Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeSeaD: End-to-end Text-to-SQL Generation with Schema-aware Denoising
In text-to-SQL task, seq-to-seq models often lead to sub-optimal performance due to limitations in their architecture. In this paper, we present a simple yet effective approach that adapts transformer-based seq-to-seq model to robust text-to-SQL generation. Instead of inducing constraint to decoder or reformat the task as slot-filling, we propose to train seq-to-seq model with Schema aware Denoising (SeaD), which consists of two denoising objectives that train model to either recover input or predict output from two novel erosion and shuffle noises. These denoising objectives acts as the auxiliary tasks for better modeling the structural data in S2S generation. In addition, we improve and propose a clause-sensitive execution guided (EG) decoding strategy to overcome the limitation of EG decoding for generative model. The experiments show that the proposed method improves the performance of seq-to-seq model in both schema linking and grammar correctness and establishes new state-of-the-art on WikiSQL benchmark. The results indicate that the capacity of vanilla seq-to-seq architecture for text-to-SQL may have been under-estimated.
FinTagging: An LLM-ready Benchmark for Extracting and Structuring Financial Information
We introduce FinTagging, the first full-scope, table-aware XBRL benchmark designed to evaluate the structured information extraction and semantic alignment capabilities of large language models (LLMs) in the context of XBRL-based financial reporting. Unlike prior benchmarks that oversimplify XBRL tagging as flat multi-class classification and focus solely on narrative text, FinTagging decomposes the XBRL tagging problem into two subtasks: FinNI for financial entity extraction and FinCL for taxonomy-driven concept alignment. It requires models to jointly extract facts and align them with the full 10k+ US-GAAP taxonomy across both unstructured text and structured tables, enabling realistic, fine-grained evaluation. We assess a diverse set of LLMs under zero-shot settings, systematically analyzing their performance on both subtasks and overall tagging accuracy. Our results reveal that, while LLMs demonstrate strong generalization in information extraction, they struggle with fine-grained concept alignment, particularly in disambiguating closely related taxonomy entries. These findings highlight the limitations of existing LLMs in fully automating XBRL tagging and underscore the need for improved semantic reasoning and schema-aware modeling to meet the demands of accurate financial disclosure. Code is available at our GitHub repository and data is at our Hugging Face repository.
SQL-o1: A Self-Reward Heuristic Dynamic Search Method for Text-to-SQL
The Text-to-SQL(Text2SQL) task aims to convert natural language queries into executable SQL queries. Thanks to the application of large language models (LLMs), significant progress has been made in this field. However, challenges such as model scalability, limited generation space, and coherence issues in SQL generation still persist. To address these issues, we propose SQL-o1, a Self-Reward-based heuristic search method designed to enhance the reasoning ability of LLMs in SQL query generation. SQL-o1 combines Monte Carlo Tree Search (MCTS) for heuristic process-level search and constructs a Schema-Aware dataset to help the model better understand database schemas. Extensive experiments on the Bird and Spider datasets demonstrate that SQL-o1 improves execution accuracy by 10.8\% on the complex Bird dataset compared to the latest baseline methods, even outperforming GPT-4-based approaches. Additionally, SQL-o1 excels in few-shot learning scenarios and shows strong cross-model transferability. Our code is publicly available at:https://github.com/ShuaiLyu0110/SQL-o1.
RAT-SQL: Relation-Aware Schema Encoding and Linking for Text-to-SQL Parsers
When translating natural language questions into SQL queries to answer questions from a database, contemporary semantic parsing models struggle to generalize to unseen database schemas. The generalization challenge lies in (a) encoding the database relations in an accessible way for the semantic parser, and (b) modeling alignment between database columns and their mentions in a given query. We present a unified framework, based on the relation-aware self-attention mechanism, to address schema encoding, schema linking, and feature representation within a text-to-SQL encoder. On the challenging Spider dataset this framework boosts the exact match accuracy to 57.2%, surpassing its best counterparts by 8.7% absolute improvement. Further augmented with BERT, it achieves the new state-of-the-art performance of 65.6% on the Spider leaderboard. In addition, we observe qualitative improvements in the model's understanding of schema linking and alignment. Our implementation will be open-sourced at https://github.com/Microsoft/rat-sql.
