments, robust defense strategies, and the implementation of responsible practices for the secure and safe utilization of VLMs.
Rethinking Model Ensemble in Transfer-based Adversarial Attacks
It is widely recognized that deep learning models lack robustness to adversarial examples. An intriguing property of adversarial examples is that they can transfer across different models, which enables black-box attacks without any knowledge of the victim model. An effective strategy to improve the transferability is attacking an ensemble of models. However, previous works simply average the outputs of different models, lacking an in-depth analysis on how and why model ensemble methods can strongly improve the transferability. In this paper, we rethink the ensemble in adversarial attacks and define the common weakness of model ensemble with two properties: 1) the flatness of loss landscape; and 2) the closeness to the local optimum of each model. We empirically and theoretically show that both properties are strongly correlated with the transferability and propose a Common Weakness Attack (CWA) to generate more transferable adversarial examples by promoting these two properties. Experimental results on both image classification and object detection tasks validate the effectiveness of our approach to improving the adversarial transferability, especially when attacking adversarially trained models. We also successfully apply our method to attack a black-box large vision-language model -- Google's Bard, showing the practical effectiveness. Code is available at https://github.com/huanranchen/AdversarialAttacks.
PETGEN: Personalized Text Generation Attack on Deep Sequence Embedding-based Classification Models
What should a malicious user write next to fool a detection model? Identifying malicious users is critical to ensure the safety and integrity of internet platforms. Several deep learning-based detection models have been created. However, malicious users can evade deep detection models by manipulating their behavior, rendering these models of little use. The vulnerability of such deep detection models against adversarial attacks is unknown. Here we create a novel adversarial attack model against deep user sequence embedding based classification models, which use the sequence of user posts to generate user embeddings and detect malicious users. In the attack, the adversary generates a new post to fool the classifier. We propose a novel end-to-end Personalized Text Generation Attack model, called PETGEN, that simultaneously reduces the efficacy of the detection model and generates posts that have several key desirable properties. Specifically, PETGEN generates posts that are personalized to the user's writing style, have knowledge about a given target context, are aware of the user's historical posts on the target context, and encapsulate the user's recent topical interests. We conduct extensive experiments on two real-world datasets (Yelp and Wikipedia, both with ground-truth of malicious users) to show that PETGEN significantly reduces the performance of popular deep user sequence embedding-based classification models. PETGEN outperforms five attack baselines in terms of text quality and attack efficacy in both white-box and black-box classifier settings. Overall, this work paves the path towards the next generation of adversary-aware sequence classification models.
EGC: Image Generation and Classification via a Diffusion Energy-Based Model
Learning image classification and image generation using the same set of network parameters is a challenging problem. Recent advanced approaches perform well in one task often exhibit poor performance in the other. This work introduces an energy-based classifier and generator, namely EGC, which can achieve superior performance in both tasks using a single neural network. Unlike a conventional classifier that outputs a label given an image (i.e., a conditional distribution p(y|x)), the forward pass in EGC is a classifier that outputs a joint distribution p(x,y), enabling an image generator in its backward pass by marginalizing out the label y. This is done by estimating the energy and classification probability given a noisy image in the forward pass, while denoising it using the score function estimated in the backward pass. EGC achieves competitive generation results compared with state-of-the-art approaches on ImageNet-1k, CelebA-HQ and LSUN Church, while achieving superior classification accuracy and robustness against adversarial attacks on CIFAR-10. This work represents the first successful attempt to simultaneously excel in both tasks using a single set of network parameters. We believe that EGC bridges the gap between discriminative and generative learning.
Cascading Adversarial Bias from Injection to Distillation in Language Models
Model distillation has become essential for creating smaller, deployable language models that retain larger system capabilities. However, widespread deployment raises concerns about resilience to adversarial manipulation. This paper investigates vulnerability of distilled models to adversarial injection of biased content during training. We demonstrate that adversaries can inject subtle biases into teacher models through minimal data poisoning, which propagates to student models and becomes significantly amplified. We propose two propagation modes: Untargeted Propagation, where bias affects multiple tasks, and Targeted Propagation, focusing on specific tasks while maintaining normal behavior elsewhere. With only 25 poisoned samples (0.25% poisoning rate), student models generate biased responses 76.9% of the time in targeted scenarios - higher than 69.4% in teacher models. For untargeted propagation, adversarial bias appears 6x-29x more frequently in student models on unseen tasks. We validate findings across six bias types (targeted advertisements, phishing links, narrative manipulations, insecure coding practices), various distillation methods, and different modalities spanning text and code generation. Our evaluation reveals shortcomings in current defenses - perplexity filtering, bias detection systems, and LLM-based autorater frameworks - against these attacks. Results expose significant security vulnerabilities in distilled models, highlighting need for specialized safeguards. We propose practical design principles for building effective adversarial bias mitigation strategies.
Alpaca against Vicuna: Using LLMs to Uncover Memorization of LLMs
In this paper, we introduce a black-box prompt optimization method that uses an attacker LLM agent to uncover higher levels of memorization in a victim agent, compared to what is revealed by prompting the target model with the training data directly, which is the dominant approach of quantifying memorization in LLMs. We use an iterative rejection-sampling optimization process to find instruction-based prompts with two main characteristics: (1) minimal overlap with the training data to avoid presenting the solution directly to the model, and (2) maximal overlap between the victim model's output and the training data, aiming to induce the victim to spit out training data. We observe that our instruction-based prompts generate outputs with 23.7% higher overlap with training data compared to the baseline prefix-suffix measurements. Our findings show that (1) instruction-tuned models can expose pre-training data as much as their base-models, if not more so, (2) contexts other than the original training data can lead to leakage, and (3) using instructions proposed by other LLMs can open a new avenue of automated attacks that we should further study and explore. The code can be found at https://github.com/Alymostafa/Instruction_based_attack .
WOUAF: Weight Modulation for User Attribution and Fingerprinting in Text-to-Image Diffusion Models
The rapid advancement of generative models, facilitating the creation of hyper-realistic images from textual descriptions, has concurrently escalated critical societal concerns such as misinformation. Traditional fake detection mechanisms, although providing some mitigation, fall short in attributing responsibility for the malicious use of synthetic images. This paper introduces a novel approach to model fingerprinting that assigns responsibility for the generated images, thereby serving as a potential countermeasure to model misuse. Our method modifies generative models based on each user's unique digital fingerprint, imprinting a unique identifier onto the resultant content that can be traced back to the user. This approach, incorporating fine-tuning into Text-to-Image (T2I) tasks using the Stable Diffusion Model, demonstrates near-perfect attribution accuracy with a minimal impact on output quality. We rigorously scrutinize our method's secrecy under two distinct scenarios: one where a malicious user attempts to detect the fingerprint, and another where a user possesses a comprehensive understanding of our method. We also evaluate the robustness of our approach against various image post-processing manipulations typically executed by end-users. Through extensive evaluation of the Stable Diffusion models, our method presents a promising and novel avenue for accountable model distribution and responsible use.
CodeAttack: Code-Based Adversarial Attacks for Pre-trained Programming Language Models
Pre-trained programming language (PL) models (such as CodeT5, CodeBERT, GraphCodeBERT, etc.,) have the potential to automate software engineering tasks involving code understanding and code generation. However, these models operate in the natural channel of code, i.e., they are primarily concerned with the human understanding of the code. They are not robust to changes in the input and thus, are potentially susceptible to adversarial attacks in the natural channel. We propose, CodeAttack, a simple yet effective black-box attack model that uses code structure to generate effective, efficient, and imperceptible adversarial code samples and demonstrates the vulnerabilities of the state-of-the-art PL models to code-specific adversarial attacks. We evaluate the transferability of CodeAttack on several code-code (translation and repair) and code-NL (summarization) tasks across different programming languages. CodeAttack outperforms state-of-the-art adversarial NLP attack models to achieve the best overall drop in performance while being more efficient, imperceptible, consistent, and fluent. The code can be found at https://github.com/reddy-lab-code-research/CodeAttack.
Understanding the Robustness of Randomized Feature Defense Against Query-Based Adversarial Attacks
Recent works have shown that deep neural networks are vulnerable to adversarial examples that find samples close to the original image but can make the model misclassify. Even with access only to the model's output, an attacker can employ black-box attacks to generate such adversarial examples. In this work, we propose a simple and lightweight defense against black-box attacks by adding random noise to hidden features at intermediate layers of the model at inference time. Our theoretical analysis confirms that this method effectively enhances the model's resilience against both score-based and decision-based black-box attacks. Importantly, our defense does not necessitate adversarial training and has minimal impact on accuracy, rendering it applicable to any pre-trained model. Our analysis also reveals the significance of selectively adding noise to different parts of the model based on the gradient of the adversarial objective function, which can be varied during the attack. We demonstrate the robustness of our defense against multiple black-box attacks through extensive empirical experiments involving diverse models with various architectures.
Toward effective protection against diffusion based mimicry through score distillation
While generative diffusion models excel in producing high-quality images, they can also be misused to mimic authorized images, posing a significant threat to AI systems. Efforts have been made to add calibrated perturbations to protect images from diffusion-based mimicry pipelines. However, most of the existing methods are too ineffective and even impractical to be used by individual users due to their high computation and memory requirements. In this work, we present novel findings on attacking latent diffusion models (LDM) and propose new plug-and-play strategies for more effective protection. In particular, we explore the bottleneck in attacking an LDM, discovering that the encoder module rather than the denoiser module is the vulnerable point. Based on this insight, we present our strategy using Score Distillation Sampling (SDS) to double the speed of protection and reduce memory occupation by half without compromising its strength. Additionally, we provide a robust protection strategy by counterintuitively minimizing the semantic loss, which can assist in generating more natural perturbations. Finally, we conduct extensive experiments to substantiate our findings and comprehensively evaluate our newly proposed strategies. We hope our insights and protective measures can contribute to better defense against malicious diffusion-based mimicry, advancing the development of secure AI systems. The code is available in https://github.com/xavihart/Diff-Protect
Recovering the Pre-Fine-Tuning Weights of Generative Models
The dominant paradigm in generative modeling consists of two steps: i) pre-training on a large-scale but unsafe dataset, ii) aligning the pre-trained model with human values via fine-tuning. This practice is considered safe, as no current method can recover the unsafe, pre-fine-tuning model weights. In this paper, we demonstrate that this assumption is often false. Concretely, we present Spectral DeTuning, a method that can recover the weights of the pre-fine-tuning model using a few low-rank (LoRA) fine-tuned models. In contrast to previous attacks that attempt to recover pre-fine-tuning capabilities, our method aims to recover the exact pre-fine-tuning weights. Our approach exploits this new vulnerability against large-scale models such as a personalized Stable Diffusion and an aligned Mistral.
Exploiting Novel GPT-4 APIs
Language model attacks typically assume one of two extreme threat models: full white-box access to model weights, or black-box access limited to a text generation API. However, real-world APIs are often more flexible than just text generation: these APIs expose "gray-box" access leading to new threat vectors. To explore this, we red-team three new functionalities exposed in the GPT-4 APIs: fine-tuning, function calling and knowledge retrieval. We find that fine-tuning a model on as few as 15 harmful examples or 100 benign examples can remove core safeguards from GPT-4, enabling a range of harmful outputs. Furthermore, we find that GPT-4 Assistants readily divulge the function call schema and can be made to execute arbitrary function calls. Finally, we find that knowledge retrieval can be hijacked by injecting instructions into retrieval documents. These vulnerabilities highlight that any additions to the functionality exposed by an API can create new vulnerabilities.
Can LLMs Follow Simple Rules?
As Large Language Models (LLMs) are deployed with increasing real-world responsibilities, it is important to be able to specify and constrain the behavior of these systems in a reliable manner. Model developers may wish to set explicit rules for the model, such as "do not generate abusive content", but these may be circumvented by jailbreaking techniques. Evaluating how well LLMs follow developer-provided rules in the face of adversarial inputs typically requires manual review, which slows down monitoring and methods development. To address this issue, we propose Rule-following Language Evaluation Scenarios (RuLES), a programmatic framework for measuring rule-following ability in LLMs. RuLES consists of 15 simple text scenarios in which the model is instructed to obey a set of rules in natural language while interacting with the human user. Each scenario has a concise evaluation program to determine whether the model has broken any rules in a conversation. Through manual exploration of model behavior in our scenarios, we identify 6 categories of attack strategies and collect two suites of test cases: one consisting of unique conversations from manual testing and one that systematically implements strategies from the 6 categories. Across various popular proprietary and open models such as GPT-4 and Llama 2, we find that all models are susceptible to a wide variety of adversarial hand-crafted user inputs, though GPT-4 is the best-performing model. Additionally, we evaluate open models under gradient-based attacks and find significant vulnerabilities. We propose RuLES as a challenging new setting for research into exploring and defending against both manual and automatic attacks on LLMs.
Stress-testing Machine Generated Text Detection: Shifting Language Models Writing Style to Fool Detectors
Recent advancements in Generative AI and Large Language Models (LLMs) have enabled the creation of highly realistic synthetic content, raising concerns about the potential for malicious use, such as misinformation and manipulation. Moreover, detecting Machine-Generated Text (MGT) remains challenging due to the lack of robust benchmarks that assess generalization to real-world scenarios. In this work, we present a pipeline to test the resilience of state-of-the-art MGT detectors (e.g., Mage, Radar, LLM-DetectAIve) to linguistically informed adversarial attacks. To challenge the detectors, we fine-tune language models using Direct Preference Optimization (DPO) to shift the MGT style toward human-written text (HWT). This exploits the detectors' reliance on stylistic clues, making new generations more challenging to detect. Additionally, we analyze the linguistic shifts induced by the alignment and which features are used by detectors to detect MGT texts. Our results show that detectors can be easily fooled with relatively few examples, resulting in a significant drop in detection performance. This highlights the importance of improving detection methods and making them robust to unseen in-domain texts.
On Evaluating Adversarial Robustness of Large Vision-Language Models
Large vision-language models (VLMs) such as GPT-4 have achieved unprecedented performance in response generation, especially with visual inputs, enabling more creative and adaptable interaction than large language models such as ChatGPT. Nonetheless, multimodal generation exacerbates safety concerns, since adversaries may successfully evade the entire system by subtly manipulating the most vulnerable modality (e.g., vision). To this end, we propose evaluating the robustness of open-source large VLMs in the most realistic and high-risk setting, where adversaries have only black-box system access and seek to deceive the model into returning the targeted responses. In particular, we first craft targeted adversarial examples against pretrained models such as CLIP and BLIP, and then transfer these adversarial examples to other VLMs such as MiniGPT-4, LLaVA, UniDiffuser, BLIP-2, and Img2Prompt. In addition, we observe that black-box queries on these VLMs can further improve the effectiveness of targeted evasion, resulting in a surprisingly high success rate for generating targeted responses. Our findings provide a quantitative understanding regarding the adversarial vulnerability of large VLMs and call for a more thorough examination of their potential security flaws before deployment in practice. Code is at https://github.com/yunqing-me/AttackVLM.
GenoArmory: A Unified Evaluation Framework for Adversarial Attacks on Genomic Foundation Models
We propose the first unified adversarial attack benchmark for Genomic Foundation Models (GFMs), named GenoArmory. Unlike existing GFM benchmarks, GenoArmory offers the first comprehensive evaluation framework to systematically assess the vulnerability of GFMs to adversarial attacks. Methodologically, we evaluate the adversarial robustness of five state-of-the-art GFMs using four widely adopted attack algorithms and three defense strategies. Importantly, our benchmark provides an accessible and comprehensive framework to analyze GFM vulnerabilities with respect to model architecture, quantization schemes, and training datasets. Additionally, we introduce GenoAdv, a new adversarial sample dataset designed to improve GFM safety. Empirically, classification models exhibit greater robustness to adversarial perturbations compared to generative models, highlighting the impact of task type on model vulnerability. Moreover, adversarial attacks frequently target biologically significant genomic regions, suggesting that these models effectively capture meaningful sequence features.
Rewriting a Deep Generative Model
A deep generative model such as a GAN learns to model a rich set of semantic and physical rules about the target distribution, but up to now, it has been obscure how such rules are encoded in the network, or how a rule could be changed. In this paper, we introduce a new problem setting: manipulation of specific rules encoded by a deep generative model. To address the problem, we propose a formulation in which the desired rule is changed by manipulating a layer of a deep network as a linear associative memory. We derive an algorithm for modifying one entry of the associative memory, and we demonstrate that several interesting structural rules can be located and modified within the layers of state-of-the-art generative models. We present a user interface to enable users to interactively change the rules of a generative model to achieve desired effects, and we show several proof-of-concept applications. Finally, results on multiple datasets demonstrate the advantage of our method against standard fine-tuning methods and edit transfer algorithms.
Extracting Training Data from Large Language Models
It has become common to publish large (billion parameter) language models that have been trained on private datasets. This paper demonstrates that in such settings, an adversary can perform a training data extraction attack to recover individual training examples by querying the language model. We demonstrate our attack on GPT-2, a language model trained on scrapes of the public Internet, and are able to extract hundreds of verbatim text sequences from the model's training data. These extracted examples include (public) personally identifiable information (names, phone numbers, and email addresses), IRC conversations, code, and 128-bit UUIDs. Our attack is possible even though each of the above sequences are included in just one document in the training data. We comprehensively evaluate our extraction attack to understand the factors that contribute to its success. Worryingly, we find that larger models are more vulnerable than smaller models. We conclude by drawing lessons and discussing possible safeguards for training large language models.
