2 Thai Wav2Vec2.0 with CommonVoice V8 Recently, Automatic Speech Recognition (ASR), a system that converts audio into text, has caught a lot of attention in the machine learning community. Thus, a lot of publicly available models were released in HuggingFace. However, most of these ASR models are available in English; only a minority of the models are available in Thai. Additionally, most of the Thai ASR models are closed-sourced, and the performance of existing open-sourced models lacks robustness. To address this problem, we train a new ASR model on a pre-trained XLSR-Wav2Vec model with the Thai CommonVoice corpus V8 and train a trigram language model to boost the performance of our ASR model. We hope that our models will be beneficial to individuals and the ASR community in Thailand. 5 authors · Aug 9, 2022
- CPT-Boosted Wav2vec2.0: Towards Noise Robust Speech Recognition for Classroom Environments Creating Automatic Speech Recognition (ASR) systems that are robust and resilient to classroom conditions is paramount to the development of AI tools to aid teachers and students. In this work, we study the efficacy of continued pretraining (CPT) in adapting Wav2vec2.0 to the classroom domain. We show that CPT is a powerful tool in that regard and reduces the Word Error Rate (WER) of Wav2vec2.0-based models by upwards of 10%. More specifically, CPT improves the model's robustness to different noises, microphones and classroom conditions. 5 authors · Sep 13, 2024
- Towards an Efficient Voice Identification Using Wav2Vec2.0 and HuBERT Based on the Quran Reciters Dataset Current authentication and trusted systems depend on classical and biometric methods to recognize or authorize users. Such methods include audio speech recognitions, eye, and finger signatures. Recent tools utilize deep learning and transformers to achieve better results. In this paper, we develop a deep learning constructed model for Arabic speakers identification by using Wav2Vec2.0 and HuBERT audio representation learning tools. The end-to-end Wav2Vec2.0 paradigm acquires contextualized speech representations learnings by randomly masking a set of feature vectors, and then applies a transformer neural network. We employ an MLP classifier that is able to differentiate between invariant labeled classes. We show several experimental results that safeguard the high accuracy of the proposed model. The experiments ensure that an arbitrary wave signal for a certain speaker can be identified with 98% and 97.1% accuracies in the cases of Wav2Vec2.0 and HuBERT, respectively. 2 authors · Nov 11, 2021
- Human-like Linguistic Biases in Neural Speech Models: Phonetic Categorization and Phonotactic Constraints in Wav2Vec2.0 What do deep neural speech models know about phonology? Existing work has examined the encoding of individual linguistic units such as phonemes in these models. Here we investigate interactions between units. Inspired by classic experiments on human speech perception, we study how Wav2Vec2 resolves phonotactic constraints. We synthesize sounds on an acoustic continuum between /l/ and /r/ and embed them in controlled contexts where only /l/, only /r/, or neither occur in English. Like humans, Wav2Vec2 models show a bias towards the phonotactically admissable category in processing such ambiguous sounds. Using simple measures to analyze model internals on the level of individual stimuli, we find that this bias emerges in early layers of the model's Transformer module. This effect is amplified by ASR finetuning but also present in fully self-supervised models. Our approach demonstrates how controlled stimulus designs can help localize specific linguistic knowledge in neural speech models. 2 authors · Jul 3, 2024
- Wav2Small: Distilling Wav2Vec2 to 72K parameters for Low-Resource Speech emotion recognition Speech Emotion Recognition (SER) needs high computational resources to overcome the challenge of substantial annotator disagreement. Today SER is shifting towards dimensional annotations of arousal, dominance, and valence (A/D/V). Universal metrics as the L2 distance prove unsuitable for evaluating A/D/V accuracy due to non converging consensus of annotator opinions. However, Concordance Correlation Coefficient (CCC) arose as an alternative metric for A/D/V where a model's output is evaluated to match a whole dataset's CCC rather than L2 distances of individual audios. Recent studies have shown that Wav2Vec2.0 / WavLM architectures outputing a float value for each A/D/V dimension achieve today's State-of-the-art (SOTA) CCC on A/D/V. The Wav2Vec2.0 / WavLM family has high computational