new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Dec 25

Towards Robust Zero-Shot Reinforcement Learning

The recent development of zero-shot reinforcement learning (RL) has opened a new avenue for learning pre-trained generalist policies that can adapt to arbitrary new tasks in a zero-shot manner. While the popular Forward-Backward representations (FB) and related methods have shown promise in zero-shot RL, we empirically found that their modeling lacks expressivity and that extrapolation errors caused by out-of-distribution (OOD) actions during offline learning sometimes lead to biased representations, ultimately resulting in suboptimal performance. To address these issues, we propose Behavior-REgularizEd Zero-shot RL with Expressivity enhancement (BREEZE), an upgraded FB-based framework that simultaneously enhances learning stability, policy extraction capability, and representation learning quality. BREEZE introduces behavioral regularization in zero-shot RL policy learning, transforming policy optimization into a stable in-sample learning paradigm. Additionally, BREEZE extracts the policy using a task-conditioned diffusion model, enabling the generation of high-quality and multimodal action distributions in zero-shot RL settings. Moreover, BREEZE employs expressive attention-based architectures for representation modeling to capture the complex relationships between environmental dynamics. Extensive experiments on ExORL and D4RL Kitchen demonstrate that BREEZE achieves the best or near-the-best performance while exhibiting superior robustness compared to prior offline zero-shot RL methods. The official implementation is available at: https://github.com/Whiterrrrr/BREEZE.

  • 5 authors
·
Oct 17

TableGPT-R1: Advancing Tabular Reasoning Through Reinforcement Learning

Tabular data serves as the backbone of modern data analysis and scientific research. While Large Language Models (LLMs) fine-tuned via Supervised Fine-Tuning (SFT) have significantly improved natural language interaction with such structured data, they often fall short in handling the complex, multi-step reasoning and robust code execution required for real-world table tasks. Reinforcement Learning (RL) offers a promising avenue to enhance these capabilities, yet its application in the tabular domain faces three critical hurdles: the scarcity of high-quality agentic trajectories with closed-loop code execution and environment feedback on diverse table structures, the extreme heterogeneity of feedback signals ranging from rigid SQL execution to open-ended data interpretation, and the risk of catastrophic forgetting of general knowledge during vertical specialization. To overcome these challenges and unlock advanced reasoning on complex tables, we introduce TableGPT-R1, a specialized tabular model built on a systematic RL framework. Our approach integrates a comprehensive data engineering pipeline that synthesizes difficulty-stratified agentic trajectories for both supervised alignment and RL rollouts, a task-adaptive reward system that combines rule-based verification with a criteria-injected reward model and incorporates process-level step reward shaping with behavioral regularization, and a multi-stage training framework that progressively stabilizes reasoning before specializing in table-specific tasks. Extensive evaluations demonstrate that TableGPT-R1 achieves state-of-the-art performance on authoritative benchmarks, significantly outperforming baseline models while retaining robust general capabilities. Our model is available at https://huggingface.co/tablegpt/TableGPT-R1.

  • 16 authors
·
Dec 23

AlignGuard-LoRA: Alignment-Preserving Fine-Tuning via Fisher-Guided Decomposition and Riemannian-Geodesic Collision Regularization

Low-rank adaptation (LoRA) has become a standard tool for efficiently fine-tuning large language models (LLMs). Yet, even minor LoRA updates can induce alignment drift, weakening safety and behavioral constraints through entangled parameter changes. To address this, we propose AlignGuard-LoRA (AGL), a principled framework for preserving alignment during finetuning. AGL introduces several key components: a primary task loss for supervision, Fisher Information Matrix-based regularization to restrict updates in alignment-sensitive subspaces, and task-specific regularization to stabilize the integration of new knowledge. We further introduce collision-aware regularization, blending Riemannian overlap -- which penalizes coordinate-wise interference -- and geodesic separation -- which encourages disjoint update geometry. We curate DriftCaps, a targeted diagnostic benchmark of safe and unsafe prompts designed to quantify alignment drift and safety degradation. Empirical evaluations show that AGL mitigates alignment drift by up to 50% on safety-critical benchmarks without degrading downstream task performance. Comprehensive ablation confirms that each component contributes distinctly to preserving latent safety behaviors. Finally, we derive and validate a scaling law for catastrophic forgetting, revealing that AGL flattens post-finetuning loss escalation while preserving adaptation dynamics. AGL is a structurally grounded refinement of LoRA, ensuring alignment preservation with minimal trade-offs. To encourage further exploration and development, we open-source our implementation.

  • 4 authors
·
Aug 4 2