new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Jan 30

Incorporating Riemannian Geometric Features for Learning Coefficient of Pressure Distributions on Airplane Wings

The aerodynamic coefficients of aircrafts are significantly impacted by its geometry, especially when the angle of attack (AoA) is large. In the field of aerodynamics, traditional polynomial-based parameterization uses as few parameters as possible to describe the geometry of an airfoil. However, because the 3D geometry of a wing is more complicated than the 2D airfoil, polynomial-based parameterizations have difficulty in accurately representing the entire shape of a wing in 3D space. Existing deep learning-based methods can extract massive latent neural representations for the shape of 2D airfoils or 2D slices of wings. Recent studies highlight that directly taking geometric features as inputs to the neural networks can improve the accuracy of predicted aerodynamic coefficients. Motivated by geometry theory, we propose to incorporate Riemannian geometric features for learning Coefficient of Pressure (CP) distributions on wing surfaces. Our method calculates geometric features (Riemannian metric, connection, and curvature) and further inputs the geometric features, coordinates and flight conditions into a deep learning model to predict the CP distribution. Experimental results show that our method, compared to state-of-the-art Deep Attention Network (DAN), reduces the predicted mean square error (MSE) of CP by an average of 8.41% for the DLR-F11 aircraft test set.

  • 4 authors
·
Dec 22, 2023

An evaluation of empirical equations for assessing local scour around bridge piers using global sensitivity analysis

Bridge scour is a complex phenomenon combining hydrological, geotechnical and structural processes. Bridge scour is the leading cause of bridge collapse, which can bring catastrophic consequences including the loss of life. Estimating scour on bridges is an important task for engineers assessing bridge system performance. Overestimation of scour depths during design may lead to excess spendings on construction whereas underestimation can lead to the collapse of a bridge. Many empirical equations have been developed over the years to assess scour depth at bridge piers. These equations have only been calibrated with laboratory data or very few field data. This paper compares eight equations including the UK CIRIA C742 approach to establish their accuracy using the open access USGS pier-scour database for both field and laboratory conditions. A one-at-the-time sensitivity assessment and a global sensitivity analysis were then applied to identify the most significant parameters in the eight scour equations. The paper shows that using a global approach, i.e. one where all parameters are varied simultaneously, provides more insights than a traditional one-at-the-time approach. The main findings are that the CIRIA and Froehlich equations are the most accurate equations for field conditions, and that angle of attack, pier shape and the approach flow depth are the most influential parameters. Efforts to reduce uncertainty of these three parameters would maximise increase of scour estimate precision.

  • 5 authors
·
Jan 12

RFLA: A Stealthy Reflected Light Adversarial Attack in the Physical World

Physical adversarial attacks against deep neural networks (DNNs) have recently gained increasing attention. The current mainstream physical attacks use printed adversarial patches or camouflage to alter the appearance of the target object. However, these approaches generate conspicuous adversarial patterns that show poor stealthiness. Another physical deployable attack is the optical attack, featuring stealthiness while exhibiting weakly in the daytime with sunlight. In this paper, we propose a novel Reflected Light Attack (RFLA), featuring effective and stealthy in both the digital and physical world, which is implemented by placing the color transparent plastic sheet and a paper cut of a specific shape in front of the mirror to create different colored geometries on the target object. To achieve these goals, we devise a general framework based on the circle to model the reflected light on the target object. Specifically, we optimize a circle (composed of a coordinate and radius) to carry various geometrical shapes determined by the optimized angle. The fill color of the geometry shape and its corresponding transparency are also optimized. We extensively evaluate the effectiveness of RFLA on different datasets and models. Experiment results suggest that the proposed method achieves over 99% success rate on different datasets and models in the digital world. Additionally, we verify the effectiveness of the proposed method in different physical environments by using sunlight or a flashlight.

  • 5 authors
·
Jul 14, 2023