Generative Adversarial Networks
We propose a new framework for estimating generative models via an adversarial process, in which we simultaneously train two models: a generative model G that captures the data distribution, and a discriminative model D that estimates the probability that a sample came from the training data rather than G. The training procedure for G is to maximize the probability of D making a mistake. This framework corresponds to a minimax two-player game. In the space of arbitrary functions G and D, a unique solution exists, with G recovering the training data distribution and D equal to 1/2 everywhere. In the case where G and D are defined by multilayer perceptrons, the entire system can be trained with backpropagation. There is no need for any Markov chains or unrolled approximate inference networks during either training or generation of samples. Experiments demonstrate the potential of the framework through qualitative and quantitative evaluation of the generated samples.
The Surprising Effectiveness of Membership Inference with Simple N-Gram Coverage
Membership inference attacks serves as useful tool for fair use of language models, such as detecting potential copyright infringement and auditing data leakage. However, many current state-of-the-art attacks require access to models' hidden states or probability distribution, which prevents investigation into more widely-used, API-access only models like GPT-4. In this work, we introduce N-Gram Coverage Attack, a membership inference attack that relies solely on text outputs from the target model, enabling attacks on completely black-box models. We leverage the observation that models are more likely to memorize and subsequently generate text patterns that were commonly observed in their training data. Specifically, to make a prediction on a candidate member, N-Gram Coverage Attack first obtains multiple model generations conditioned on a prefix of the candidate. It then uses n-gram overlap metrics to compute and aggregate the similarities of these outputs with the ground truth suffix; high similarities indicate likely membership. We first demonstrate on a diverse set of existing benchmarks that N-Gram Coverage Attack outperforms other black-box methods while also impressively achieving comparable or even better performance to state-of-the-art white-box attacks - despite having access to only text outputs. Interestingly, we find that the success rate of our method scales with the attack compute budget - as we increase the number of sequences generated from the target model conditioned on the prefix, attack performance tends to improve. Having verified the accuracy of our method, we use it to investigate previously unstudied closed OpenAI models on multiple domains. We find that more recent models, such as GPT-4o, exhibit increased robustness to membership inference, suggesting an evolving trend toward improved privacy protections.
Can Adversarial Examples Be Parsed to Reveal Victim Model Information?
Numerous adversarial attack methods have been developed to generate imperceptible image perturbations that can cause erroneous predictions of state-of-the-art machine learning (ML) models, in particular, deep neural networks (DNNs). Despite intense research on adversarial attacks, little effort was made to uncover 'arcana' carried in adversarial attacks. In this work, we ask whether it is possible to infer data-agnostic victim model (VM) information (i.e., characteristics of the ML model or DNN used to generate adversarial attacks) from data-specific adversarial instances. We call this 'model parsing of adversarial attacks' - a task to uncover 'arcana' in terms of the concealed VM information in attacks. We approach model parsing via supervised learning, which correctly assigns classes of VM's model attributes (in terms of architecture type, kernel size, activation function, and weight sparsity) to an attack instance generated from this VM. We collect a dataset of adversarial attacks across 7 attack types generated from 135 victim models (configured by 5 architecture types, 3 kernel size setups, 3 activation function types, and 3 weight sparsity ratios). We show that a simple, supervised model parsing network (MPN) is able to infer VM attributes from unseen adversarial attacks if their attack settings are consistent with the training setting (i.e., in-distribution generalization assessment). We also provide extensive experiments to justify the feasibility of VM parsing from adversarial attacks, and the influence of training and evaluation factors in the parsing performance (e.g., generalization challenge raised in out-of-distribution evaluation). We further demonstrate how the proposed MPN can be used to uncover the source VM attributes from transfer attacks, and shed light on a potential connection between model parsing and attack transferability.
How Jailbreak Defenses Work and Ensemble? A Mechanistic Investigation
Jailbreak attacks, where harmful prompts bypass generative models' built-in safety, raise serious concerns about model vulnerability. While many defense methods have been proposed, the trade-offs between safety and helpfulness, and their application to Large Vision-Language Models (LVLMs), are not well understood. This paper systematically examines jailbreak defenses by reframing the standard generation task as a binary classification problem to assess model refusal tendencies for both harmful and benign queries. We identify two key defense mechanisms: safety shift, which increases refusal rates across all queries, and harmfulness discrimination, which improves the model's ability to distinguish between harmful and benign inputs. Using these mechanisms, we develop two ensemble defense strategies-inter-mechanism ensembles and intra-mechanism ensembles-to balance safety and helpfulness. Experiments on the MM-SafetyBench and MOSSBench datasets with LLaVA-1.5 models show that these strategies effectively improve model safety or optimize the trade-off between safety and helpfulness.
Rickrolling the Artist: Injecting Backdoors into Text Encoders for Text-to-Image Synthesis
While text-to-image synthesis currently enjoys great popularity among researchers and the general public, the security of these models has been neglected so far. Many text-guided image generation models rely on pre-trained text encoders from external sources, and their users trust that the retrieved models will behave as promised. Unfortunately, this might not be the case. We introduce backdoor attacks against text-guided generative models and demonstrate that their text encoders pose a major tampering risk. Our attacks only slightly alter an encoder so that no suspicious model behavior is apparent for image generations with clean prompts. By then inserting a single character trigger into the prompt, e.g., a non-Latin character or emoji, the adversary can trigger the model to either generate images with pre-defined attributes or images following a hidden, potentially malicious description. We empirically demonstrate the high effectiveness of our attacks on Stable Diffusion and highlight that the injection process of a single backdoor takes less than two minutes. Besides phrasing our approach solely as an attack, it can also force an encoder to forget phrases related to certain concepts, such as nudity or violence, and help to make image generation safer.
LoFT: Local Proxy Fine-tuning For Improving Transferability Of Adversarial Attacks Against Large Language Model
It has been shown that Large Language Model (LLM) alignments can be circumvented by appending specially crafted attack suffixes with harmful queries to elicit harmful responses. To conduct attacks against private target models whose characterization is unknown, public models can be used as proxies to fashion the attack, with successful attacks being transferred from public proxies to private target models. The success rate of attack depends on how closely the proxy model approximates the private model. We hypothesize that for attacks to be transferrable, it is sufficient if the proxy can approximate the target model in the neighborhood of the harmful query. Therefore, in this paper, we propose Local Fine-Tuning (LoFT), i.e., fine-tuning proxy models on similar queries that lie in the lexico-semantic neighborhood of harmful queries to decrease the divergence between the proxy and target models. First, we demonstrate three approaches to prompt private target models to obtain similar queries given harmful queries. Next, we obtain data for local fine-tuning by eliciting responses from target models for the generated similar queries. Then, we optimize attack suffixes to generate attack prompts and evaluate the impact of our local fine-tuning on the attack's success rate. Experiments show that local fine-tuning of proxy models improves attack transferability and increases attack success rate by 39%, 7%, and 0.5% (absolute) on target models ChatGPT, GPT-4, and Claude respectively.
Practical No-box Adversarial Attacks against DNNs
The study of adversarial vulnerabilities of deep neural networks (DNNs) has progressed rapidly. Existing attacks require either internal access (to the architecture, parameters, or training set of the victim model) or external access (to query the model). However, both the access may be infeasible or expensive in many scenarios. We investigate no-box adversarial examples, where the attacker can neither access the model information or the training set nor query the model. Instead, the attacker can only gather a small number of examples from the same problem domain as that of the victim model. Such a stronger threat model greatly expands the applicability of adversarial attacks. We propose three mechanisms for training with a very small dataset (on the order of tens of examples) and find that prototypical reconstruction is the most effective. Our experiments show that adversarial examples crafted on prototypical auto-encoding models transfer well to a variety of image classification and face verification models. On a commercial celebrity recognition system held by clarifai.com, our approach significantly diminishes the average prediction accuracy of the system to only 15.40%, which is on par with the attack that transfers adversarial examples from a pre-trained Arcface model.
MalCL: Leveraging GAN-Based Generative Replay to Combat Catastrophic Forgetting in Malware Classification
Continual Learning (CL) for malware classification tackles the rapidly evolving nature of malware threats and the frequent emergence of new types. Generative Replay (GR)-based CL systems utilize a generative model to produce synthetic versions of past data, which are then combined with new data to retrain the primary model. Traditional machine learning techniques in this domain often struggle with catastrophic forgetting, where a model's performance on old data degrades over time. In this paper, we introduce a GR-based CL system that employs Generative Adversarial Networks (GANs) with feature matching loss to generate high-quality malware samples. Additionally, we implement innovative selection schemes for replay samples based on the model's hidden representations. Our comprehensive evaluation across Windows and Android malware datasets in a class-incremental learning scenario -- where new classes are introduced continuously over multiple tasks -- demonstrates substantial performance improvements over previous methods. For example, our system achieves an average accuracy of 55% on Windows malware samples, significantly outperforming other GR-based models by 28%. This study provides practical insights for advancing GR-based malware classification systems. The implementation is available at https://github.com/MalwareReplayGAN/MalCLThe code will be made public upon the presentation of the paper.
Word-level Textual Adversarial Attacking as Combinatorial Optimization
Adversarial attacks are carried out to reveal the vulnerability of deep neural networks. Textual adversarial attacking is challenging because text is discrete and a small perturbation can bring significant change to the original input. Word-level attacking, which can be regarded as a combinatorial optimization problem, is a well-studied class of textual attack methods. However, existing word-level attack models are far from perfect, largely because unsuitable search space reduction methods and inefficient optimization algorithms are employed. In this paper, we propose a novel attack model, which incorporates the sememe-based word substitution method and particle swarm optimization-based search algorithm to solve the two problems separately. We conduct exhaustive experiments to evaluate our attack model by attacking BiLSTM and BERT on three benchmark datasets. Experimental results demonstrate that our model consistently achieves much higher attack success rates and crafts more high-quality adversarial examples as compared to baseline methods. Also, further experiments show our model has higher transferability and can bring more robustness enhancement to victim models by adversarial training. All the code and data of this paper can be obtained on https://github.com/thunlp/SememePSO-Attack.
Uncovering Safety Risks of Large Language Models through Concept Activation Vector
Despite careful safety alignment, current large language models (LLMs) remain vulnerable to various attacks. To further unveil the safety risks of LLMs, we introduce a Safety Concept Activation Vector (SCAV) framework, which effectively guides the attacks by accurately interpreting LLMs' safety mechanisms. We then develop an SCAV-guided attack method that can generate both attack prompts and embedding-level attacks with automatically selected perturbation hyperparameters. Both automatic and human evaluations demonstrate that our attack method significantly improves the attack success rate and response quality while requiring less training data. Additionally, we find that our generated attack prompts may be transferable to GPT-4, and the embedding-level attacks may also be transferred to other white-box LLMs whose parameters are known. Our experiments further uncover the safety risks present in current LLMs. For example, in our evaluation of seven open-source LLMs, we observe an average attack success rate of 99.14%, based on the classic keyword-matching criterion. Finally, we provide insights into the safety mechanism of LLMs. The code is available at https://github.com/SproutNan/AI-Safety_SCAV.
(Ab)using Images and Sounds for Indirect Instruction Injection in Multi-Modal LLMs
We demonstrate how images and sounds can be used for indirect prompt and instruction injection in multi-modal LLMs. An attacker generates an adversarial perturbation corresponding to the prompt and blends it into an image or audio recording. When the user asks the (unmodified, benign) model about the perturbed image or audio, the perturbation steers the model to output the attacker-chosen text and/or make the subsequent dialog follow the attacker's instruction. We illustrate this attack with several proof-of-concept examples targeting LLaVa and PandaGPT.
SPADE: Enhancing Adaptive Cyber Deception Strategies with Generative AI and Structured Prompt Engineering
The rapid evolution of modern malware presents significant challenges to the development of effective defense mechanisms. Traditional cyber deception techniques often rely on static or manually configured parameters, limiting their adaptability to dynamic and sophisticated threats. This study leverages Generative AI (GenAI) models to automate the creation of adaptive cyber deception ploys, focusing on structured prompt engineering (PE) to enhance relevance, actionability, and deployability. We introduce a systematic framework (SPADE) to address inherent challenges large language models (LLMs) pose to adaptive deceptions, including generalized outputs, ambiguity, under-utilization of contextual information, and scalability constraints. Evaluations across diverse malware scenarios using metrics such as Recall, Exact Match (EM), BLEU Score, and expert quality assessments identified ChatGPT-4o as the top performer. Additionally, it achieved high engagement (93%) and accuracy (96%) with minimal refinements. Gemini and ChatGPT-4o Mini demonstrated competitive performance, with Llama3.2 showing promise despite requiring further optimization. These findings highlight the transformative potential of GenAI in automating scalable, adaptive deception strategies and underscore the critical role of structured PE in advancing real-world cybersecurity applications.
PassGPT: Password Modeling and (Guided) Generation with Large Language Models
Large language models (LLMs) successfully model natural language from vast amounts of text without the need for explicit supervision. In this paper, we investigate the efficacy of LLMs in modeling passwords. We present PassGPT, a LLM trained on password leaks for password generation. PassGPT outperforms existing methods based on generative adversarial networks (GAN) by guessing twice as many previously unseen passwords. Furthermore, we introduce the concept of guided password generation, where we leverage PassGPT sampling procedure to generate passwords matching arbitrary constraints, a feat lacking in current GAN-based strategies. Lastly, we conduct an in-depth analysis of the entropy and probability distribution that PassGPT defines over passwords and discuss their use in enhancing existing password strength estimators.
When and How to Fool Explainable Models (and Humans) with Adversarial Examples
Reliable deployment of machine learning models such as neural networks continues to be challenging due to several limitations. Some of the main shortcomings are the lack of interpretability and the lack of robustness against adversarial examples or out-of-distribution inputs. In this exploratory review, we explore the possibilities and limits of adversarial attacks for explainable machine learning models. First, we extend the notion of adversarial examples to fit in explainable machine learning scenarios, in which the inputs, the output classifications and the explanations of the model's decisions are assessed by humans. Next, we propose a comprehensive framework to study whether (and how) adversarial examples can be generated for explainable models under human assessment, introducing and illustrating novel attack paradigms. In particular, our framework considers a wide range of relevant yet often ignored factors such as the type of problem, the user expertise or the objective of the explanations, in order to identify the attack strategies that should be adopted in each scenario to successfully deceive the model (and the human). The intention of these contributions is to serve as a basis for a more rigorous and realistic study of adversarial examples in the field of explainable machine learning.
Natural Attack for Pre-trained Models of Code
Pre-trained models of code have achieved success in many important software engineering tasks. However, these powerful models are vulnerable to adversarial attacks that slightly perturb model inputs to make a victim model produce wrong outputs. Current works mainly attack models of code with examples that preserve operational program semantics but ignore a fundamental requirement for adversarial example generation: perturbations should be natural to human judges, which we refer to as naturalness requirement. In this paper, we propose ALERT (nAturaLnEss AwaRe ATtack), a black-box attack that adversarially transforms inputs to make victim models produce wrong outputs. Different from prior works, this paper considers the natural semantic of generated examples at the same time as preserving the operational semantic of original inputs. Our user study demonstrates that human developers consistently consider that adversarial examples generated by ALERT are more natural than those generated by the state-of-the-art work by Zhang et al. that ignores the naturalness requirement. On attacking CodeBERT, our approach can achieve attack success rates of 53.62%, 27.79%, and 35.78% across three downstream tasks: vulnerability prediction, clone detection and code authorship attribution. On GraphCodeBERT, our approach can achieve average success rates of 76.95%, 7.96% and 61.47% on the three tasks. The above outperforms the baseline by 14.07% and 18.56% on the two pre-trained models on average. Finally, we investigated the value of the generated adversarial examples to harden victim models through an adversarial fine-tuning procedure and demonstrated the accuracy of CodeBERT and GraphCodeBERT against ALERT-generated adversarial examples increased by 87.59% and 92.32%, respectively.
Phantom: General Trigger Attacks on Retrieval Augmented Language Generation
Retrieval Augmented Generation (RAG) expands the capabilities of modern large language models (LLMs) in chatbot applications, enabling developers to adapt and personalize the LLM output without expensive training or fine-tuning. RAG systems use an external knowledge database to retrieve the most relevant documents for a given query, providing this context to the LLM generator. While RAG achieves impressive utility in many applications, its adoption to enable personalized generative models introduces new security risks. In this work, we propose new attack surfaces for an adversary to compromise a victim's RAG system, by injecting a single malicious document in its knowledge database. We design Phantom, general two-step attack framework against RAG augmented LLMs. The first step involves crafting a poisoned document designed to be retrieved by the RAG system within the top-k results only when an adversarial trigger, a specific sequence of words acting as backdoor, is present in the victim's queries. In the second step, a specially crafted adversarial string within the poisoned document triggers various adversarial attacks in the LLM generator, including denial of service, reputation damage, privacy violations, and harmful behaviors. We demonstrate our attacks on multiple LLM architectures, including Gemma, Vicuna, and Llama.
Are GANs Created Equal? A Large-Scale Study
Generative adversarial networks (GAN) are a powerful subclass of generative models. Despite a very rich research activity leading to numerous interesting GAN algorithms, it is still very hard to assess which algorithm(s) perform better than others. We conduct a neutral, multi-faceted large-scale empirical study on state-of-the art models and evaluation measures. We find that most models can reach similar scores with enough hyperparameter optimization and random restarts. This suggests that improvements can arise from a higher computational budget and tuning more than fundamental algorithmic changes. To overcome some limitations of the current metrics, we also propose several data sets on which precision and recall can be computed. Our experimental results suggest that future GAN research should be based on more systematic and objective evaluation procedures. Finally, we did not find evidence that any of the tested algorithms consistently outperforms the non-saturating GAN introduced in goodfellow2014generative.
