- Correlation functions of degenerate fields in Super-Liouville field theory We study four-point correlation functions of degenerated fields in the NS sector in Super-Liouville field theory. We find integral expressions for these functions using the BPZ equation, and study some superconformal properties of these solutions. Finally, we present the general form for three-point correlation functions. 1 authors · Feb 17
- The Four-Point Correlator of Planar sYM at Twelve Loops We determine the 4-point correlation function and amplitude in planar, maximally supersymmetric Yang-Mills theory to 12 loops. We find that the recently-introduced 'double-triangle' rule in fact implies the previously described square and pentagon rules; and when applied to 12 loops, it fully determines the 11-loop correlator and fixes all but 3 of the (22,024,902) 12-loop coefficients; these remaining coefficients can be subsequently fixed using the '(single-)triangle' rule. Not only do we confirm the Catalan conjecture for anti-prism graphs, but we discover evidence for a greatly generalized Catalan conjecture for the coefficients of all polygon-framed fishnet graphs. We provide all contributions through 12 loops as ancillary files to this work. 4 authors · Mar 19