footprint, but training tiny models using human annotations has been unsuccessful. In this paper we use a large Transformer SOTA A/D/V model as Teacher/Annotator to train 5 student models: 4 MobileNets and our proposed Wav2Small, using only the Teacher's A/D/V predictions instead of human annotations. We chose MobileNet-V4 / MobileNet-V3 as students, as MobileNet has been designed for fast execution times. We propose Wav2Small an architecture designed for minimal parameter number and RAM consumption. Wav2Small with an .onnx (quantized) of only 60KB is a potential solution for A/D/V on hearing aids, having only 72K parameters vs 3.12M parameters for MobileNet-V4-Small. The Teacher model we construct sets a new SOTA on the MSP Podcast Test-1 dataset with valence CCC=0.676. 7 authors · Aug 25, 2024
- Speech Representation Analysis based on Inter- and Intra-Model Similarities Self-supervised models have revolutionized speech processing, achieving new levels of performance in a wide variety of tasks with limited resources. However, the inner workings of these models are still opaque. In this paper, we aim to analyze the encoded contextual representation of these foundation models based on their inter- and intra-model similarity, independent of any external annotation and task-specific constraint. We examine different SSL models varying their training paradigm -- Contrastive (Wav2Vec2.0) and Predictive models (HuBERT); and model sizes (base and large). We explore these models on different levels of localization/distributivity of information including (i) individual neurons; (ii) layer representation; (iii) attention weights and (iv) compare the representations with their finetuned counterparts.Our results highlight that these models converge to similar representation subspaces but not to similar neuron-localized concepts\footnote{A concept represents a coherent fragment of knowledge, such as ``a class containing certain objects as elements, where the objects have certain properties. We made the code publicly available for facilitating further research, we publicly released our code. 3 authors · Jun 23, 2024
- ASR advancements for indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana Indigenous languages are a fundamental legacy in the development of human communication, embodying the unique identity and culture of local communities of America. The Second AmericasNLP Competition Track 1 of NeurIPS 2022 proposed developing automatic speech recognition (ASR) systems for five indigenous languages: Quechua, Guarani, Bribri, Kotiria, and Wa'ikhana. In this paper, we propose a reliable ASR model for each target language by crawling speech corpora spanning diverse sources and applying data augmentation methods that resulted in the winning approach in this competition. To achieve this, we systematically investigated the impact of different hyperparameters by a Bayesian search on the performance of the language models, specifically focusing on the variants of the Wav2vec2.0 XLS-R model: 300M and 1B parameters. Moreover, we performed a global sensitivity analysis to assess the contribution of various hyperparametric configurations to the performances of our best models. Importantly, our results show that freeze fine-tuning updates and dropout rate are more vital parameters than the total number of epochs of lr. Additionally, we liberate our best models -- with no other ASR model reported until now for two Wa'ikhana and Kotiria -- and the many experiments performed to pave the way to other researchers to continue improving ASR in minority languages. This insight opens up interesting avenues for future work, allowing for the advancement of ASR techniques in the preservation of minority indigenous and acknowledging the complexities involved in this important endeavour. 3 authors · Apr 12, 2024
- A context-aware knowledge transferring strategy for CTC-based ASR Non-autoregressive automatic speech recognition (ASR) modeling has received increasing attention recently because of its fast decoding speed and superior performance. Among representatives, methods based on the connectionist temporal classification (CTC) are still a dominating stream. However, the theoretically inherent flaw, the assumption of independence between tokens, creates a performance barrier for the school of works. To mitigate the challenge, we propose a context-aware knowledge transferring strategy, consisting of a knowledge transferring module and a context-aware training strategy, for CTC-based ASR. The former is designed to distill linguistic information from a pre-trained language model, and the latter is framed to modulate the limitations caused by the conditional independence assumption. As a result, a knowledge-injected context-aware CTC-based ASR built upon the wav2vec2.0 is presented in this paper. A series of experiments on the AISHELL-1 and AISHELL-2 datasets demonstrate the effectiveness of the proposed method. 2 authors · Oct 12, 2022