Concept Arithmetics for Circumventing Concept Inhibition in Diffusion Models
Motivated by ethical and legal concerns, the scientific community is actively developing methods to limit the misuse of Text-to-Image diffusion models for reproducing copyrighted, violent, explicit, or personal information in the generated images. Simultaneously, researchers put these newly developed safety measures to the test by assuming the role of an adversary to find vulnerabilities and backdoors in them. We use compositional property of diffusion models, which allows to leverage multiple prompts in a single image generation. This property allows us to combine other concepts, that should not have been affected by the inhibition, to reconstruct the vector, responsible for target concept generation, even though the direct computation of this vector is no longer accessible. We provide theoretical and empirical evidence why the proposed attacks are possible and discuss the implications of these findings for safe model deployment. We argue that it is essential to consider all possible approaches to image generation with diffusion models that can be employed by an adversary. Our work opens up the discussion about the implications of concept arithmetics and compositional inference for safety mechanisms in diffusion models. Content Advisory: This paper contains discussions and model-generated content that may be considered offensive. Reader discretion is advised. Project page: https://cs-people.bu.edu/vpetsiuk/arc
Model Stealing Attacks Against Inductive Graph Neural Networks
Many real-world data come in the form of graphs. Graph neural networks (GNNs), a new family of machine learning (ML) models, have been proposed to fully leverage graph data to build powerful applications. In particular, the inductive GNNs, which can generalize to unseen data, become mainstream in this direction. Machine learning models have shown great potential in various tasks and have been deployed in many real-world scenarios. To train a good model, a large amount of data as well as computational resources are needed, leading to valuable intellectual property. Previous research has shown that ML models are prone to model stealing attacks, which aim to steal the functionality of the target models. However, most of them focus on the models trained with images and texts. On the other hand, little attention has been paid to models trained with graph data, i.e., GNNs. In this paper, we fill the gap by proposing the first model stealing attacks against inductive GNNs. We systematically define the threat model and propose six attacks based on the adversary's background knowledge and the responses of the target models. Our evaluation on six benchmark datasets shows that the proposed model stealing attacks against GNNs achieve promising performance.
Towards More Realistic Membership Inference Attacks on Large Diffusion Models
Generative diffusion models, including Stable Diffusion and Midjourney, can generate visually appealing, diverse, and high-resolution images for various applications. These models are trained on billions of internet-sourced images, raising significant concerns about the potential unauthorized use of copyright-protected images. In this paper, we examine whether it is possible to determine if a specific image was used in the training set, a problem known in the cybersecurity community and referred to as a membership inference attack. Our focus is on Stable Diffusion, and we address the challenge of designing a fair evaluation framework to answer this membership question. We propose a methodology to establish a fair evaluation setup and apply it to Stable Diffusion, enabling potential extensions to other generative models. Utilizing this evaluation setup, we execute membership attacks (both known and newly introduced). Our research reveals that previously proposed evaluation setups do not provide a full understanding of the effectiveness of membership inference attacks. We conclude that the membership inference attack remains a significant challenge for large diffusion models (often deployed as black-box systems), indicating that related privacy and copyright issues will persist in the foreseeable future.
Universal and Transferable Adversarial Attacks on Aligned Language Models
Because "out-of-the-box" large language models are capable of generating a great deal of objectionable content, recent work has focused on aligning these models in an attempt to prevent undesirable generation. While there has been some success at circumventing these measures -- so-called "jailbreaks" against LLMs -- these attacks have required significant human ingenuity and are brittle in practice. In this paper, we propose a simple and effective attack method that causes aligned language models to generate objectionable behaviors. Specifically, our approach finds a suffix that, when attached to a wide range of queries for an LLM to produce objectionable content, aims to maximize the probability that the model produces an affirmative response (rather than refusing to answer). However, instead of relying on manual engineering, our approach automatically produces these adversarial suffixes by a combination of greedy and gradient-based search techniques, and also improves over past automatic prompt generation methods. Surprisingly, we find that the adversarial prompts generated by our approach are quite transferable, including to black-box, publicly released LLMs. Specifically, we train an adversarial attack suffix on multiple prompts (i.e., queries asking for many different types of objectionable content), as well as multiple models (in our case, Vicuna-7B and 13B). When doing so, the resulting attack suffix is able to induce objectionable content in the public interfaces to ChatGPT, Bard, and Claude, as well as open source LLMs such as LLaMA-2-Chat, Pythia, Falcon, and others. In total, this work significantly advances the state-of-the-art in adversarial attacks against aligned language models, raising important questions about how such systems can be prevented from producing objectionable information. Code is available at github.com/llm-attacks/llm-attacks.
Tensor Trust: Interpretable Prompt Injection Attacks from an Online Game
While Large Language Models (LLMs) are increasingly being used in real-world applications, they remain vulnerable to prompt injection attacks: malicious third party prompts that subvert the intent of the system designer. To help researchers study this problem, we present a dataset of over 126,000 prompt injection attacks and 46,000 prompt-based "defenses" against prompt injection, all created by players of an online game called Tensor Trust. To the best of our knowledge, this is currently the largest dataset of human-generated adversarial examples for instruction-following LLMs. The attacks in our dataset have a lot of easily interpretable stucture, and shed light on the weaknesses of LLMs. We also use the dataset to create a benchmark for resistance to two types of prompt injection, which we refer to as prompt extraction and prompt hijacking. Our benchmark results show that many models are vulnerable to the attack strategies in the Tensor Trust dataset. Furthermore, we show that some attack strategies from the dataset generalize to deployed LLM-based applications, even though they have a very different set of constraints to the game. We release all data and source code at https://tensortrust.ai/paper
Distilling Robust and Non-Robust Features in Adversarial Examples by Information Bottleneck
Adversarial examples, generated by carefully crafted perturbation, have attracted considerable attention in research fields. Recent works have argued that the existence of the robust and non-robust features is a primary cause of the adversarial examples, and investigated their internal interactions in the feature space. In this paper, we propose a way of explicitly distilling feature representation into the robust and non-robust features, using Information Bottleneck. Specifically, we inject noise variation to each feature unit and evaluate the information flow in the feature representation to dichotomize feature units either robust or non-robust, based on the noise variation magnitude. Through comprehensive experiments, we demonstrate that the distilled features are highly correlated with adversarial prediction, and they have human-perceptible semantic information by themselves. Furthermore, we present an attack mechanism intensifying the gradient of non-robust features that is directly related to the model prediction, and validate its effectiveness of breaking model robustness.
Order-Disorder: Imitation Adversarial Attacks for Black-box Neural Ranking Models
Neural text ranking models have witnessed significant advancement and are increasingly being deployed in practice. Unfortunately, they also inherit adversarial vulnerabilities of general neural models, which have been detected but remain underexplored by prior studies. Moreover, the inherit adversarial vulnerabilities might be leveraged by blackhat SEO to defeat better-protected search engines. In this study, we propose an imitation adversarial attack on black-box neural passage ranking models. We first show that the target passage ranking model can be transparentized and imitated by enumerating critical queries/candidates and then train a ranking imitation model. Leveraging the ranking imitation model, we can elaborately manipulate the ranking results and transfer the manipulation attack to the target ranking model. For this purpose, we propose an innovative gradient-based attack method, empowered by the pairwise objective function, to generate adversarial triggers, which causes premeditated disorderliness with very few tokens. To equip the trigger camouflages, we add the next sentence prediction loss and the language model fluency constraint to the objective function. Experimental results on passage ranking demonstrate the effectiveness of the ranking imitation attack model and adversarial triggers against various SOTA neural ranking models. Furthermore, various mitigation analyses and human evaluation show the effectiveness of camouflages when facing potential mitigation approaches. To motivate other scholars to further investigate this novel and important problem, we make the experiment data and code publicly available.
Breaking Down the Defenses: A Comparative Survey of Attacks on Large Language Models
Large Language Models (LLMs) have become a cornerstone in the field of Natural Language Processing (NLP), offering transformative capabilities in understanding and generating human-like text. However, with their rising prominence, the security and vulnerability aspects of these models have garnered significant attention. This paper presents a comprehensive survey of the various forms of attacks targeting LLMs, discussing the nature and mechanisms of these attacks, their potential impacts, and current defense strategies. We delve into topics such as adversarial attacks that aim to manipulate model outputs, data poisoning that affects model training, and privacy concerns related to training data exploitation. The paper also explores the effectiveness of different attack methodologies, the resilience of LLMs against these attacks, and the implications for model integrity and user trust. By examining the latest research, we provide insights into the current landscape of LLM vulnerabilities and defense mechanisms. Our objective is to offer a nuanced understanding of LLM attacks, foster awareness within the AI community, and inspire robust solutions to mitigate these risks in future developments.
Stealth edits for provably fixing or attacking large language models
We reveal new methods and the theoretical foundations of techniques for editing large language models. We also show how the new theory can be used to assess the editability of models and to expose their susceptibility to previously unknown malicious attacks. Our theoretical approach shows that a single metric (a specific measure of the intrinsic dimensionality of the model's features) is fundamental to predicting the success of popular editing approaches, and reveals new bridges between disparate families of editing methods. We collectively refer to these approaches as stealth editing methods, because they aim to directly and inexpensively update a model's weights to correct the model's responses to known hallucinating prompts without otherwise affecting the model's behaviour, without requiring retraining. By carefully applying the insight gleaned from our theoretical investigation, we are able to introduce a new network block -- named a jet-pack block -- which is optimised for highly selective model editing, uses only standard network operations, and can be inserted into existing networks. The intrinsic dimensionality metric also determines the vulnerability of a language model to a stealth attack: a small change to a model's weights which changes its response to a single attacker-chosen prompt. Stealth attacks do not require access to or knowledge of the model's training data, therefore representing a potent yet previously unrecognised threat to redistributed foundation models. They are computationally simple enough to be implemented in malware in many cases. Extensive experimental results illustrate and support the method and its theoretical underpinnings. Demos and source code for editing language models are available at https://github.com/qinghua-zhou/stealth-edits.
Leveraging Diffusion-Based Image Variations for Robust Training on Poisoned Data
Backdoor attacks pose a serious security threat for training neural networks as they surreptitiously introduce hidden functionalities into a model. Such backdoors remain silent during inference on clean inputs, evading detection due to inconspicuous behavior. However, once a specific trigger pattern appears in the input data, the backdoor activates, causing the model to execute its concealed function. Detecting such poisoned samples within vast datasets is virtually impossible through manual inspection. To address this challenge, we propose a novel approach that enables model training on potentially poisoned datasets by utilizing the power of recent diffusion models. Specifically, we create synthetic variations of all training samples, leveraging the inherent resilience of diffusion models to potential trigger patterns in the data. By combining this generative approach with knowledge distillation, we produce student models that maintain their general performance on the task while exhibiting robust resistance to backdoor triggers.
Adversarial Negotiation Dynamics in Generative Language Models
Generative language models are increasingly used for contract drafting and enhancement, creating a scenario where competing parties deploy different language models against each other. This introduces not only a game-theory challenge but also significant concerns related to AI safety and security, as the language model employed by the opposing party can be unknown. These competitive interactions can be seen as adversarial testing grounds, where models are effectively red-teamed to expose vulnerabilities such as generating biased, harmful or legally problematic text. Despite the importance of these challenges, the competitive robustness and safety of these models in adversarial settings remain poorly understood. In this small study, we approach this problem by evaluating the performance and vulnerabilities of major open-source language models in head-to-head competitions, simulating real-world contract negotiations. We further explore how these adversarial interactions can reveal potential risks, informing the development of more secure and reliable models. Our findings contribute to the growing body of research on AI safety, offering insights into model selection and optimisation in competitive legal contexts and providing actionable strategies for mitigating risks.
Simple and Efficient Hard Label Black-box Adversarial Attacks in Low Query Budget Regimes
We focus on the problem of black-box adversarial attacks, where the aim is to generate adversarial examples for deep learning models solely based on information limited to output label~(hard label) to a queried data input. We propose a simple and efficient Bayesian Optimization~(BO) based approach for developing black-box adversarial attacks. Issues with BO's performance in high dimensions are avoided by searching for adversarial examples in a structured low-dimensional subspace. We demonstrate the efficacy of our proposed attack method by evaluating both ell_infty and ell_2 norm constrained untargeted and targeted hard label black-box attacks on three standard datasets - MNIST, CIFAR-10 and ImageNet. Our proposed approach consistently achieves 2x to 10x higher attack success rate while requiring 10x to 20x fewer queries compared to the current state-of-the-art black-box adversarial attacks.
"That Is a Suspicious Reaction!": Interpreting Logits Variation to Detect NLP Adversarial Attacks
Adversarial attacks are a major challenge faced by current machine learning research. These purposely crafted inputs fool even the most advanced models, precluding their deployment in safety-critical applications. Extensive research in computer vision has been carried to develop reliable defense strategies. However, the same issue remains less explored in natural language processing. Our work presents a model-agnostic detector of adversarial text examples. The approach identifies patterns in the logits of the target classifier when perturbing the input text. The proposed detector improves the current state-of-the-art performance in recognizing adversarial inputs and exhibits strong generalization capabilities across different NLP models, datasets, and word-level attacks.
Provable Copyright Protection for Generative Models
There is a growing concern that learned conditional generative models may output samples that are substantially similar to some copyrighted data C that was in their training set. We give a formal definition of near access-freeness (NAF) and prove bounds on the probability that a model satisfying this definition outputs a sample similar to C, even if C is included in its training set. Roughly speaking, a generative model p is $k-NAF if for every potentially copyrighted data C, the output of p diverges by at most k-bits from the output of a model q that did not access C at all$. We also give generative model learning algorithms, which efficiently modify the original generative model learning algorithm in a black box manner, that output generative models with strong bounds on the probability of sampling protected content. Furthermore, we provide promising experiments for both language (transformers) and image (diffusion) generative models, showing minimal degradation in output quality while ensuring strong protections against sampling protected content.
Implicit Jailbreak Attacks via Cross-Modal Information Concealment on Vision-Language Models
Multimodal large language models (MLLMs) enable powerful cross-modal reasoning capabilities. However, the expanded input space introduces new attack surfaces. Previous jailbreak attacks often inject malicious instructions from text into less aligned modalities, such as vision. As MLLMs increasingly incorporate cross-modal consistency and alignment mechanisms, such explicit attacks become easier to detect and block. In this work, we propose a novel implicit jailbreak framework termed IJA that stealthily embeds malicious instructions into images via least significant bit steganography and couples them with seemingly benign, image-related textual prompts. To further enhance attack effectiveness across diverse MLLMs, we incorporate adversarial suffixes generated by a surrogate model and introduce a template optimization module that iteratively refines both the prompt and embedding based on model feedback. On commercial models like GPT-4o and Gemini-1.5 Pro, our method achieves attack success rates of over 90% using an average of only 3 queries.
BEEAR: Embedding-based Adversarial Removal of Safety Backdoors in Instruction-tuned Language Models
Safety backdoor attacks in large language models (LLMs) enable the stealthy triggering of unsafe behaviors while evading detection during normal interactions. The high dimensionality of potential triggers in the token space and the diverse range of malicious behaviors make this a critical challenge. We present BEEAR, a mitigation approach leveraging the insight that backdoor triggers induce relatively uniform drifts in the model's embedding space. Our bi-level optimization method identifies universal embedding perturbations that elicit unwanted behaviors and adjusts the model parameters to reinforce safe behaviors against these perturbations. Experiments show BEEAR reduces the success rate of RLHF time backdoor attacks from >95% to <1% and from 47% to 0% for instruction-tuning time backdoors targeting malicious code generation, without compromising model utility. Requiring only defender-defined safe and unwanted behaviors, BEEAR represents a step towards practical defenses against safety backdoors in LLMs, providing a foundation for further advancements in AI safety and security.
A Fingerprint for Large Language Models
Recent advances show that scaling a pre-trained language model could achieve state-of-the-art performance on many downstream tasks, prompting large language models (LLMs) to become a hot research topic in the field of artificial intelligence. However, due to the resource-intensive nature of training LLMs from scratch, it is urgent and crucial to protect the intellectual property of LLMs against infringement. This has motivated the authors in this paper to propose a novel black-box fingerprinting technique for LLMs, which requires neither model training nor model fine-tuning. We first demonstrate that the outputs of LLMs span a unique vector space associated with each model. We model the problem of ownership authentication as the task of evaluating the similarity between the victim model's space and the output's space of the suspect model. To deal with this problem, we propose two solutions, where the first solution involves verifying whether the outputs of the suspected large model are in the same space as those of the victim model, enabling rapid identification of model infringement, and the second one reconstructs the union of the vector spaces for LLM outputs and the victim model to address situations where the victim model has undergone the Parameter-Efficient Fine-Tuning (PEFT) attacks. Experimental results indicate that the proposed technique achieves superior performance in ownership verification and robustness against PEFT attacks. This work reveals inherent characteristics of LLMs and provides a promising solution for ownership verification of LLMs in black-box scenarios, ensuring efficiency, generality and practicality.
Synthetic Data Privacy Metrics
Recent advancements in generative AI have made it possible to create synthetic datasets that can be as accurate as real-world data for training AI models, powering statistical insights, and fostering collaboration with sensitive datasets while offering strong privacy guarantees. Effectively measuring the empirical privacy of synthetic data is an important step in the process. However, while there is a multitude of new privacy metrics being published every day, there currently is no standardization. In this paper, we review the pros and cons of popular metrics that include simulations of adversarial attacks. We also review current best practices for amending generative models to enhance the privacy of the data they create (e.g. differential privacy).