Rethinking Schema Linking: A Context-Aware Bidirectional Retrieval Approach for Text-to-SQL
Schema linking -- the process of aligning natural language questions with database schema elements -- is a critical yet underexplored component of Text-to-SQL systems. While recent methods have focused primarily on improving SQL generation, they often neglect the retrieval of relevant schema elements, which can lead to hallucinations and execution failures. In this work, we propose a context-aware bidirectional schema retrieval framework that treats schema linking as a standalone problem. Our approach combines two complementary strategies: table-first retrieval followed by column selection, and column-first retrieval followed by table selection. It is further augmented with techniques such as question decomposition, keyword extraction, and keyphrase extraction. Through comprehensive evaluations on challenging benchmarks such as BIRD and Spider, we demonstrate that our method significantly improves schema recall while reducing false positives. Moreover, SQL generation using our retrieved schema consistently outperforms full-schema baselines and closely approaches oracle performance, all without requiring query refinement. Notably, our method narrows the performance gap between full and perfect schema settings by 50\%. Our findings highlight schema linking as a powerful lever for enhancing Text-to-SQL accuracy and efficiency.
LinkAlign: Scalable Schema Linking for Real-World Large-Scale Multi-Database Text-to-SQL
Schema linking is a critical bottleneck in applying existing Text-to-SQL models to real-world, large-scale, multi-database environments. Through error analysis, we identify two major challenges in schema linking: (1) Database Retrieval: accurately selecting the target database from a large schema pool, while effectively filtering out irrelevant ones; and (2) Schema Item Grounding: precisely identifying the relevant tables and columns within complex and often redundant schemas for SQL generation. Based on these, we introduce LinkAlign, a novel framework tailored for large-scale databases with thousands of fields. LinkAlign comprises three key steps: multi-round semantic enhanced retrieval and irrelevant information isolation for Challenge 1, and schema extraction enhancement for Challenge 2. Each stage supports both Agent and Pipeline execution modes, enabling balancing efficiency and performance via modular design. To enable more realistic evaluation, we construct AmbiDB, a synthetic dataset designed to reflect the ambiguity of real-world schema linking. Experiments on widely-used Text-to-SQL benchmarks demonstrate that LinkAlign consistently outperforms existing baselines on all schema linking metrics. Notably, it improves the overall Text-to-SQL pipeline and achieves a new state-of-the-art score of 33.09% on the Spider 2.0-Lite benchmark using only open-source LLMs, ranking first on the leaderboard at the time of submission. The codes are available at https://github.com/Satissss/LinkAlign
Improving Text-to-SQL with Schema Dependency Learning
Text-to-SQL aims to map natural language questions to SQL queries. The sketch-based method combined with execution-guided (EG) decoding strategy has shown a strong performance on the WikiSQL benchmark. However, execution-guided decoding relies on database execution, which significantly slows down the inference process and is hence unsatisfactory for many real-world applications. In this paper, we present the Schema Dependency guided multi-task Text-to-SQL model (SDSQL) to guide the network to effectively capture the interactions between questions and schemas. The proposed model outperforms all existing methods in both the settings with or without EG. We show the schema dependency learning partially cover the benefit from EG and alleviates the need for it. SDSQL without EG significantly reduces time consumption during inference, sacrificing only a small amount of performance and provides more flexibility for downstream applications.
The Death of Schema Linking? Text-to-SQL in the Age of Well-Reasoned Language Models
Schema linking is a crucial step in Text-to-SQL pipelines, which translate natural language queries into SQL. The goal of schema linking is to retrieve relevant tables and columns (signal) while disregarding irrelevant ones (noise). However, imperfect schema linking can often exclude essential columns needed for accurate query generation. In this work, we revisit the need for schema linking when using the latest generation of large language models (LLMs). We find empirically that newer models are adept at identifying relevant schema elements during generation, without the need for explicit schema linking. This allows Text-to-SQL pipelines to bypass schema linking entirely and instead pass the full database schema to the LLM, eliminating the risk of excluding necessary information. Furthermore, as alternatives to schema linking, we propose techniques that improve Text-to-SQL accuracy without compromising on essential schema information. Our approach achieves 71.83\% execution accuracy on the BIRD benchmark, ranking first at the time of submission.