20 AfroDigits: A Community-Driven Spoken Digit Dataset for African Languages The advancement of speech technologies has been remarkable, yet its integration with African languages remains limited due to the scarcity of African speech corpora. To address this issue, we present AfroDigits, a minimalist, community-driven dataset of spoken digits for African languages, currently covering 38 African languages. As a demonstration of the practical applications of AfroDigits, we conduct audio digit classification experiments on six African languages [Igbo (ibo), Yoruba (yor), Rundi (run), Oshiwambo (kua), Shona (sna), and Oromo (gax)] using the Wav2Vec2.0-Large and XLS-R models. Our experiments reveal a useful insight on the effect of mixing African speech corpora during finetuning. AfroDigits is the first published audio digit dataset for African languages and we believe it will, among other things, pave the way for Afro-centric speech applications such as the recognition of telephone numbers, and street numbers. We release the dataset and platform publicly at https://huggingface.co/datasets/chrisjay/crowd-speech-africa and https://huggingface.co/spaces/chrisjay/afro-speech respectively. 13 authors · Mar 22, 2023 3
2 Towards End-to-End Training of Automatic Speech Recognition for Nigerian Pidgin The prevalence of automatic speech recognition (ASR) systems in spoken language applications has increased significantly in recent years. Notably, many African languages lack sufficient linguistic resources to support the robustness of these systems. This paper focuses on the development of an end-to-end speech recognition system customized for Nigerian Pidgin English. We investigated and evaluated different pretrained state-of-the-art architectures on a new dataset. Our empirical results demonstrate a notable performance of the variant Wav2Vec2 XLSR-53 on our dataset, achieving a word error rate (WER) of 29.6% on the test set, surpassing other architectures such as NEMO QUARTZNET and Wav2Vec2.0 BASE-100H in quantitative assessments. Additionally, we demonstrate that pretrained state-of-the-art architectures do not work well out-of-the-box. We performed zero-shot evaluation using XLSR-English as the baseline, chosen for its similarity to Nigerian Pidgin. This yielded a higher WER of 73.7%. By adapting this architecture to nuances represented in our dataset, we reduce error by 59.84%. Our dataset comprises 4,288 recorded utterances from 10 native speakers, partitioned into training, validation, and test sets. This study underscores the potential for improving ASR systems for under-resourced languages like Nigerian Pidgin English, contributing to greater inclusion in speech technology applications. We publicly release our unique parallel dataset (speech-to-text) on Nigerian Pidgin, as well as the model weights on Hugging Face. Our code would be made available to foster future research from the community. 6 authors · Oct 21, 2020
- Utilizing Neural Transducers for Two-Stage Text-to-Speech via Semantic Token Prediction We propose a novel text-to-speech (TTS) framework centered around a neural transducer. Our approach divides the whole TTS pipeline into semantic-level sequence-to-sequence (seq2seq) modeling and fine-grained acoustic modeling stages, utilizing discrete semantic tokens obtained from wav2vec2.0 embeddings. For a robust and efficient alignment modeling, we employ a neural transducer named token transducer for the semantic token prediction, benefiting from its hard monotonic alignment constraints. Subsequently, a non-autoregressive (NAR) speech generator efficiently synthesizes waveforms from these semantic tokens. Additionally, a reference speech controls temporal dynamics and acoustic conditions at each stage. This decoupled framework reduces the training complexity of TTS while allowing each stage to focus on semantic and acoustic modeling. Our experimental results on zero-shot adaptive TTS demonstrate that our model surpasses the baseline in terms of speech quality and speaker similarity, both objectively and subjectively. We also delve into the inference speed and prosody control capabilities of our approach, highlighting the potential of neural transducers in TTS frameworks. 6 authors · Jan 2, 2024