Frontier Language Models are not Robust to Adversarial Arithmetic, or "What do I need to say so you agree 2+2=5?
We introduce and study the problem of adversarial arithmetic, which provides a simple yet challenging testbed for language model alignment. This problem is comprised of arithmetic questions posed in natural language, with an arbitrary adversarial string inserted before the question is complete. Even in the simple setting of 1-digit addition problems, it is easy to find adversarial prompts that make all tested models (including PaLM2, GPT4, Claude2) misbehave, and even to steer models to a particular wrong answer. We additionally provide a simple algorithm for finding successful attacks by querying those same models, which we name "prompt inversion rejection sampling" (PIRS). We finally show that models can be partially hardened against these attacks via reinforcement learning and via agentic constitutional loops. However, we were not able to make a language model fully robust against adversarial arithmetic attacks.
Symbol Preference Aware Generative Models for Recovering Variable Names from Stripped Binary
Decompilation aims to recover the source code form of a binary executable. It has many security applications such as malware analysis, vulnerability detection and code hardening. A prominent challenge in decompilation is to recover variable names. We propose a novel technique that leverages the strengths of generative models while mitigating model biases and potential hallucinations. We build a prototype, GenNm, from pre-trained generative models CodeGemma-2B and CodeLlama-7B. We finetune GenNm on decompiled functions, and mitigate model biases by incorporating symbol preference to the training pipeline. GenNm includes names from callers and callees while querying a function, providing rich contextual information within the model's input token limitation. It further leverages program analysis to validate the consistency of names produced by the generative model. Our results show that GenNm improves the state-of-the-art name recovery accuracy by 8.6 and 11.4 percentage points on two commonly used datasets, and improves the state-of-the-art from 8.5% to 22.8% in the most challenging setup where ground-truth variable names are not seen in the training dataset.
Stealing Part of a Production Language Model
We introduce the first model-stealing attack that extracts precise, nontrivial information from black-box production language models like OpenAI's ChatGPT or Google's PaLM-2. Specifically, our attack recovers the embedding projection layer (up to symmetries) of a transformer model, given typical API access. For under \20 USD, our attack extracts the entire projection matrix of OpenAI's Ada and Babbage language models. We thereby confirm, for the first time, that these black-box models have a hidden dimension of 1024 and 2048, respectively. We also recover the exact hidden dimension size of the gpt-3.5-turbo model, and estimate it would cost under 2,000 in queries to recover the entire projection matrix. We conclude with potential defenses and mitigations, and discuss the implications of possible future work that could extend our attack.
CARSO: Counter-Adversarial Recall of Synthetic Observations
In this paper, we propose a novel adversarial defence mechanism for image classification -- CARSO -- inspired by cues from cognitive neuroscience. The method is synergistically complementary to adversarial training and relies on knowledge of the internal representation of the attacked classifier. Exploiting a generative model for adversarial purification, conditioned on such representation, it samples reconstructions of inputs to be finally classified. Experimental evaluation by a well-established benchmark of varied, strong adaptive attacks, across diverse image datasets and classifier architectures, shows that CARSO is able to defend the classifier significantly better than state-of-the-art adversarial training alone -- with a tolerable clean accuracy toll. Furthermore, the defensive architecture succeeds in effectively shielding itself from unforeseen threats, and end-to-end attacks adapted to fool stochastic defences. Code and pre-trained models are available at https://github.com/emaballarin/CARSO .
garak: A Framework for Security Probing Large Language Models
As Large Language Models (LLMs) are deployed and integrated into thousands of applications, the need for scalable evaluation of how models respond to adversarial attacks grows rapidly. However, LLM security is a moving target: models produce unpredictable output, are constantly updated, and the potential adversary is highly diverse: anyone with access to the internet and a decent command of natural language. Further, what constitutes a security weak in one context may not be an issue in a different context; one-fits-all guardrails remain theoretical. In this paper, we argue that it is time to rethink what constitutes ``LLM security'', and pursue a holistic approach to LLM security evaluation, where exploration and discovery of issues are central. To this end, this paper introduces garak (Generative AI Red-teaming and Assessment Kit), a framework which can be used to discover and identify vulnerabilities in a target LLM or dialog system. garak probes an LLM in a structured fashion to discover potential vulnerabilities. The outputs of the framework describe a target model's weaknesses, contribute to an informed discussion of what composes vulnerabilities in unique contexts, and can inform alignment and policy discussions for LLM deployment.
Generated Graph Detection
Graph generative models become increasingly effective for data distribution approximation and data augmentation. While they have aroused public concerns about their malicious misuses or misinformation broadcasts, just as what Deepfake visual and auditory media has been delivering to society. Hence it is essential to regulate the prevalence of generated graphs. To tackle this problem, we pioneer the formulation of the generated graph detection problem to distinguish generated graphs from real ones. We propose the first framework to systematically investigate a set of sophisticated models and their performance in four classification scenarios. Each scenario switches between seen and unseen datasets/generators during testing to get closer to real-world settings and progressively challenge the classifiers. Extensive experiments evidence that all the models are qualified for generated graph detection, with specific models having advantages in specific scenarios. Resulting from the validated generality and oblivion of the classifiers to unseen datasets/generators, we draw a safe conclusion that our solution can sustain for a decent while to curb generated graph misuses.
One Pic is All it Takes: Poisoning Visual Document Retrieval Augmented Generation with a Single Image
Multi-modal retrieval augmented generation (M-RAG) is instrumental for inhibiting hallucinations in large multi-modal models (LMMs) through the use of a factual knowledge base (KB). However, M-RAG introduces new attack vectors for adversaries that aim to disrupt the system by injecting malicious entries into the KB. In this paper, we present the first poisoning attack against M-RAG targeting visual document retrieval applications where the KB contains images of document pages. We propose two attacks, each of which require injecting only a single adversarial image into the KB. Firstly, we propose a universal attack that, for any potential user query, influences the response to cause a denial-of-service (DoS) in the M-RAG system. Secondly, we present a targeted attack against one or a group of user queries, with the goal of spreading targeted misinformation. For both attacks, we use a multi-objective gradient-based adversarial approach to craft the injected image while optimizing for both retrieval and generation. We evaluate our attacks against several visual document retrieval datasets, a diverse set of state-of-the-art retrievers (embedding models) and generators (LMMs), demonstrating the attack effectiveness in both the universal and targeted settings. We additionally present results including commonly used defenses, various attack hyper-parameter settings, ablations, and attack transferability.
To Trust or Not To Trust Prediction Scores for Membership Inference Attacks
Membership inference attacks (MIAs) aim to determine whether a specific sample was used to train a predictive model. Knowing this may indeed lead to a privacy breach. Most MIAs, however, make use of the model's prediction scores - the probability of each output given some input - following the intuition that the trained model tends to behave differently on its training data. We argue that this is a fallacy for many modern deep network architectures. Consequently, MIAs will miserably fail since overconfidence leads to high false-positive rates not only on known domains but also on out-of-distribution data and implicitly acts as a defense against MIAs. Specifically, using generative adversarial networks, we are able to produce a potentially infinite number of samples falsely classified as part of the training data. In other words, the threat of MIAs is overestimated, and less information is leaked than previously assumed. Moreover, there is actually a trade-off between the overconfidence of models and their susceptibility to MIAs: the more classifiers know when they do not know, making low confidence predictions, the more they reveal the training data.
Derail Yourself: Multi-turn LLM Jailbreak Attack through Self-discovered Clues
This study exposes the safety vulnerabilities of Large Language Models (LLMs) in multi-turn interactions, where malicious users can obscure harmful intents across several queries. We introduce ActorAttack, a novel multi-turn attack method inspired by actor-network theory, which models a network of semantically linked actors as attack clues to generate diverse and effective attack paths toward harmful targets. ActorAttack addresses two main challenges in multi-turn attacks: (1) concealing harmful intents by creating an innocuous conversation topic about the actor, and (2) uncovering diverse attack paths towards the same harmful target by leveraging LLMs' knowledge to specify the correlated actors as various attack clues. In this way, ActorAttack outperforms existing single-turn and multi-turn attack methods across advanced aligned LLMs, even for GPT-o1. We will publish a dataset called SafeMTData, which includes multi-turn adversarial prompts and safety alignment data, generated by ActorAttack. We demonstrate that models safety-tuned using our safety dataset are more robust to multi-turn attacks. Code is available at https://github.com/renqibing/ActorAttack.
Living-off-The-Land Reverse-Shell Detection by Informed Data Augmentation
The living-off-the-land (LOTL) offensive methodologies rely on the perpetration of malicious actions through chains of commands executed by legitimate applications, identifiable exclusively by analysis of system logs. LOTL techniques are well hidden inside the stream of events generated by common legitimate activities, moreover threat actors often camouflage activity through obfuscation, making them particularly difficult to detect without incurring in plenty of false alarms, even using machine learning. To improve the performance of models in such an harsh environment, we propose an augmentation framework to enhance and diversify the presence of LOTL malicious activity inside legitimate logs. Guided by threat intelligence, we generate a dataset by injecting attack templates known to be employed in the wild, further enriched by malleable patterns of legitimate activities to replicate the behavior of evasive threat actors. We conduct an extensive ablation study to understand which models better handle our augmented dataset, also manipulated to mimic the presence of model-agnostic evasion and poisoning attacks. Our results suggest that augmentation is needed to maintain high-predictive capabilities, robustness to attack is achieved through specific hardening techniques like adversarial training, and it is possible to deploy near-real-time models with almost-zero false alarms.
Breaking Latent Prior Bias in Detectors for Generalizable AIGC Image Detection
Current AIGC detectors often achieve near-perfect accuracy on images produced by the same generator used for training but struggle to generalize to outputs from unseen generators. We trace this failure in part to latent prior bias: detectors learn shortcuts tied to patterns stemming from the initial noise vector rather than learning robust generative artifacts. To address this, we propose On-Manifold Adversarial Training (OMAT): by optimizing the initial latent noise of diffusion models under fixed conditioning, we generate on-manifold adversarial examples that remain on the generator's output manifold-unlike pixel-space attacks, which introduce off-manifold perturbations that the generator itself cannot reproduce and that can obscure the true discriminative artifacts. To test against state-of-the-art generative models, we introduce GenImage++, a test-only benchmark of outputs from advanced generators (Flux.1, SD3) with extended prompts and diverse styles. We apply our adversarial-training paradigm to ResNet50 and CLIP baselines and evaluate across existing AIGC forensic benchmarks and recent challenge datasets. Extensive experiments show that adversarially trained detectors significantly improve cross-generator performance without any network redesign. Our findings on latent-prior bias offer valuable insights for future dataset construction and detector evaluation, guiding the development of more robust and generalizable AIGC forensic methodologies.
SoK: Can Synthetic Images Replace Real Data? A Survey of Utility and Privacy of Synthetic Image Generation
Advances in generative models have transformed the field of synthetic image generation for privacy-preserving data synthesis (PPDS). However, the field lacks a comprehensive survey and comparison of synthetic image generation methods across diverse settings. In particular, when we generate synthetic images for the purpose of training a classifier, there is a pipeline of generation-sampling-classification which takes private training as input and outputs the final classifier of interest. In this survey, we systematically categorize existing image synthesis methods, privacy attacks, and mitigations along this generation-sampling-classification pipeline. To empirically compare diverse synthesis approaches, we provide a benchmark with representative generative methods and use model-agnostic membership inference attacks (MIAs) as a measure of privacy risk. Through this study, we seek to answer critical questions in PPDS: Can synthetic data effectively replace real data? Which release strategy balances utility and privacy? Do mitigations improve the utility-privacy tradeoff? Which generative models perform best across different scenarios? With a systematic evaluation of diverse methods, our study provides actionable insights into the utility-privacy tradeoffs of synthetic data generation methods and guides the decision on optimal data releasing strategies for real-world applications.
Has an AI model been trained on your images?
From a simple text prompt, generative-AI image models can create stunningly realistic and creative images bounded, it seems, by only our imagination. These models have achieved this remarkable feat thanks, in part, to the ingestion of billions of images collected from nearly every corner of the internet. Many creators have understandably expressed concern over how their intellectual property has been ingested without their permission or a mechanism to opt out of training. As a result, questions of fair use and copyright infringement have quickly emerged. We describe a method that allows us to determine if a model was trained on a specific image or set of images. This method is computationally efficient and assumes no explicit knowledge of the model architecture or weights (so-called black-box membership inference). We anticipate that this method will be crucial for auditing existing models and, looking ahead, ensuring the fairer development and deployment of generative AI models.
EDoG: Adversarial Edge Detection For Graph Neural Networks
Graph Neural Networks (GNNs) have been widely applied to different tasks such as bioinformatics, drug design, and social networks. However, recent studies have shown that GNNs are vulnerable to adversarial attacks which aim to mislead the node or subgraph classification prediction by adding subtle perturbations. Detecting these attacks is challenging due to the small magnitude of perturbation and the discrete nature of graph data. In this paper, we propose a general adversarial edge detection pipeline EDoG without requiring knowledge of the attack strategies based on graph generation. Specifically, we propose a novel graph generation approach combined with link prediction to detect suspicious adversarial edges. To effectively train the graph generative model, we sample several sub-graphs from the given graph data. We show that since the number of adversarial edges is usually low in practice, with low probability the sampled sub-graphs will contain adversarial edges based on the union bound. In addition, considering the strong attacks which perturb a large number of edges, we propose a set of novel features to perform outlier detection as the preprocessing for our detection. Extensive experimental results on three real-world graph datasets including a private transaction rule dataset from a major company and two types of synthetic graphs with controlled properties show that EDoG can achieve above 0.8 AUC against four state-of-the-art unseen attack strategies without requiring any knowledge about the attack type; and around 0.85 with knowledge of the attack type. EDoG significantly outperforms traditional malicious edge detection baselines. We also show that an adaptive attack with full knowledge of our detection pipeline is difficult to bypass it.
Tools for Verifying Neural Models' Training Data
It is important that consumers and regulators can verify the provenance of large neural models to evaluate their capabilities and risks. We introduce the concept of a "Proof-of-Training-Data": any protocol that allows a model trainer to convince a Verifier of the training data that produced a set of model weights. Such protocols could verify the amount and kind of data and compute used to train the model, including whether it was trained on specific harmful or beneficial data sources. We explore efficient verification strategies for Proof-of-Training-Data that are compatible with most current large-model training procedures. These include a method for the model-trainer to verifiably pre-commit to a random seed used in training, and a method that exploits models' tendency to temporarily overfit to training data in order to detect whether a given data-point was included in training. We show experimentally that our verification procedures can catch a wide variety of attacks, including all known attacks from the Proof-of-Learning literature.
Compositional Generative Modeling: A Single Model is Not All You Need
Large monolithic generative models trained on massive amounts of data have become an increasingly dominant approach in AI research. In this paper, we argue that we should instead construct large generative systems by composing smaller generative models together. We show how such a compositional generative approach enables us to learn distributions in a more data-efficient manner, enabling generalization to parts of the data distribution unseen at training time. We further show how this enables us to program and construct new generative models for tasks completely unseen at training. Finally, we show that in many cases, we can discover separate compositional components from data.
Mitigating Jailbreaks with Intent-Aware LLMs
Despite extensive safety-tuning, large language models (LLMs) remain vulnerable to jailbreak attacks via adversarially crafted instructions, reflecting a persistent trade-off between safety and task performance. In this work, we propose Intent-FT, a simple and lightweight fine-tuning approach that explicitly trains LLMs to infer the underlying intent of an instruction before responding. By fine-tuning on a targeted set of adversarial instructions, Intent-FT enables LLMs to generalize intent deduction to unseen attacks, thereby substantially improving their robustness. We comprehensively evaluate both parametric and non-parametric attacks across open-source and proprietary models, considering harmfulness from attacks, utility, over-refusal, and impact against white-box threats. Empirically, Intent-FT consistently mitigates all evaluated attack categories, with no single attack exceeding a 50\% success rate -- whereas existing defenses remain only partially effective. Importantly, our method preserves the model's general capabilities and reduces excessive refusals on benign instructions containing superficially harmful keywords. Furthermore, models trained with Intent-FT accurately identify hidden harmful intent in adversarial attacks, and these learned intentions can be effectively transferred to enhance vanilla model defenses. We publicly release our code at https://github.com/wj210/Intent_Jailbreak.
Demystifying Poisoning Backdoor Attacks from a Statistical Perspective
The growing dependence on machine learning in real-world applications emphasizes the importance of understanding and ensuring its safety. Backdoor attacks pose a significant security risk due to their stealthy nature and potentially serious consequences. Such attacks involve embedding triggers within a learning model with the intention of causing malicious behavior when an active trigger is present while maintaining regular functionality without it. This paper evaluates the effectiveness of any backdoor attack incorporating a constant trigger, by establishing tight lower and upper boundaries for the performance of the compromised model on both clean and backdoor test data. The developed theory answers a series of fundamental but previously underexplored problems, including (1) what are the determining factors for a backdoor attack's success, (2) what is the direction of the most effective backdoor attack, and (3) when will a human-imperceptible trigger succeed. Our derived understanding applies to both discriminative and generative models. We also demonstrate the theory by conducting experiments using benchmark datasets and state-of-the-art backdoor attack scenarios.