Witness Generation for JSON Schema
JSON Schema is an important, evolving standard schema language for families of JSON documents. It is based on a complex combination of structural and Boolean assertions, and features negation and recursion. The static analysis of JSON Schema documents comprises practically relevant problems, including schema satisfiability, inclusion, and equivalence. These three problems can be reduced to witness generation: given a schema, generate an element of the schema, if it exists, and report failure otherwise. Schema satisfiability, inclusion, and equivalence have been shown to be decidable, by reduction to reachability in alternating tree automata. However, no witness generation algorithm has yet been formally described. We contribute a first, direct algorithm for JSON Schema witness generation. We study its effectiveness and efficiency, in experiments over several schema collections, including thousands of real-world schemas. Our focus is on the completeness of the language, where we only exclude the uniqueItems operator, and on the ability of the algorithm to run in a reasonable time on a large set of real-world examples, despite the exponential complexity of the underlying problem.
Implementing Systemic Thinking for Automatic Schema Matching: An Agent-Based Modeling Approach
Several approaches are proposed to deal with the problem of the Automatic Schema Matching (ASM). The challenges and difficulties caused by the complexity and uncertainty characterizing both the process and the outcome of Schema Matching motivated us to investigate how bio-inspired emerging paradigm can help with understanding, managing, and ultimately overcoming those challenges. In this paper, we explain how we approached Automatic Schema Matching as a systemic and Complex Adaptive System (CAS) and how we modeled it using the approach of Agent-Based Modeling and Simulation (ABMS). This effort gives birth to a tool (prototype) for schema matching called Reflex-SMAS. A set of experiments demonstrates the viability of our approach on two main aspects: (i) effectiveness (increasing the quality of the found matchings) and (ii) efficiency (reducing the effort required for this efficiency). Our approach represents a significant paradigm-shift, in the field of Automatic Schema Matching.
KnowCoder: Coding Structured Knowledge into LLMs for Universal Information Extraction
In this paper, we propose KnowCoder, a Large Language Model (LLM) to conduct Universal Information Extraction (UIE) via code generation. KnowCoder aims to develop a kind of unified schema representation that LLMs can easily understand and an effective learning framework that encourages LLMs to follow schemas and extract structured knowledge accurately. To achieve these, KnowCoder introduces a code-style schema representation method to uniformly transform different schemas into Python classes, with which complex schema information, such as constraints among tasks in UIE, can be captured in an LLM-friendly manner. We further construct a code-style schema library covering over 30,000 types of knowledge, which is the largest one for UIE, to the best of our knowledge. To ease the learning process of LLMs, KnowCoder contains a two-phase learning framework that enhances its schema understanding ability via code pretraining and its schema following ability via instruction tuning. After code pretraining on around 1.5B automatically constructed data, KnowCoder already attains remarkable generalization ability and achieves relative improvements by 49.8% F1, compared to LLaMA2, under the few-shot setting. After instruction tuning, KnowCoder further exhibits strong generalization ability on unseen schemas and achieves up to 12.5% and 21.9%, compared to sota baselines, under the zero-shot setting and the low resource setting, respectively. Additionally, based on our unified schema representations, various human-annotated datasets can simultaneously be utilized to refine KnowCoder, which achieves significant improvements up to 7.5% under the supervised setting.
CRUSH4SQL: Collective Retrieval Using Schema Hallucination For Text2SQL
Existing Text-to-SQL generators require the entire schema to be encoded with the user text. This is expensive or impractical for large databases with tens of thousands of columns. Standard dense retrieval techniques are inadequate for schema subsetting of a large structured database, where the correct semantics of retrieval demands that we rank sets of schema elements rather than individual elements. In response, we propose a two-stage process for effective coverage during retrieval. First, we instruct an LLM to hallucinate a minimal DB schema deemed adequate to answer the query. We use the hallucinated schema to retrieve a subset of the actual schema, by composing the results from multiple dense retrievals. Remarkably, hallucination x2013 generally considered a nuisance x2013 turns out to be actually useful as a bridging mechanism. Since no existing benchmarks exist for schema subsetting on large databases, we introduce three benchmarks. Two semi-synthetic datasets are derived from the union of schemas in two well-known datasets, SPIDER and BIRD, resulting in 4502 and 798 schema elements respectively. A real-life benchmark called SocialDB is sourced from an actual large data warehouse comprising 17844 schema elements. We show that our method1 leads to significantly higher recall than SOTA retrieval-based augmentation methods.