3DHacker: Spectrum-based Decision Boundary Generation for Hard-label 3D Point Cloud Attack
With the maturity of depth sensors, the vulnerability of 3D point cloud models has received increasing attention in various applications such as autonomous driving and robot navigation. Previous 3D adversarial attackers either follow the white-box setting to iteratively update the coordinate perturbations based on gradients, or utilize the output model logits to estimate noisy gradients in the black-box setting. However, these attack methods are hard to be deployed in real-world scenarios since realistic 3D applications will not share any model details to users. Therefore, we explore a more challenging yet practical 3D attack setting, i.e., attacking point clouds with black-box hard labels, in which the attacker can only have access to the prediction label of the input. To tackle this setting, we propose a novel 3D attack method, termed 3D Hard-label attacker (3DHacker), based on the developed decision boundary algorithm to generate adversarial samples solely with the knowledge of class labels. Specifically, to construct the class-aware model decision boundary, 3DHacker first randomly fuses two point clouds of different classes in the spectral domain to craft their intermediate sample with high imperceptibility, then projects it onto the decision boundary via binary search. To restrict the final perturbation size, 3DHacker further introduces an iterative optimization strategy to move the intermediate sample along the decision boundary for generating adversarial point clouds with smallest trivial perturbations. Extensive evaluations show that, even in the challenging hard-label setting, 3DHacker still competitively outperforms existing 3D attacks regarding the attack performance as well as adversary quality.
A Practical Examination of AI-Generated Text Detectors for Large Language Models
The proliferation of large language models has raised growing concerns about their misuse, particularly in cases where AI-generated text is falsely attributed to human authors. Machine-generated content detectors claim to effectively identify such text under various conditions and from any language model. This paper critically evaluates these claims by assessing several popular detectors (RADAR, Wild, T5Sentinel, Fast-DetectGPT, PHD, LogRank, Binoculars) on a range of domains, datasets, and models that these detectors have not previously encountered. We employ various prompting strategies to simulate practical adversarial attacks, demonstrating that even moderate efforts can significantly evade detection. We emphasize the importance of the true positive rate at a specific false positive rate (TPR@FPR) metric and demonstrate that these detectors perform poorly in certain settings, with [email protected] as low as 0%. Our findings suggest that both trained and zero-shot detectors struggle to maintain high sensitivity while achieving a reasonable true positive rate.
Pandora's White-Box: Increased Training Data Leakage in Open LLMs
In this paper we undertake a systematic study of privacy attacks against open source Large Language Models (LLMs), where an adversary has access to either the model weights, gradients, or losses, and tries to exploit them to learn something about the underlying training data. Our headline results are the first membership inference attacks (MIAs) against pre-trained LLMs that are able to simultaneously achieve high TPRs and low FPRs, and a pipeline showing that over 50% (!) of the fine-tuning dataset can be extracted from a fine-tuned LLM in natural settings. We consider varying degrees of access to the underlying model, customization of the language model, and resources available to the attacker. In the pre-trained setting, we propose three new white-box MIAs: an attack based on the gradient norm, a supervised neural network classifier, and a single step loss ratio attack. All outperform existing black-box baselines, and our supervised attack closes the gap between MIA attack success against LLMs and other types of models. In fine-tuning, we find that given access to the loss of the fine-tuned and base models, a fine-tuned loss ratio attack FLoRA is able to achieve near perfect MIA peformance. We then leverage these MIAs to extract fine-tuning data from fine-tuned language models. We find that the pipeline of generating from fine-tuned models prompted with a small snippet of the prefix of each training example, followed by using FLoRa to select the most likely training sample, succeeds the majority of the fine-tuning dataset after only 3 epochs of fine-tuning. Taken together, these findings show that highly effective MIAs are available in almost all LLM training settings, and highlight that great care must be taken before LLMs are fine-tuned on highly sensitive data and then deployed.
Architectural Backdoors for Within-Batch Data Stealing and Model Inference Manipulation
For nearly a decade the academic community has investigated backdoors in neural networks, primarily focusing on classification tasks where adversaries manipulate the model prediction. While demonstrably malicious, the immediate real-world impact of such prediction-altering attacks has remained unclear. In this paper we introduce a novel and significantly more potent class of backdoors that builds upon recent advancements in architectural backdoors. We demonstrate how these backdoors can be specifically engineered to exploit batched inference, a common technique for hardware utilization, enabling large-scale user data manipulation and theft. By targeting the batching process, these architectural backdoors facilitate information leakage between concurrent user requests and allow attackers to fully control model responses directed at other users within the same batch. In other words, an attacker who can change the model architecture can set and steal model inputs and outputs of other users within the same batch. We show that such attacks are not only feasible but also alarmingly effective, can be readily injected into prevalent model architectures, and represent a truly malicious threat to user privacy and system integrity. Critically, to counteract this new class of vulnerabilities, we propose a deterministic mitigation strategy that provides formal guarantees against this new attack vector, unlike prior work that relied on Large Language Models to find the backdoors. Our mitigation strategy employs a novel Information Flow Control mechanism that analyzes the model graph and proves non-interference between different user inputs within the same batch. Using our mitigation strategy we perform a large scale analysis of models hosted through Hugging Face and find over 200 models that introduce (unintended) information leakage between batch entries due to the use of dynamic quantization.
A Frustratingly Simple Yet Highly Effective Attack Baseline: Over 90% Success Rate Against the Strong Black-box Models of GPT-4.5/4o/o1
Despite promising performance on open-source large vision-language models (LVLMs), transfer-based targeted attacks often fail against black-box commercial LVLMs. Analyzing failed adversarial perturbations reveals that the learned perturbations typically originate from a uniform distribution and lack clear semantic details, resulting in unintended responses. This critical absence of semantic information leads commercial LVLMs to either ignore the perturbation entirely or misinterpret its embedded semantics, thereby causing the attack to fail. To overcome these issues, we notice that identifying core semantic objects is a key objective for models trained with various datasets and methodologies. This insight motivates our approach that refines semantic clarity by encoding explicit semantic details within local regions, thus ensuring interoperability and capturing finer-grained features, and by concentrating modifications on semantically rich areas rather than applying them uniformly. To achieve this, we propose a simple yet highly effective solution: at each optimization step, the adversarial image is cropped randomly by a controlled aspect ratio and scale, resized, and then aligned with the target image in the embedding space. Experimental results confirm our hypothesis. Our adversarial examples crafted with local-aggregated perturbations focused on crucial regions exhibit surprisingly good transferability to commercial LVLMs, including GPT-4.5, GPT-4o, Gemini-2.0-flash, Claude-3.5-sonnet, Claude-3.7-sonnet, and even reasoning models like o1, Claude-3.7-thinking and Gemini-2.0-flash-thinking. Our approach achieves success rates exceeding 90% on GPT-4.5, 4o, and o1, significantly outperforming all prior state-of-the-art attack methods. Our optimized adversarial examples under different configurations and training code are available at https://github.com/VILA-Lab/M-Attack.
Exploiting Leaderboards for Large-Scale Distribution of Malicious Models
While poisoning attacks on machine learning models have been extensively studied, the mechanisms by which adversaries can distribute poisoned models at scale remain largely unexplored. In this paper, we shed light on how model leaderboards -- ranked platforms for model discovery and evaluation -- can serve as a powerful channel for adversaries for stealthy large-scale distribution of poisoned models. We present TrojanClimb, a general framework that enables injection of malicious behaviors while maintaining competitive leaderboard performance. We demonstrate its effectiveness across four diverse modalities: text-embedding, text-generation, text-to-speech and text-to-image, showing that adversaries can successfully achieve high leaderboard rankings while embedding arbitrary harmful functionalities, from backdoors to bias injection. Our findings reveal a significant vulnerability in the machine learning ecosystem, highlighting the urgent need to redesign leaderboard evaluation mechanisms to detect and filter malicious (e.g., poisoned) models, while exposing broader security implications for the machine learning community regarding the risks of adopting models from unverified sources.
On the Stability of Iterative Retraining of Generative Models on their own Data
Deep generative models have made tremendous progress in modeling complex data, often exhibiting generation quality that surpasses a typical human's ability to discern the authenticity of samples. Undeniably, a key driver of this success is enabled by the massive amounts of web-scale data consumed by these models. Due to these models' striking performance and ease of availability, the web will inevitably be increasingly populated with synthetic content. Such a fact directly implies that future iterations of generative models must contend with the reality that their training is curated from both clean data and artificially generated data from past models. In this paper, we develop a framework to rigorously study the impact of training generative models on mixed datasets (of real and synthetic data) on their stability. We first prove the stability of iterative training under the condition that the initial generative models approximate the data distribution well enough and the proportion of clean training data (w.r.t. synthetic data) is large enough. We empirically validate our theory on both synthetic and natural images by iteratively training normalizing flows and state-of-the-art diffusion models on CIFAR10 and FFHQ.
Asymmetric Bias in Text-to-Image Generation with Adversarial Attacks
The widespread use of Text-to-Image (T2I) models in content generation requires careful examination of their safety, including their robustness to adversarial attacks. Despite extensive research on adversarial attacks, the reasons for their effectiveness remain underexplored. This paper presents an empirical study on adversarial attacks against T2I models, focusing on analyzing factors associated with attack success rates (ASR). We introduce a new attack objective - entity swapping using adversarial suffixes and two gradient-based attack algorithms. Human and automatic evaluations reveal the asymmetric nature of ASRs on entity swap: for example, it is easier to replace "human" with "robot" in the prompt "a human dancing in the rain." with an adversarial suffix, but the reverse replacement is significantly harder. We further propose probing metrics to establish indicative signals from the model's beliefs to the adversarial ASR. We identify conditions that result in a success probability of 60% for adversarial attacks and others where this likelihood drops below 5%.
SEAL: Semantic Aware Image Watermarking
Generative models have rapidly evolved to generate realistic outputs. However, their synthetic outputs increasingly challenge the clear distinction between natural and AI-generated content, necessitating robust watermarking techniques. Watermarks are typically expected to preserve the integrity of the target image, withstand removal attempts, and prevent unauthorized replication onto unrelated images. To address this need, recent methods embed persistent watermarks into images produced by diffusion models using the initial noise. Yet, to do so, they either distort the distribution of generated images or rely on searching through a long dictionary of used keys for detection. In this paper, we propose a novel watermarking method that embeds semantic information about the generated image directly into the watermark, enabling a distortion-free watermark that can be verified without requiring a database of key patterns. Instead, the key pattern can be inferred from the semantic embedding of the image using locality-sensitive hashing. Furthermore, conditioning the watermark detection on the original image content improves robustness against forgery attacks. To demonstrate that, we consider two largely overlooked attack strategies: (i) an attacker extracting the initial noise and generating a novel image with the same pattern; (ii) an attacker inserting an unrelated (potentially harmful) object into a watermarked image, possibly while preserving the watermark. We empirically validate our method's increased robustness to these attacks. Taken together, our results suggest that content-aware watermarks can mitigate risks arising from image-generative models.
A Streamlit-based Artificial Intelligence Trust Platform for Next-Generation Wireless Networks
With the rapid development and integration of artificial intelligence (AI) methods in next-generation networks (NextG), AI algorithms have provided significant advantages for NextG in terms of frequency spectrum usage, bandwidth, latency, and security. A key feature of NextG is the integration of AI, i.e., self-learning architecture based on self-supervised algorithms, to improve the performance of the network. A secure AI-powered structure is also expected to protect NextG networks against cyber-attacks. However, AI itself may be attacked, i.e., model poisoning targeted by attackers, and it results in cybersecurity violations. This paper proposes an AI trust platform using Streamlit for NextG networks that allows researchers to evaluate, defend, certify, and verify their AI models and applications against adversarial threats of evasion, poisoning, extraction, and interference.
MultiAgent Collaboration Attack: Investigating Adversarial Attacks in Large Language Model Collaborations via Debate
Large Language Models (LLMs) have shown exceptional results on current benchmarks when working individually. The advancement in their capabilities, along with a reduction in parameter size and inference times, has facilitated the use of these models as agents, enabling interactions among multiple models to execute complex tasks. Such collaborations offer several advantages, including the use of specialized models (e.g. coding), improved confidence through multiple computations, and enhanced divergent thinking, leading to more diverse outputs. Thus, the collaborative use of language models is expected to grow significantly in the coming years. In this work, we evaluate the behavior of a network of models collaborating through debate under the influence of an adversary. We introduce pertinent metrics to assess the adversary's effectiveness, focusing on system accuracy and model agreement. Our findings highlight the importance of a model's persuasive ability in influencing others. Additionally, we explore inference-time methods to generate more compelling arguments and evaluate the potential of prompt-based mitigation as a defensive strategy.
TrojDiff: Trojan Attacks on Diffusion Models with Diverse Targets
Diffusion models have achieved great success in a range of tasks, such as image synthesis and molecule design. As such successes hinge on large-scale training data collected from diverse sources, the trustworthiness of these collected data is hard to control or audit. In this work, we aim to explore the vulnerabilities of diffusion models under potential training data manipulations and try to answer: How hard is it to perform Trojan attacks on well-trained diffusion models? What are the adversarial targets that such Trojan attacks can achieve? To answer these questions, we propose an effective Trojan attack against diffusion models, TrojDiff, which optimizes the Trojan diffusion and generative processes during training. In particular, we design novel transitions during the Trojan diffusion process to diffuse adversarial targets into a biased Gaussian distribution and propose a new parameterization of the Trojan generative process that leads to an effective training objective for the attack. In addition, we consider three types of adversarial targets: the Trojaned diffusion models will always output instances belonging to a certain class from the in-domain distribution (In-D2D attack), out-of-domain distribution (Out-D2D-attack), and one specific instance (D2I attack). We evaluate TrojDiff on CIFAR-10 and CelebA datasets against both DDPM and DDIM diffusion models. We show that TrojDiff always achieves high attack performance under different adversarial targets using different types of triggers, while the performance in benign environments is preserved. The code is available at https://github.com/chenweixin107/TrojDiff.
Hashed Watermark as a Filter: Defeating Forging and Overwriting Attacks in Weight-based Neural Network Watermarking
As valuable digital assets, deep neural networks necessitate robust ownership protection, positioning neural network watermarking (NNW) as a promising solution. Among various NNW approaches, weight-based methods are favored for their simplicity and practicality; however, they remain vulnerable to forging and overwriting attacks. To address those challenges, we propose NeuralMark, a robust method built around a hashed watermark filter. Specifically, we utilize a hash function to generate an irreversible binary watermark from a secret key, which is then used as a filter to select the model parameters for embedding. This design cleverly intertwines the embedding parameters with the hashed watermark, providing a robust defense against both forging and overwriting attacks. An average pooling is also incorporated to resist fine-tuning and pruning attacks. Furthermore, it can be seamlessly integrated into various neural network architectures, ensuring broad applicability. Theoretically, we analyze its security boundary. Empirically, we verify its effectiveness and robustness across 13 distinct Convolutional and Transformer architectures, covering five image classification tasks and one text generation task. The source codes are available at https://github.com/AIResearch-Group/NeuralMark.
Safety at Scale: A Comprehensive Survey of Large Model Safety
The rapid advancement of large models, driven by their exceptional abilities in learning and generalization through large-scale pre-training, has reshaped the landscape of Artificial Intelligence (AI). These models are now foundational to a wide range of applications, including conversational AI, recommendation systems, autonomous driving, content generation, medical diagnostics, and scientific discovery. However, their widespread deployment also exposes them to significant safety risks, raising concerns about robustness, reliability, and ethical implications. This survey provides a systematic review of current safety research on large models, covering Vision Foundation Models (VFMs), Large Language Models (LLMs), Vision-Language Pre-training (VLP) models, Vision-Language Models (VLMs), Diffusion Models (DMs), and large-model-based Agents. Our contributions are summarized as follows: (1) We present a comprehensive taxonomy of safety threats to these models, including adversarial attacks, data poisoning, backdoor attacks, jailbreak and prompt injection attacks, energy-latency attacks, data and model extraction attacks, and emerging agent-specific threats. (2) We review defense strategies proposed for each type of attacks if available and summarize the commonly used datasets and benchmarks for safety research. (3) Building on this, we identify and discuss the open challenges in large model safety, emphasizing the need for comprehensive safety evaluations, scalable and effective defense mechanisms, and sustainable data practices. More importantly, we highlight the necessity of collective efforts from the research community and international collaboration. Our work can serve as a useful reference for researchers and practitioners, fostering the ongoing development of comprehensive defense systems and platforms to safeguard AI models.
Prompt Pirates Need a Map: Stealing Seeds helps Stealing Prompts
Diffusion models have significantly advanced text-to-image generation, enabling the creation of highly realistic images conditioned on textual prompts and seeds. Given the considerable intellectual and economic value embedded in such prompts, prompt theft poses a critical security and privacy concern. In this paper, we investigate prompt-stealing attacks targeting diffusion models. We reveal that numerical optimization-based prompt recovery methods are fundamentally limited as they do not account for the initial random noise used during image generation. We identify and exploit a noise-generation vulnerability (CWE-339), prevalent in major image-generation frameworks, originating from PyTorch's restriction of seed values to a range of 2^{32} when generating the initial random noise on CPUs. Through a large-scale empirical analysis conducted on images shared via the popular platform CivitAI, we demonstrate that approximately 95% of these images' seed values can be effectively brute-forced in 140 minutes per seed using our seed-recovery tool, SeedSnitch. Leveraging the recovered seed, we propose PromptPirate, a genetic algorithm-based optimization method explicitly designed for prompt stealing. PromptPirate surpasses state-of-the-art methods, i.e., PromptStealer, P2HP, and CLIP-Interrogator, achieving an 8-11% improvement in LPIPS similarity. Furthermore, we introduce straightforward and effective countermeasures that render seed stealing, and thus optimization-based prompt stealing, ineffective. We have disclosed our findings responsibly and initiated coordinated mitigation efforts with the developers to address this critical vulnerability.
Generative Artificial Intelligence Consensus in a Trustless Network
We performed a billion locality sensitive hash comparisons between artificially generated data samples to answer the critical question - can we verify the "correctness" of generative AI output in a non-deterministic, trustless, decentralized network? We generate millions of data samples from a variety of open source diffusion and large language models and describe the procedures and trade-offs between generating more verses less deterministic output in a heterogenous, stochastic network. Further, we analyze the outputs to provide empirical evidence of different parameterizations of tolerance and error bounds for verification. Finally, given that we have the generated an enormous amount of simulated data, we also release a new training dataset called ImageNet-Gen for use in augmenting existing training pipelines. For our results, we show that with a majority vote between three independent verifiers, we can detect image generated perceptual collisions in generated AI with over 99.89% probability and less than 0.0267% chance of intra-class collision. For large language models (LLMs), we are able to gain 100% consensus using greedy methods or n-way beam searches to generate consensus demonstrated on different LLMs. In the context of generative AI training, we pinpoint and minimize the major sources of stochasticity and present gossip and synchronization training techniques for verifiability. Thus, this work provides a practical, solid foundation for AI verification and consensus for the minimization of trust in a decentralized network.
MultiRobustBench: Benchmarking Robustness Against Multiple Attacks
The bulk of existing research in defending against adversarial examples focuses on defending against a single (typically bounded Lp-norm) attack, but for a practical setting, machine learning (ML) models should be robust to a wide variety of attacks. In this paper, we present the first unified framework for considering multiple attacks against ML models. Our framework is able to model different levels of learner's knowledge about the test-time adversary, allowing us to model robustness against unforeseen attacks and robustness against unions of attacks. Using our framework, we present the first leaderboard, MultiRobustBench, for benchmarking multiattack evaluation which captures performance across attack types and attack strengths. We evaluate the performance of 16 defended models for robustness against a set of 9 different attack types, including Lp-based threat models, spatial transformations, and color changes, at 20 different attack strengths (180 attacks total). Additionally, we analyze the state of current defenses against multiple attacks. Our analysis shows that while existing defenses have made progress in terms of average robustness across the set of attacks used, robustness against the worst-case attack is still a big open problem as all existing models perform worse than random guessing.
Defending Pre-trained Language Models as Few-shot Learners against Backdoor Attacks
Pre-trained language models (PLMs) have demonstrated remarkable performance as few-shot learners. However, their security risks under such settings are largely unexplored. In this work, we conduct a pilot study showing that PLMs as few-shot learners are highly vulnerable to backdoor attacks while existing defenses are inadequate due to the unique challenges of few-shot scenarios. To address such challenges, we advocate MDP, a novel lightweight, pluggable, and effective defense for PLMs as few-shot learners. Specifically, MDP leverages the gap between the masking-sensitivity of poisoned and clean samples: with reference to the limited few-shot data as distributional anchors, it compares the representations of given samples under varying masking and identifies poisoned samples as ones with significant variations. We show analytically that MDP creates an interesting dilemma for the attacker to choose between attack effectiveness and detection evasiveness. The empirical evaluation using benchmark datasets and representative attacks validates the efficacy of MDP.
Conditional Generative Adversarial Nets
Generative Adversarial Nets [8] were recently introduced as a novel way to train generative models. In this work we introduce the conditional version of generative adversarial nets, which can be constructed by simply feeding the data, y, we wish to condition on to both the generator and discriminator. We show that this model can generate MNIST digits conditioned on class labels. We also illustrate how this model could be used to learn a multi-modal model, and provide preliminary examples of an application to image tagging in which we demonstrate how this approach can generate descriptive tags which are not part of training labels.
BadVideo: Stealthy Backdoor Attack against Text-to-Video Generation
Text-to-video (T2V) generative models have rapidly advanced and found widespread applications across fields like entertainment, education, and marketing. However, the adversarial vulnerabilities of these models remain rarely explored. We observe that in T2V generation tasks, the generated videos often contain substantial redundant information not explicitly specified in the text prompts, such as environmental elements, secondary objects, and additional details, providing opportunities for malicious attackers to embed hidden harmful content. Exploiting this inherent redundancy, we introduce BadVideo, the first backdoor attack framework tailored for T2V generation. Our attack focuses on designing target adversarial outputs through two key strategies: (1) Spatio-Temporal Composition, which combines different spatiotemporal features to encode malicious information; (2) Dynamic Element Transformation, which introduces transformations in redundant elements over time to convey malicious information. Based on these strategies, the attacker's malicious target seamlessly integrates with the user's textual instructions, providing high stealthiness. Moreover, by exploiting the temporal dimension of videos, our attack successfully evades traditional content moderation systems that primarily analyze spatial information within individual frames. Extensive experiments demonstrate that BadVideo achieves high attack success rates while preserving original semantics and maintaining excellent performance on clean inputs. Overall, our work reveals the adversarial vulnerability of T2V models, calling attention to potential risks and misuse. Our project page is at https://wrt2000.github.io/BadVideo2025/.
Emergent Asymmetry of Precision and Recall for Measuring Fidelity and Diversity of Generative Models in High Dimensions
Precision and Recall are two prominent metrics of generative performance, which were proposed to separately measure the fidelity and diversity of generative models. Given their central role in comparing and improving generative models, understanding their limitations are crucially important. To that end, in this work, we identify a critical flaw in the common approximation of these metrics using k-nearest-neighbors, namely, that the very interpretations of fidelity and diversity that are assigned to Precision and Recall can fail in high dimensions, resulting in very misleading conclusions. Specifically, we empirically and theoretically show that as the number of dimensions grows, two model distributions with supports at equal point-wise distance from the support of the real distribution, can have vastly different Precision and Recall regardless of their respective distributions, hence an emergent asymmetry in high dimensions. Based on our theoretical insights, we then provide simple yet effective modifications to these metrics to construct symmetric metrics regardless of the number of dimensions. Finally, we provide experiments on real-world datasets to illustrate that the identified flaw is not merely a pathological case, and that our proposed metrics are effective in alleviating its impact.
Fast Adversarial Attacks on Language Models In One GPU Minute
In this paper, we introduce a novel class of fast, beam search-based adversarial attack (BEAST) for Language Models (LMs). BEAST employs interpretable parameters, enabling attackers to balance between attack speed, success rate, and the readability of adversarial prompts. The computational efficiency of BEAST facilitates us to investigate its applications on LMs for jailbreaking, eliciting hallucinations, and privacy attacks. Our gradient-free targeted attack can jailbreak aligned LMs with high attack success rates within one minute. For instance, BEAST can jailbreak Vicuna-7B-v1.5 under one minute with a success rate of 89% when compared to a gradient-based baseline that takes over an hour to achieve 70% success rate using a single Nvidia RTX A6000 48GB GPU. Additionally, we discover a unique outcome wherein our untargeted attack induces hallucinations in LM chatbots. Through human evaluations, we find that our untargeted attack causes Vicuna-7B-v1.5 to produce ~15% more incorrect outputs when compared to LM outputs in the absence of our attack. We also learn that 22% of the time, BEAST causes Vicuna to generate outputs that are not relevant to the original prompt. Further, we use BEAST to generate adversarial prompts in a few seconds that can boost the performance of existing membership inference attacks for LMs. We believe that our fast attack, BEAST, has the potential to accelerate research in LM security and privacy. Our codebase is publicly available at https://github.com/vinusankars/BEAST.
So-Fake: Benchmarking and Explaining Social Media Image Forgery Detection
Recent advances in AI-powered generative models have enabled the creation of increasingly realistic synthetic images, posing significant risks to information integrity and public trust on social media platforms. While robust detection frameworks and diverse, large-scale datasets are essential to mitigate these risks, existing academic efforts remain limited in scope: current datasets lack the diversity, scale, and realism required for social media contexts, while detection methods struggle with generalization to unseen generative technologies. To bridge this gap, we introduce So-Fake-Set, a comprehensive social media-oriented dataset with over 2 million high-quality images, diverse generative sources, and photorealistic imagery synthesized using 35 state-of-the-art generative models. To rigorously evaluate cross-domain robustness, we establish a novel and large-scale (100K) out-of-domain benchmark (So-Fake-OOD) featuring synthetic imagery from commercial models explicitly excluded from the training distribution, creating a realistic testbed for evaluating real-world performance. Leveraging these resources, we present So-Fake-R1, an advanced vision-language framework that employs reinforcement learning for highly accurate forgery detection, precise localization, and explainable inference through interpretable visual rationales. Extensive experiments show that So-Fake-R1 outperforms the second-best method, with a 1.3% gain in detection accuracy and a 4.5% increase in localization IoU. By integrating a scalable dataset, a challenging OOD benchmark, and an advanced detection framework, this work establishes a new foundation for social media-centric forgery detection research. The code, models, and datasets will be released publicly.
IAG: Input-aware Backdoor Attack on VLMs for Visual Grounding
Vision-language models (VLMs) have shown significant advancements in tasks such as visual grounding, where they localize specific objects in images based on natural language queries and images. However, security issues in visual grounding tasks for VLMs remain underexplored, especially in the context of backdoor attacks. In this paper, we introduce a novel input-aware backdoor attack method, IAG, designed to manipulate the grounding behavior of VLMs. This attack forces the model to ground a specific target object in the input image, regardless of the user's query. We propose an adaptive trigger generator that embeds the semantic information of the attack target's description into the original image using a text-conditional U-Net, thereby overcoming the open-vocabulary attack challenge. To ensure the attack's stealthiness, we utilize a reconstruction loss to minimize visual discrepancies between poisoned and clean images. Additionally, we introduce a unified method for generating attack data. IAG is evaluated theoretically and empirically, demonstrating its feasibility and effectiveness. Notably, our [email protected] on InternVL-2.5-8B reaches over 65\% on various testing sets. IAG also shows promising potential on manipulating Ferret-7B and LlaVA-1.5-7B with very little accuracy decrease on clean samples. Extensive specific experiments, such as ablation study and potential defense, also indicate the robustness and transferability of our attack.
A False Sense of Safety: Unsafe Information Leakage in 'Safe' AI Responses
Large Language Models (LLMs) are vulnerable to jailbreaksx2013methods to elicit harmful or generally impermissible outputs. Safety measures are developed and assessed on their effectiveness at defending against jailbreak attacks, indicating a belief that safety is equivalent to robustness. We assert that current defense mechanisms, such as output filters and alignment fine-tuning, are, and will remain, fundamentally insufficient for ensuring model safety. These defenses fail to address risks arising from dual-intent queries and the ability to composite innocuous outputs to achieve harmful goals. To address this critical gap, we introduce an information-theoretic threat model called inferential adversaries who exploit impermissible information leakage from model outputs to achieve malicious goals. We distinguish these from commonly studied security adversaries who only seek to force victim models to generate specific impermissible outputs. We demonstrate the feasibility of automating inferential adversaries through question decomposition and response aggregation. To provide safety guarantees, we define an information censorship criterion for censorship mechanisms, bounding the leakage of impermissible information. We propose a defense mechanism which ensures this bound and reveal an intrinsic safety-utility trade-off. Our work provides the first theoretically grounded understanding of the requirements for releasing safe LLMs and the utility costs involved.
MITS-GAN: Safeguarding Medical Imaging from Tampering with Generative Adversarial Networks
The progress in generative models, particularly Generative Adversarial Networks (GANs), opened new possibilities for image generation but raised concerns about potential malicious uses, especially in sensitive areas like medical imaging. This study introduces MITS-GAN, a novel approach to prevent tampering in medical images, with a specific focus on CT scans. The approach disrupts the output of the attacker's CT-GAN architecture by introducing finely tuned perturbations that are imperceptible to the human eye. Specifically, the proposed approach involves the introduction of appropriate Gaussian noise to the input as a protective measure against various attacks. Our method aims to enhance tamper resistance, comparing favorably to existing techniques. Experimental results on a CT scan demonstrate MITS-GAN's superior performance, emphasizing its ability to generate tamper-resistant images with negligible artifacts. As image tampering in medical domains poses life-threatening risks, our proactive approach contributes to the responsible and ethical use of generative models. This work provides a foundation for future research in countering cyber threats in medical imaging. Models and codes are publicly available on https://iplab.dmi.unict.it/MITS-GAN-2024/.
Stealing User Prompts from Mixture of Experts
Mixture-of-Experts (MoE) models improve the efficiency and scalability of dense language models by routing each token to a small number of experts in each layer. In this paper, we show how an adversary that can arrange for their queries to appear in the same batch of examples as a victim's queries can exploit Expert-Choice-Routing to fully disclose a victim's prompt. We successfully demonstrate the effectiveness of this attack on a two-layer Mixtral model, exploiting the tie-handling behavior of the torch.topk CUDA implementation. Our results show that we can extract the entire prompt using O({VM}^2) queries (with vocabulary size V and prompt length M) or 100 queries on average per token in the setting we consider. This is the first attack to exploit architectural flaws for the purpose of extracting user prompts, introducing a new class of LLM vulnerabilities.
Cats Confuse Reasoning LLM: Query Agnostic Adversarial Triggers for Reasoning Models
We investigate the robustness of reasoning models trained for step-by-step problem solving by introducing query-agnostic adversarial triggers - short, irrelevant text that, when appended to math problems, systematically mislead models to output incorrect answers without altering the problem's semantics. We propose CatAttack, an automated iterative attack pipeline for generating triggers on a weaker, less expensive proxy model (DeepSeek V3) and successfully transfer them to more advanced reasoning target models like DeepSeek R1 and DeepSeek R1-distilled-Qwen-32B, resulting in greater than 300% increase in the likelihood of the target model generating an incorrect answer. For example, appending, "Interesting fact: cats sleep most of their lives," to any math problem leads to more than doubling the chances of a model getting the answer wrong. Our findings highlight critical vulnerabilities in reasoning models, revealing that even state-of-the-art models remain susceptible to subtle adversarial inputs, raising security and reliability concerns. The CatAttack triggers dataset with model responses is available at https://huggingface.co/datasets/collinear-ai/cat-attack-adversarial-triggers.
A Linear Reconstruction Approach for Attribute Inference Attacks against Synthetic Data
Recent advances in synthetic data generation (SDG) have been hailed as a solution to the difficult problem of sharing sensitive data while protecting privacy. SDG aims to learn statistical properties of real data in order to generate "artificial" data that are structurally and statistically similar to sensitive data. However, prior research suggests that inference attacks on synthetic data can undermine privacy, but only for specific outlier records. In this work, we introduce a new attribute inference attack against synthetic data. The attack is based on linear reconstruction methods for aggregate statistics, which target all records in the dataset, not only outliers. We evaluate our attack on state-of-the-art SDG algorithms, including Probabilistic Graphical Models, Generative Adversarial Networks, and recent differentially private SDG mechanisms. By defining a formal privacy game, we show that our attack can be highly accurate even on arbitrary records, and that this is the result of individual information leakage (as opposed to population-level inference). We then systematically evaluate the tradeoff between protecting privacy and preserving statistical utility. Our findings suggest that current SDG methods cannot consistently provide sufficient privacy protection against inference attacks while retaining reasonable utility. The best method evaluated, a differentially private SDG mechanism, can provide both protection against inference attacks and reasonable utility, but only in very specific settings. Lastly, we show that releasing a larger number of synthetic records can improve utility but at the cost of making attacks far more effective.
Dual-Flow: Transferable Multi-Target, Instance-Agnostic Attacks via In-the-wild Cascading Flow Optimization
Adversarial attacks are widely used to evaluate model robustness, and in black-box scenarios, the transferability of these attacks becomes crucial. Existing generator-based attacks have excellent generalization and transferability due to their instance-agnostic nature. However, when training generators for multi-target tasks, the success rate of transfer attacks is relatively low due to the limitations of the model's capacity. To address these challenges, we propose a novel Dual-Flow framework for multi-target instance-agnostic adversarial attacks, utilizing Cascading Distribution Shift Training to develop an adversarial velocity function. Extensive experiments demonstrate that Dual-Flow significantly improves transferability over previous multi-target generative attacks. For example, it increases the success rate from Inception-v3 to ResNet-152 by 34.58%. Furthermore, our attack method shows substantially stronger robustness against defense mechanisms, such as adversarially trained models.
Tricking Retrievers with Influential Tokens: An Efficient Black-Box Corpus Poisoning Attack
Retrieval-augmented generation (RAG) systems enhance large language models by incorporating external knowledge, addressing issues like outdated internal knowledge and hallucination. However, their reliance on external knowledge bases makes them vulnerable to corpus poisoning attacks, where adversarial passages can be injected to manipulate retrieval results. Existing methods for crafting such passages, such as random token replacement or training inversion models, are often slow and computationally expensive, requiring either access to retriever's gradients or large computational resources. To address these limitations, we propose Dynamic Importance-Guided Genetic Algorithm (DIGA), an efficient black-box method that leverages two key properties of retrievers: insensitivity to token order and bias towards influential tokens. By focusing on these characteristics, DIGA dynamically adjusts its genetic operations to generate effective adversarial passages with significantly reduced time and memory usage. Our experimental evaluation shows that DIGA achieves superior efficiency and scalability compared to existing methods, while maintaining comparable or better attack success rates across multiple datasets.
Data Redaction from Conditional Generative Models
Deep generative models are known to produce undesirable samples such as harmful content. Traditional mitigation methods include re-training from scratch, filtering, or editing; however, these are either computationally expensive or can be circumvented by third parties. In this paper, we take a different approach and study how to post-edit an already-trained conditional generative model so that it redacts certain conditionals that will, with high probability, lead to undesirable content. This is done by distilling the conditioning network in the models, giving a solution that is effective, efficient, controllable, and universal for a class of deep generative models. We conduct experiments on redacting prompts in text-to-image models and redacting voices in text-to-speech models. Our method is computationally light, leads to better redaction quality and robustness than baseline methods while still retaining high generation quality.