Matchmaker: Self-Improving Large Language Model Programs for Schema Matching
Schema matching -- the task of finding matches between attributes across disparate data sources with different tables and hierarchies -- is critical for creating interoperable machine learning (ML)-ready data. Addressing this fundamental data-centric problem has wide implications, especially in domains like healthcare, finance and e-commerce -- but also has the potential to benefit ML models more generally, by increasing the data available for ML model training. However, schema matching is a challenging ML task due to structural/hierarchical and semantic heterogeneity between different schemas. Previous ML approaches to automate schema matching have either required significant labeled data for model training, which is often unrealistic or suffer from poor zero-shot performance. To this end, we propose Matchmaker - a compositional language model program for schema matching, comprised of candidate generation, refinement and confidence scoring. Matchmaker also self-improves in a zero-shot manner without the need for labeled demonstrations via a novel optimization approach, which constructs synthetic in-context demonstrations to guide the language model's reasoning process. Empirically, we demonstrate on real-world medical schema matching benchmarks that Matchmaker outperforms previous ML-based approaches, highlighting its potential to accelerate data integration and interoperability of ML-ready data.
PET-SQL: A Prompt-enhanced Two-stage Text-to-SQL Framework with Cross-consistency
Recent advancements in Text-to-SQL (Text2SQL) emphasize stimulating the large language models (LLM) on in-context learning, achieving significant results. Nevertheless, they face challenges when dealing with verbose database information and complex user intentions. This paper presents a two-stage framework to enhance the performance of current LLM-based natural language to SQL systems. We first introduce a novel prompt representation, called reference-enhanced representation, which includes schema information and randomly sampled cell values from tables to instruct LLMs in generating SQL queries. Then, in the first stage, question-SQL pairs are retrieved as few-shot demonstrations, prompting the LLM to generate a preliminary SQL (PreSQL). After that, the mentioned entities in PreSQL are parsed to conduct schema linking, which can significantly compact the useful information. In the second stage, with the linked schema, we simplify the prompt's schema information and instruct the LLM to produce the final SQL. Finally, as the post-refinement module, we propose using cross-consistency across different LLMs rather than self-consistency within a particular LLM. Our methods achieve new SOTA results on the Spider benchmark, with an execution accuracy of 87.6%.
Valentine: Evaluating Matching Techniques for Dataset Discovery
Data scientists today search large data lakes to discover and integrate datasets. In order to bring together disparate data sources, dataset discovery methods rely on some form of schema matching: the process of establishing correspondences between datasets. Traditionally, schema matching has been used to find matching pairs of columns between a source and a target schema. However, the use of schema matching in dataset discovery methods differs from its original use. Nowadays schema matching serves as a building block for indicating and ranking inter-dataset relationships. Surprisingly, although a discovery method's success relies highly on the quality of the underlying matching algorithms, the latest discovery methods employ existing schema matching algorithms in an ad-hoc fashion due to the lack of openly-available datasets with ground truth, reference method implementations, and evaluation metrics. In this paper, we aim to rectify the problem of evaluating the effectiveness and efficiency of schema matching methods for the specific needs of dataset discovery. To this end, we propose Valentine, an extensible open-source experiment suite to execute and organize large-scale automated matching experiments on tabular data. Valentine includes implementations of seminal schema matching methods that we either implemented from scratch (due to absence of open source code) or imported from open repositories. The contributions of Valentine are: i) the definition of four schema matching scenarios as encountered in dataset discovery methods, ii) a principled dataset fabrication process tailored to the scope of dataset discovery methods and iii) the most comprehensive evaluation of schema matching techniques to date, offering insight on the strengths and weaknesses of existing techniques, that can serve as a guide for employing schema matching in future dataset discovery methods.
LLMs4SchemaDiscovery: A Human-in-the-Loop Workflow for Scientific Schema Mining with Large Language Models
Extracting structured information from unstructured text is crucial for modeling real-world processes, but traditional schema mining relies on semi-structured data, limiting scalability. This paper introduces schema-miner, a novel tool that combines large language models with human feedback to automate and refine schema extraction. Through an iterative workflow, it organizes properties from text, incorporates expert input, and integrates domain-specific ontologies for semantic depth. Applied to materials science--specifically atomic layer deposition--schema-miner demonstrates that expert-guided LLMs generate semantically rich schemas suitable for diverse real-world applications.