Efficient Adversarial Training in LLMs with Continuous Attacks
Large language models (LLMs) are vulnerable to adversarial attacks that can bypass their safety guardrails. In many domains, adversarial training has proven to be one of the most promising methods to reliably improve robustness against such attacks. Yet, in the context of LLMs, current methods for adversarial training are hindered by the high computational costs required to perform discrete adversarial attacks at each training iteration. We address this problem by instead calculating adversarial attacks in the continuous embedding space of the LLM, which is orders of magnitudes more efficient. We propose a fast adversarial training algorithm (C-AdvUL) composed of two losses: the first makes the model robust on continuous embedding attacks computed on an adversarial behaviour dataset; the second ensures the usefulness of the final model by fine-tuning on utility data. Moreover, we introduce C-AdvIPO, an adversarial variant of IPO that does not require utility data for adversarially robust alignment. Our empirical evaluation on four models from different families (Gemma, Phi3, Mistral, Zephyr) and at different scales (2B, 3.8B, 7B) shows that both algorithms substantially enhance LLM robustness against discrete attacks (GCG, AutoDAN, PAIR), while maintaining utility. Our results demonstrate that robustness to continuous perturbations can extrapolate to discrete threat models. Thereby, we present a path toward scalable adversarial training algorithms for robustly aligning LLMs.
Joint-GCG: Unified Gradient-Based Poisoning Attacks on Retrieval-Augmented Generation Systems
Retrieval-Augmented Generation (RAG) systems enhance Large Language Models (LLMs) by retrieving relevant documents from external corpora before generating responses. This approach significantly expands LLM capabilities by leveraging vast, up-to-date external knowledge. However, this reliance on external knowledge makes RAG systems vulnerable to corpus poisoning attacks that manipulate generated outputs via poisoned document injection. Existing poisoning attack strategies typically treat the retrieval and generation stages as disjointed, limiting their effectiveness. We propose Joint-GCG, the first framework to unify gradient-based attacks across both retriever and generator models through three innovations: (1) Cross-Vocabulary Projection for aligning embedding spaces, (2) Gradient Tokenization Alignment for synchronizing token-level gradient signals, and (3) Adaptive Weighted Fusion for dynamically balancing attacking objectives. Evaluations demonstrate that Joint-GCG achieves at most 25% and an average of 5% higher attack success rate than previous methods across multiple retrievers and generators. While optimized under a white-box assumption, the generated poisons show unprecedented transferability to unseen models. Joint-GCG's innovative unification of gradient-based attacks across retrieval and generation stages fundamentally reshapes our understanding of vulnerabilities within RAG systems. Our code is available at https://github.com/NicerWang/Joint-GCG.
Membership Inference Attacks Against Text-to-image Generation Models
Text-to-image generation models have recently attracted unprecedented attention as they unlatch imaginative applications in all areas of life. However, developing such models requires huge amounts of data that might contain privacy-sensitive information, e.g., face identity. While privacy risks have been extensively demonstrated in the image classification and GAN generation domains, privacy risks in the text-to-image generation domain are largely unexplored. In this paper, we perform the first privacy analysis of text-to-image generation models through the lens of membership inference. Specifically, we propose three key intuitions about membership information and design four attack methodologies accordingly. We conduct comprehensive evaluations on two mainstream text-to-image generation models including sequence-to-sequence modeling and diffusion-based modeling. The empirical results show that all of the proposed attacks can achieve significant performance, in some cases even close to an accuracy of 1, and thus the corresponding risk is much more severe than that shown by existing membership inference attacks. We further conduct an extensive ablation study to analyze the factors that may affect the attack performance, which can guide developers and researchers to be alert to vulnerabilities in text-to-image generation models. All these findings indicate that our proposed attacks pose a realistic privacy threat to the text-to-image generation models.
Prompts Should not be Seen as Secrets: Systematically Measuring Prompt Extraction Attack Success
The generations of large language models are commonly controlled through prompting techniques, where a user's query to the model is prefixed with a prompt that aims to guide the model's behaviour on the query. The prompts used by companies to guide their models are often treated as secrets, to be hidden from the user making the query. They have even been treated as commodities to be bought and sold. However, there has been anecdotal evidence showing that the prompts can be extracted by a user even when they are kept secret. In this paper, we present a framework for systematically measuring the success of prompt extraction attacks. In experiments with multiple sources of prompts and multiple underlying language models, we find that simple text-based attacks can in fact reveal prompts with high probability.
An LLM can Fool Itself: A Prompt-Based Adversarial Attack
The wide-ranging applications of large language models (LLMs), especially in safety-critical domains, necessitate the proper evaluation of the LLM's adversarial robustness. This paper proposes an efficient tool to audit the LLM's adversarial robustness via a prompt-based adversarial attack (PromptAttack). PromptAttack converts adversarial textual attacks into an attack prompt that can cause the victim LLM to output the adversarial sample to fool itself. The attack prompt is composed of three important components: (1) original input (OI) including the original sample and its ground-truth label, (2) attack objective (AO) illustrating a task description of generating a new sample that can fool itself without changing the semantic meaning, and (3) attack guidance (AG) containing the perturbation instructions to guide the LLM on how to complete the task by perturbing the original sample at character, word, and sentence levels, respectively. Besides, we use a fidelity filter to ensure that PromptAttack maintains the original semantic meanings of the adversarial examples. Further, we enhance the attack power of PromptAttack by ensembling adversarial examples at different perturbation levels. Comprehensive empirical results using Llama2 and GPT-3.5 validate that PromptAttack consistently yields a much higher attack success rate compared to AdvGLUE and AdvGLUE++. Interesting findings include that a simple emoji can easily mislead GPT-3.5 to make wrong predictions.
FastSpec: Scalable Generation and Detection of Spectre Gadgets Using Neural Embeddings
Several techniques have been proposed to detect vulnerable Spectre gadgets in widely deployed commercial software. Unfortunately, detection techniques proposed so far rely on hand-written rules which fall short in covering subtle variations of known Spectre gadgets as well as demand a huge amount of time to analyze each conditional branch in software. Moreover, detection tool evaluations are based only on a handful of these gadgets, as it requires arduous effort to craft new gadgets manually. In this work, we employ both fuzzing and deep learning techniques to automate the generation and detection of Spectre gadgets. We first create a diverse set of Spectre-V1 gadgets by introducing perturbations to the known gadgets. Using mutational fuzzing, we produce a data set with more than 1 million Spectre-V1 gadgets which is the largest Spectre gadget data set built to date. Next, we conduct the first empirical usability study of Generative Adversarial Networks (GANs) in the context of assembly code generation without any human interaction. We introduce SpectreGAN which leverages masking implementation of GANs for both learning the gadget structures and generating new gadgets. This provides the first scalable solution to extend the variety of Spectre gadgets. Finally, we propose FastSpec which builds a classifier with the generated Spectre gadgets based on a novel high dimensional Neural Embeddings technique (BERT). For the case studies, we demonstrate that FastSpec discovers potential gadgets with a high success rate in OpenSSL libraries and Phoronix benchmarks. Further, FastSpec offers much greater flexibility and time-related performance gain compared to the existing tools and therefore can be used for gadget detection in large-scale software.
On the Statistical Capacity of Deep Generative Models
Deep generative models are routinely used in generating samples from complex, high-dimensional distributions. Despite their apparent successes, their statistical properties are not well understood. A common assumption is that with enough training data and sufficiently large neural networks, deep generative model samples will have arbitrarily small errors in sampling from any continuous target distribution. We set up a unifying framework that debunks this belief. We demonstrate that broad classes of deep generative models, including variational autoencoders and generative adversarial networks, are not universal generators. Under the predominant case of Gaussian latent variables, these models can only generate concentrated samples that exhibit light tails. Using tools from concentration of measure and convex geometry, we give analogous results for more general log-concave and strongly log-concave latent variable distributions. We extend our results to diffusion models via a reduction argument. We use the Gromov--Levy inequality to give similar guarantees when the latent variables lie on manifolds with positive Ricci curvature. These results shed light on the limited capacity of common deep generative models to handle heavy tails. We illustrate the empirical relevance of our work with simulations and financial data.
Attack Prompt Generation for Red Teaming and Defending Large Language Models
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content. Previous research constructs attack prompts via manual or automatic methods, which have their own limitations on construction cost and quality. To address these issues, we propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts. Specifically, considering the impressive capabilities of newly emerged LLMs, we propose an attack framework to instruct LLMs to mimic human-generated prompts through in-context learning. Furthermore, we propose a defense framework that fine-tunes victim LLMs through iterative interactions with the attack framework to enhance their safety against red teaming attacks. Extensive experiments on different LLMs validate the effectiveness of our proposed attack and defense frameworks. Additionally, we release a series of attack prompts datasets named SAP with varying sizes, facilitating the safety evaluation and enhancement of more LLMs. Our code and dataset is available on https://github.com/Aatrox103/SAP .
RAID: A Shared Benchmark for Robust Evaluation of Machine-Generated Text Detectors
Many commercial and open-source models claim to detect machine-generated text with extremely high accuracy (99% or more). However, very few of these detectors are evaluated on shared benchmark datasets and even when they are, the datasets used for evaluation are insufficiently challenging-lacking variations in sampling strategy, adversarial attacks, and open-source generative models. In this work we present RAID: the largest and most challenging benchmark dataset for machine-generated text detection. RAID includes over 6 million generations spanning 11 models, 8 domains, 11 adversarial attacks and 4 decoding strategies. Using RAID, we evaluate the out-of-domain and adversarial robustness of 8 open- and 4 closed-source detectors and find that current detectors are easily fooled by adversarial attacks, variations in sampling strategies, repetition penalties, and unseen generative models. We release our data along with a leaderboard to encourage future research.
Network-Level Prompt and Trait Leakage in Local Research Agents
We show that Web and Research Agents (WRAs) -- language model-based systems that investigate complex topics on the Internet -- are vulnerable to inference attacks by passive network adversaries such as ISPs. These agents could be deployed locally by organizations and individuals for privacy, legal, or financial purposes. Unlike sporadic web browsing by humans, WRAs visit 70{-}140 domains with distinguishable timing correlations, enabling unique fingerprinting attacks. Specifically, we demonstrate a novel prompt and user trait leakage attack against WRAs that only leverages their network-level metadata (i.e., visited IP addresses and their timings). We start by building a new dataset of WRA traces based on user search queries and queries generated by synthetic personas. We define a behavioral metric (called OBELS) to comprehensively assess similarity between original and inferred prompts, showing that our attack recovers over 73% of the functional and domain knowledge of user prompts. Extending to a multi-session setting, we recover up to 19 of 32 latent traits with high accuracy. Our attack remains effective under partial observability and noisy conditions. Finally, we discuss mitigation strategies that constrain domain diversity or obfuscate traces, showing negligible utility impact while reducing attack effectiveness by an average of 29%.
Baseline Defenses for Adversarial Attacks Against Aligned Language Models
As Large Language Models quickly become ubiquitous, it becomes critical to understand their security vulnerabilities. Recent work shows that text optimizers can produce jailbreaking prompts that bypass moderation and alignment. Drawing from the rich body of work on adversarial machine learning, we approach these attacks with three questions: What threat models are practically useful in this domain? How do baseline defense techniques perform in this new domain? How does LLM security differ from computer vision? We evaluate several baseline defense strategies against leading adversarial attacks on LLMs, discussing the various settings in which each is feasible and effective. Particularly, we look at three types of defenses: detection (perplexity based), input preprocessing (paraphrase and retokenization), and adversarial training. We discuss white-box and gray-box settings and discuss the robustness-performance trade-off for each of the defenses considered. We find that the weakness of existing discrete optimizers for text, combined with the relatively high costs of optimization, makes standard adaptive attacks more challenging for LLMs. Future research will be needed to uncover whether more powerful optimizers can be developed, or whether the strength of filtering and preprocessing defenses is greater in the LLMs domain than it has been in computer vision.
Combating Adversarial Attacks with Multi-Agent Debate
While state-of-the-art language models have achieved impressive results, they remain susceptible to inference-time adversarial attacks, such as adversarial prompts generated by red teams arXiv:2209.07858. One approach proposed to improve the general quality of language model generations is multi-agent debate, where language models self-evaluate through discussion and feedback arXiv:2305.14325. We implement multi-agent debate between current state-of-the-art language models and evaluate models' susceptibility to red team attacks in both single- and multi-agent settings. We find that multi-agent debate can reduce model toxicity when jailbroken or less capable models are forced to debate with non-jailbroken or more capable models. We also find marginal improvements through the general usage of multi-agent interactions. We further perform adversarial prompt content classification via embedding clustering, and analyze the susceptibility of different models to different types of attack topics.
Paper Summary Attack: Jailbreaking LLMs through LLM Safety Papers
The safety of large language models (LLMs) has garnered significant research attention. In this paper, we argue that previous empirical studies demonstrate LLMs exhibit a propensity to trust information from authoritative sources, such as academic papers, implying new possible vulnerabilities. To verify this possibility, a preliminary analysis is designed to illustrate our two findings. Based on this insight, a novel jailbreaking method, Paper Summary Attack (PSA), is proposed. It systematically synthesizes content from either attack-focused or defense-focused LLM safety paper to construct an adversarial prompt template, while strategically infilling harmful query as adversarial payloads within predefined subsections. Extensive experiments show significant vulnerabilities not only in base LLMs, but also in state-of-the-art reasoning model like Deepseek-R1. PSA achieves a 97\% attack success rate (ASR) on well-aligned models like Claude3.5-Sonnet and an even higher 98\% ASR on Deepseek-R1. More intriguingly, our work has further revealed diametrically opposed vulnerability bias across different base models, and even between different versions of the same model, when exposed to either attack-focused or defense-focused papers. This phenomenon potentially indicates future research clues for both adversarial methodologies and safety alignment.Code is available at https://github.com/233liang/Paper-Summary-Attack
EigenShield: Causal Subspace Filtering via Random Matrix Theory for Adversarially Robust Vision-Language Models
Vision-Language Models (VLMs) inherit adversarial vulnerabilities of Large Language Models (LLMs), which are further exacerbated by their multimodal nature. Existing defenses, including adversarial training, input transformations, and heuristic detection, are computationally expensive, architecture-dependent, and fragile against adaptive attacks. We introduce EigenShield, an inference-time defense leveraging Random Matrix Theory to quantify adversarial disruptions in high-dimensional VLM representations. Unlike prior methods that rely on empirical heuristics, EigenShield employs the spiked covariance model to detect structured spectral deviations. Using a Robustness-based Nonconformity Score (RbNS) and quantile-based thresholding, it separates causal eigenvectors, which encode semantic information, from correlational eigenvectors that are susceptible to adversarial artifacts. By projecting embeddings onto the causal subspace, EigenShield filters adversarial noise without modifying model parameters or requiring adversarial training. This architecture-independent, attack-agnostic approach significantly reduces the attack success rate, establishing spectral analysis as a principled alternative to conventional defenses. Our results demonstrate that EigenShield consistently outperforms all existing defenses, including adversarial training, UNIGUARD, and CIDER.
A Trembling House of Cards? Mapping Adversarial Attacks against Language Agents
Language agents powered by large language models (LLMs) have seen exploding development. Their capability of using language as a vehicle for thought and communication lends an incredible level of flexibility and versatility. People have quickly capitalized on this capability to connect LLMs to a wide range of external components and environments: databases, tools, the Internet, robotic embodiment, etc. Many believe an unprecedentedly powerful automation technology is emerging. However, new automation technologies come with new safety risks, especially for intricate systems like language agents. There is a surprisingly large gap between the speed and scale of their development and deployment and our understanding of their safety risks. Are we building a house of cards? In this position paper, we present the first systematic effort in mapping adversarial attacks against language agents. We first present a unified conceptual framework for agents with three major components: Perception, Brain, and Action. Under this framework, we present a comprehensive discussion and propose 12 potential attack scenarios against different components of an agent, covering different attack strategies (e.g., input manipulation, adversarial demonstrations, jailbreaking, backdoors). We also draw connections to successful attack strategies previously applied to LLMs. We emphasize the urgency to gain a thorough understanding of language agent risks before their widespread deployment.
Data-Copying in Generative Models: A Formal Framework
There has been some recent interest in detecting and addressing memorization of training data by deep neural networks. A formal framework for memorization in generative models, called "data-copying," was proposed by Meehan et. al. (2020). We build upon their work to show that their framework may fail to detect certain kinds of blatant memorization. Motivated by this and the theory of non-parametric methods, we provide an alternative definition of data-copying that applies more locally. We provide a method to detect data-copying, and provably show that it works with high probability when enough data is available. We also provide lower bounds that characterize the sample requirement for reliable detection.
Studious Bob Fight Back Against Jailbreaking via Prompt Adversarial Tuning
Although Large Language Models (LLMs) have achieved tremendous success in various applications, they are also susceptible to certain prompts that can induce them to bypass built-in safety measures and provide dangerous or illegal content, a phenomenon known as jailbreak. To protect LLMs from producing harmful information, various defense strategies are proposed, with most focusing on content filtering or adversarial training of models. In this paper, we propose an approach named Prompt Adversarial Tuning (PAT) to train a defense control mechanism, which is then embedded as a prefix to user prompts to implement our defense strategy. We design a training process similar to adversarial training to achieve our optimized goal, alternating between updating attack and defense controls. To our knowledge, we are the first to implement defense from the perspective of prompt tuning. Once employed, our method will hardly impact the operational efficiency of LLMs. Experiments show that our method is effective in both black-box and white-box settings, reducing the success rate of advanced attacks to nearly 0 while maintaining the benign answer rate of 80% to simple benign questions. Our work might potentially chart a new perspective for future explorations in LLM security.
Typos that Broke the RAG's Back: Genetic Attack on RAG Pipeline by Simulating Documents in the Wild via Low-level Perturbations
The robustness of recent Large Language Models (LLMs) has become increasingly crucial as their applicability expands across various domains and real-world applications. Retrieval-Augmented Generation (RAG) is a promising solution for addressing the limitations of LLMs, yet existing studies on the robustness of RAG often overlook the interconnected relationships between RAG components or the potential threats prevalent in real-world databases, such as minor textual errors. In this work, we investigate two underexplored aspects when assessing the robustness of RAG: 1) vulnerability to noisy documents through low-level perturbations and 2) a holistic evaluation of RAG robustness. Furthermore, we introduce a novel attack method, the Genetic Attack on RAG (GARAG), which targets these aspects. Specifically, GARAG is designed to reveal vulnerabilities within each component and test the overall system functionality against noisy documents. We validate RAG robustness by applying our GARAG to standard QA datasets, incorporating diverse retrievers and LLMs. The experimental results show that GARAG consistently achieves high attack success rates. Also, it significantly devastates the performance of each component and their synergy, highlighting the substantial risk that minor textual inaccuracies pose in disrupting RAG systems in the real world.
The Adversarial AI-Art: Understanding, Generation, Detection, and Benchmarking
Generative AI models can produce high-quality images based on text prompts. The generated images often appear indistinguishable from images generated by conventional optical photography devices or created by human artists (i.e., real images). While the outstanding performance of such generative models is generally well received, security concerns arise. For instance, such image generators could be used to facilitate fraud or scam schemes, generate and spread misinformation, or produce fabricated artworks. In this paper, we present a systematic attempt at understanding and detecting AI-generated images (AI-art) in adversarial scenarios. First, we collect and share a dataset of real images and their corresponding artificial counterparts generated by four popular AI image generators. The dataset, named ARIA, contains over 140K images in five categories: artworks (painting), social media images, news photos, disaster scenes, and anime pictures. This dataset can be used as a foundation to support future research on adversarial AI-art. Next, we present a user study that employs the ARIA dataset to evaluate if real-world users can distinguish with or without reference images. In a benchmarking study, we further evaluate if state-of-the-art open-source and commercial AI image detectors can effectively identify the images in the ARIA dataset. Finally, we present a ResNet-50 classifier and evaluate its accuracy and transferability on the ARIA dataset.
Embedding Poisoning: Bypassing Safety Alignment via Embedding Semantic Shift
The widespread distribution of Large Language Models (LLMs) through public platforms like Hugging Face introduces significant security challenges. While these platforms perform basic security scans, they often fail to detect subtle manipulations within the embedding layer. This work identifies a novel class of deployment phase attacks that exploit this vulnerability by injecting imperceptible perturbations directly into the embedding layer outputs without modifying model weights or input text. These perturbations, though statistically benign, systematically bypass safety alignment mechanisms and induce harmful behaviors during inference. We propose Search based Embedding Poisoning(SEP), a practical, model agnostic framework that introduces carefully optimized perturbations into embeddings associated with high risk tokens. SEP leverages a predictable linear transition in model responses, from refusal to harmful output to semantic deviation to identify a narrow perturbation window that evades alignment safeguards. Evaluated across six aligned LLMs, SEP achieves an average attack success rate of 96.43% while preserving benign task performance and evading conventional detection mechanisms. Our findings reveal a critical oversight in deployment security and emphasize the urgent need for embedding level integrity checks in future LLM defense strategies.
Diffusion Models for Imperceptible and Transferable Adversarial Attack
Many existing adversarial attacks generate L_p-norm perturbations on image RGB space. Despite some achievements in transferability and attack success rate, the crafted adversarial examples are easily perceived by human eyes. Towards visual imperceptibility, some recent works explore unrestricted attacks without L_p-norm constraints, yet lacking transferability of attacking black-box models. In this work, we propose a novel imperceptible and transferable attack by leveraging both the generative and discriminative power of diffusion models. Specifically, instead of direct manipulation in pixel space, we craft perturbations in latent space of diffusion models. Combined with well-designed content-preserving structures, we can generate human-insensitive perturbations embedded with semantic clues. For better transferability, we further "deceive" the diffusion model which can be viewed as an additional recognition surrogate, by distracting its attention away from the target regions. To our knowledge, our proposed method, DiffAttack, is the first that introduces diffusion models into adversarial attack field. Extensive experiments on various model structures (including CNNs, Transformers, MLPs) and defense methods have demonstrated our superiority over other attack methods.
Targeted Attack on GPT-Neo for the SATML Language Model Data Extraction Challenge
Previous work has shown that Large Language Models are susceptible to so-called data extraction attacks. This allows an attacker to extract a sample that was contained in the training data, which has massive privacy implications. The construction of data extraction attacks is challenging, current attacks are quite inefficient, and there exists a significant gap in the extraction capabilities of untargeted attacks and memorization. Thus, targeted attacks are proposed, which identify if a given sample from the training data, is extractable from a model. In this work, we apply a targeted data extraction attack to the SATML2023 Language Model Training Data Extraction Challenge. We apply a two-step approach. In the first step, we maximise the recall of the model and are able to extract the suffix for 69% of the samples. In the second step, we use a classifier-based Membership Inference Attack on the generations. Our AutoSklearn classifier achieves a precision of 0.841. The full approach reaches a score of 0.405 recall at a 10% false positive rate, which is an improvement of 34% over the baseline of 0.301.
Models in the Loop: Aiding Crowdworkers with Generative Annotation Assistants
In Dynamic Adversarial Data Collection (DADC), human annotators are tasked with finding examples that models struggle to predict correctly. Models trained on DADC-collected training data have been shown to be more robust in adversarial and out-of-domain settings, and are considerably harder for humans to fool. However, DADC is more time-consuming than traditional data collection and thus more costly per annotated example. In this work, we examine whether we can maintain the advantages of DADC, without incurring the additional cost. To that end, we introduce Generative Annotation Assistants (GAAs), generator-in-the-loop models that provide real-time suggestions that annotators can either approve, modify, or reject entirely. We collect training datasets in twenty experimental settings and perform a detailed analysis of this approach for the task of extractive question answering (QA) for both standard and adversarial data collection. We demonstrate that GAAs provide significant efficiency benefits with over a 30% annotation speed-up, while leading to over a 5x improvement in model fooling rates. In addition, we find that using GAA-assisted training data leads to higher downstream model performance on a variety of question answering tasks over adversarial data collection.
Are You Getting What You Pay For? Auditing Model Substitution in LLM APIs
The proliferation of Large Language Models (LLMs) accessed via black-box APIs introduces a significant trust challenge: users pay for services based on advertised model capabilities (e.g., size, performance), but providers may covertly substitute the specified model with a cheaper, lower-quality alternative to reduce operational costs. This lack of transparency undermines fairness, erodes trust, and complicates reliable benchmarking. Detecting such substitutions is difficult due to the black-box nature, typically limiting interaction to input-output queries. This paper formalizes the problem of model substitution detection in LLM APIs. We systematically evaluate existing verification techniques, including output-based statistical tests, benchmark evaluations, and log probability analysis, under various realistic attack scenarios like model quantization, randomized substitution, and benchmark evasion. Our findings reveal the limitations of methods relying solely on text outputs, especially against subtle or adaptive attacks. While log probability analysis offers stronger guarantees when available, its accessibility is often limited. We conclude by discussing the potential of hardware-based solutions like Trusted Execution Environments (TEEs) as a pathway towards provable model integrity, highlighting the trade-offs between security, performance, and provider adoption. Code is available at https://github.com/sunblaze-ucb/llm-api-audit
What can Discriminator do? Towards Box-free Ownership Verification of Generative Adversarial Network
In recent decades, Generative Adversarial Network (GAN) and its variants have achieved unprecedented success in image synthesis. However, well-trained GANs are under the threat of illegal steal or leakage. The prior studies on remote ownership verification assume a black-box setting where the defender can query the suspicious model with specific inputs, which we identify is not enough for generation tasks. To this end, in this paper, we propose a novel IP protection scheme for GANs where ownership verification can be done by checking outputs only, without choosing the inputs (i.e., box-free setting). Specifically, we make use of the unexploited potential of the discriminator to learn a hypersphere that captures the unique distribution learned by the paired generator. Extensive evaluations on two popular GAN tasks and more than 10 GAN architectures demonstrate our proposed scheme to effectively verify the ownership. Our proposed scheme shown to be immune to popular input-based removal attacks and robust against other existing attacks. The source code and models are available at https://github.com/AbstractTeen/gan_ownership_verification
Towards Discovery and Attribution of Open-world GAN Generated Images
With the recent progress in Generative Adversarial Networks (GANs), it is imperative for media and visual forensics to develop detectors which can identify and attribute images to the model generating them. Existing works have shown to attribute images to their corresponding GAN sources with high accuracy. However, these works are limited to a closed set scenario, failing to generalize to GANs unseen during train time and are therefore, not scalable with a steady influx of new GANs. We present an iterative algorithm for discovering images generated from previously unseen GANs by exploiting the fact that all GANs leave distinct fingerprints on their generated images. Our algorithm consists of multiple components including network training, out-of-distribution detection, clustering, merge and refine steps. Through extensive experiments, we show that our algorithm discovers unseen GANs with high accuracy and also generalizes to GANs trained on unseen real datasets. We additionally apply our algorithm to attribution and discovery of GANs in an online fashion as well as to the more standard task of real/fake detection. Our experiments demonstrate the effectiveness of our approach to discover new GANs and can be used in an open-world setup.
Are aligned neural networks adversarially aligned?
Large language models are now tuned to align with the goals of their creators, namely to be "helpful and harmless." These models should respond helpfully to user questions, but refuse to answer requests that could cause harm. However, adversarial users can construct inputs which circumvent attempts at alignment. In this work, we study to what extent these models remain aligned, even when interacting with an adversarial user who constructs worst-case inputs (adversarial examples). These inputs are designed to cause the model to emit harmful content that would otherwise be prohibited. We show that existing NLP-based optimization attacks are insufficiently powerful to reliably attack aligned text models: even when current NLP-based attacks fail, we can find adversarial inputs with brute force. As a result, the failure of current attacks should not be seen as proof that aligned text models remain aligned under adversarial inputs. However the recent trend in large-scale ML models is multimodal models that allow users to provide images that influence the text that is generated. We show these models can be easily attacked, i.e., induced to perform arbitrary un-aligned behavior through adversarial perturbation of the input image. We conjecture that improved NLP attacks may demonstrate this same level of adversarial control over text-only models.
AmpleGCG: Learning a Universal and Transferable Generative Model of Adversarial Suffixes for Jailbreaking Both Open and Closed LLMs
As large language models (LLMs) become increasingly prevalent and integrated into autonomous systems, ensuring their safety is imperative. Despite significant strides toward safety alignment, recent work GCG~zou2023universal proposes a discrete token optimization algorithm and selects the single suffix with the lowest loss to successfully jailbreak aligned LLMs. In this work, we first discuss the drawbacks of solely picking the suffix with the lowest loss during GCG optimization for jailbreaking and uncover the missed successful suffixes during the intermediate steps. Moreover, we utilize those successful suffixes as training data to learn a generative model, named AmpleGCG, which captures the distribution of adversarial suffixes given a harmful query and enables the rapid generation of hundreds of suffixes for any harmful queries in seconds. AmpleGCG achieves near 100\% attack success rate (ASR) on two aligned LLMs (Llama-2-7B-chat and Vicuna-7B), surpassing two strongest attack baselines. More interestingly, AmpleGCG also transfers seamlessly to attack different models, including closed-source LLMs, achieving a 99\% ASR on the latest GPT-3.5. To summarize, our work amplifies the impact of GCG by training a generative model of adversarial suffixes that is universal to any harmful queries and transferable from attacking open-source LLMs to closed-source LLMs. In addition, it can generate 200 adversarial suffixes for one harmful query in only 4 seconds, rendering it more challenging to defend.
Online Adversarial Attacks
Adversarial attacks expose important vulnerabilities of deep learning models, yet little attention has been paid to settings where data arrives as a stream. In this paper, we formalize the online adversarial attack problem, emphasizing two key elements found in real-world use-cases: attackers must operate under partial knowledge of the target model, and the decisions made by the attacker are irrevocable since they operate on a transient data stream. We first rigorously analyze a deterministic variant of the online threat model by drawing parallels to the well-studied k-secretary problem in theoretical computer science and propose Virtual+, a simple yet practical online algorithm. Our main theoretical result shows Virtual+ yields provably the best competitive ratio over all single-threshold algorithms for k<5 -- extending the previous analysis of the k-secretary problem. We also introduce the stochastic k-secretary -- effectively reducing online blackbox transfer attacks to a k-secretary problem under noise -- and prove theoretical bounds on the performance of Virtual+ adapted to this setting. Finally, we complement our theoretical results by conducting experiments on MNIST, CIFAR-10, and Imagenet classifiers, revealing the necessity of online algorithms in achieving near-optimal performance and also the rich interplay between attack strategies and online attack selection, enabling simple strategies like FGSM to outperform stronger adversaries.
LLM Security: Vulnerabilities, Attacks, Defenses, and Countermeasures
As large language models (LLMs) continue to evolve, it is critical to assess the security threats and vulnerabilities that may arise both during their training phase and after models have been deployed. This survey seeks to define and categorize the various attacks targeting LLMs, distinguishing between those that occur during the training phase and those that affect already trained models. A thorough analysis of these attacks is presented, alongside an exploration of defense mechanisms designed to mitigate such threats. Defenses are classified into two primary categories: prevention-based and detection-based defenses. Furthermore, our survey summarizes possible attacks and their corresponding defense strategies. It also provides an evaluation of the effectiveness of the known defense mechanisms for the different security threats. Our survey aims to offer a structured framework for securing LLMs, while also identifying areas that require further research to improve and strengthen defenses against emerging security challenges.
Harnessing Task Overload for Scalable Jailbreak Attacks on Large Language Models
Large Language Models (LLMs) remain vulnerable to jailbreak attacks that bypass their safety mechanisms. Existing attack methods are fixed or specifically tailored for certain models and cannot flexibly adjust attack strength, which is critical for generalization when attacking models of various sizes. We introduce a novel scalable jailbreak attack that preempts the activation of an LLM's safety policies by occupying its computational resources. Our method involves engaging the LLM in a resource-intensive preliminary task - a Character Map lookup and decoding process - before presenting the target instruction. By saturating the model's processing capacity, we prevent the activation of safety protocols when processing the subsequent instruction. Extensive experiments on state-of-the-art LLMs demonstrate that our method achieves a high success rate in bypassing safety measures without requiring gradient access, manual prompt engineering. We verified our approach offers a scalable attack that quantifies attack strength and adapts to different model scales at the optimal strength. We shows safety policies of LLMs might be more susceptible to resource constraints. Our findings reveal a critical vulnerability in current LLM safety designs, highlighting the need for more robust defense strategies that account for resource-intense condition.
Towards Reverse-Engineering Black-Box Neural Networks
Many deployed learned models are black boxes: given input, returns output. Internal information about the model, such as the architecture, optimisation procedure, or training data, is not disclosed explicitly as it might contain proprietary information or make the system more vulnerable. This work shows that such attributes of neural networks can be exposed from a sequence of queries. This has multiple implications. On the one hand, our work exposes the vulnerability of black-box neural networks to different types of attacks -- we show that the revealed internal information helps generate more effective adversarial examples against the black box model. On the other hand, this technique can be used for better protection of private content from automatic recognition models using adversarial examples. Our paper suggests that it is actually hard to draw a line between white box and black box models.
Evaluating LLMs Robustness in Less Resourced Languages with Proxy Models
Large language models (LLMs) have demonstrated impressive capabilities across various natural language processing (NLP) tasks in recent years. However, their susceptibility to jailbreaks and perturbations necessitates additional evaluations. Many LLMs are multilingual, but safety-related training data contains mainly high-resource languages like English. This can leave them vulnerable to perturbations in low-resource languages such as Polish. We show how surprisingly strong attacks can be cheaply created by altering just a few characters and using a small proxy model for word importance calculation. We find that these character and word-level attacks drastically alter the predictions of different LLMs, suggesting a potential vulnerability that can be used to circumvent their internal safety mechanisms. We validate our attack construction methodology on Polish, a low-resource language, and find potential vulnerabilities of LLMs in this language. Additionally, we show how it can be extended to other languages. We release the created datasets and code for further research.
Generative Modeling of Weights: Generalization or Memorization?
Generative models, with their success in image and video generation, have recently been explored for synthesizing effective neural network weights. These approaches take trained neural network checkpoints as training data, and aim to generate high-performing neural network weights during inference. In this work, we examine four representative methods on their ability to generate novel model weights, i.e., weights that are different from the checkpoints seen during training. Surprisingly, we find that these methods synthesize weights largely by memorization: they produce either replicas, or at best simple interpolations, of the training checkpoints. Current methods fail to outperform simple baselines, such as adding noise to the weights or taking a simple weight ensemble, in obtaining different and simultaneously high-performing models. We further show that this memorization cannot be effectively mitigated by modifying modeling factors commonly associated with memorization in image diffusion models, or applying data augmentations. Our findings provide a realistic assessment of what types of data current generative models can model, and highlight the need for more careful evaluation of generative models in new domains. Our code is available at https://github.com/boyazeng/weight_memorization.