Schema-adaptable Knowledge Graph Construction
Conventional Knowledge Graph Construction (KGC) approaches typically follow the static information extraction paradigm with a closed set of pre-defined schema. As a result, such approaches fall short when applied to dynamic scenarios or domains, whereas a new type of knowledge emerges. This necessitates a system that can handle evolving schema automatically to extract information for KGC. To address this need, we propose a new task called schema-adaptable KGC, which aims to continually extract entity, relation, and event based on a dynamically changing schema graph without re-training. We first split and convert existing datasets based on three principles to build a benchmark, i.e., horizontal schema expansion, vertical schema expansion, and hybrid schema expansion; then investigate the schema-adaptable performance of several well-known approaches such as Text2Event, TANL, UIE and GPT-3.5. We further propose a simple yet effective baseline dubbed AdaKGC, which contains schema-enriched prefix instructor and schema-conditioned dynamic decoding to better handle evolving schema. Comprehensive experimental results illustrate that AdaKGC can outperform baselines but still have room for improvement. We hope the proposed work can deliver benefits to the community. Code and datasets will be available in https://github.com/zjunlp/AdaKGC.
XiYan-SQL: A Multi-Generator Ensemble Framework for Text-to-SQL
To tackle the challenges of large language model performance in natural language to SQL tasks, we introduce XiYan-SQL, an innovative framework that employs a multi-generator ensemble strategy to improve candidate generation. We introduce M-Schema, a semi-structured schema representation method designed to enhance the understanding of database structures. To enhance the quality and diversity of generated candidate SQL queries, XiYan-SQL integrates the significant potential of in-context learning (ICL) with the precise control of supervised fine-tuning. On one hand, we propose a series of training strategies to fine-tune models to generate high-quality candidates with diverse preferences. On the other hand, we implement the ICL approach with an example selection method based on named entity recognition to prevent overemphasis on entities. The refiner optimizes each candidate by correcting logical or syntactical errors. To address the challenge of identifying the best candidate, we fine-tune a selection model to distinguish nuances of candidate SQL queries. The experimental results on multiple dialect datasets demonstrate the robustness of XiYan-SQL in addressing challenges across different scenarios. Overall, our proposed XiYan-SQL achieves the state-of-the-art execution accuracy of 89.65% on the Spider test set, 69.86% on SQL-Eval, 41.20% on NL2GQL, and a competitive score of 72.23% on the Bird development benchmark. The proposed framework not only enhances the quality and diversity of SQL queries but also outperforms previous methods.
Schema as Parameterized Tools for Universal Information Extraction
Universal information extraction (UIE) primarily employs an extractive generation approach with large language models (LLMs), typically outputting structured information based on predefined schemas such as JSON or tables. UIE suffers from a lack of adaptability when selecting between predefined schemas and on-the-fly schema generation within the in-context learning paradigm, especially when there are numerous schemas to choose from. In this paper, we propose a unified adaptive text-to-structure generation framework, called Schema as Parameterized Tools (SPT), which reimagines the tool-calling capability of LLMs by treating predefined schemas as parameterized tools for tool selection and parameter filling. Specifically, our SPT method can be applied to unify closed, open, and on-demand IE tasks by adopting Schema Retrieval by fetching the relevant schemas from a predefined pool, Schema Filling by extracting information and filling slots as with tool parameters, or Schema Generation by synthesizing new schemas with uncovered cases. Experiments show that the SPT method can handle four distinct IE tasks adaptively, delivering robust schema retrieval and selection performance. SPT also achieves comparable extraction performance to LoRA baselines and current leading UIE systems with significantly fewer trainable parameters.
CHESS: Contextual Harnessing for Efficient SQL Synthesis
Utilizing large language models (LLMs) for transforming natural language questions into SQL queries (text-to-SQL) is a promising yet challenging approach, particularly when applied to real-world databases with complex and extensive schemas. In particular, effectively incorporating data catalogs and database values for SQL generation remains an obstacle, leading to suboptimal solutions. We address this problem by proposing a new pipeline that effectively retrieves relevant data and context, selects an efficient schema, and synthesizes correct and efficient SQL queries. To increase retrieval precision, our pipeline introduces a hierarchical retrieval method leveraging model-generated keywords, locality-sensitive hashing indexing, and vector databases. Additionally, we have developed an adaptive schema pruning technique that adjusts based on the complexity of the problem and the model's context size. Our approach generalizes to both frontier proprietary models like GPT-4 and open-source models such as Llama-3-70B. Through a series of ablation studies, we demonstrate the effectiveness of each component of our pipeline and its impact on the end-to-end performance. Our method achieves new state-of-the-art performance on the cross-domain challenging BIRD dataset.
Long-Range Tasks Using Short-Context LLMs: Incremental Reasoning With Structured Memories
Long-range tasks require reasoning over long inputs. Existing solutions either need large compute budgets, training data, access to model weights, or use complex, task-specific approaches. We present PRISM, which alleviates these concerns by processing information as a stream of chunks, maintaining a structured in-context memory specified by a typed hierarchy schema. This approach demonstrates superior performance to baselines on diverse tasks while using at least 4x smaller contexts than long-context models. Moreover, PRISM is token-efficient. By producing short outputs and efficiently leveraging key-value (KV) caches, it achieves up to 54% cost reduction when compared to alternative short-context approaches. The method also scales down to tiny information chunks (e.g., 500 tokens) without increasing the number of tokens encoded or sacrificing quality. Furthermore, we show that it is possible to generate schemas to generalize our approach to new tasks with minimal effort.
Schema-Driven Information Extraction from Heterogeneous Tables
In this paper, we explore the question of whether large language models can support cost-efficient information extraction from tables. We introduce schema-driven information extraction, a new task that transforms tabular data into structured records following a human-authored schema. To assess various LLM's capabilities on this task, we present a benchmark comprised of tables from four diverse domains: machine learning papers, chemistry literature, material science journals, and webpages. We use this collection of annotated tables to evaluate the ability of open-source and API-based language models to extract information from tables covering diverse domains and data formats. Our experiments demonstrate that surprisingly competitive performance can be achieved without requiring task-specific pipelines or labels, achieving F1 scores ranging from 74.2 to 96.1, while maintaining cost efficiency. Moreover, through detailed ablation studies and analyses, we investigate the factors contributing to model success and validate the practicality of distilling compact models to reduce API reliance.
Ologs: a categorical framework for knowledge representation
In this paper we introduce the olog, or ontology log, a category-theoretic model for knowledge representation (KR). Grounded in formal mathematics, ologs can be rigorously formulated and cross-compared in ways that other KR models (such as semantic networks) cannot. An olog is similar to a relational database schema; in fact an olog can serve as a data repository if desired. Unlike database schemas, which are generally difficult to create or modify, ologs are designed to be user-friendly enough that authoring or reconfiguring an olog is a matter of course rather than a difficult chore. It is hoped that learning to author ologs is much simpler than learning a database definition language, despite their similarity. We describe ologs carefully and illustrate with many examples. As an application we show that any primitive recursive function can be described by an olog. We also show that ologs can be aligned or connected together into a larger network using functors. The various methods of information flow and institutions can then be used to integrate local and global world-views. We finish by providing several different avenues for future research.
DFIN-SQL: Integrating Focused Schema with DIN-SQL for Superior Accuracy in Large-Scale Databases
The task of converting natural language queries into SQL queries is intricate, necessitating a blend of precise techniques for an accurate translation. The DIN-SQL (Decomposed-In-Context SQL) methodology represents a significant development in this domain. This paper introduces DFIN (Decomposed Focused-In-Context), an innovative extension of DIN-SQL that enhances Text-to-SQL conversion by addressing schema linking errors, which are a major source of inaccuracies. DFIN uniquely alternates between prompting techniques and Retrieval-Augmented Generation (RAG), adapting to the size and complexity of the database schema. A preprocessing phase embeds database definitions and leverages annotated files, akin to those in the BIRD dataset, facilitating the runtime retrieval of pertinent schema information. This strategy significantly reduces the token count for schema linking prompts, enabling the use of a standard GPT-4 model over its larger context variant, thus handling large-scale databases more effectively and economically. Our evaluation on the BIRD dataset, a challenging real-world benchmark, demonstrates that DFIN not only scales efficiently but also improves accuracy, achieving a score of 51.69. This improvement surpasses DIN-SQL method (the current third-place), which is the highest-ranked model employing in-context learning rather than fine-tuning, previously scoring 50.72. The advancement of DFIN underscores the evolving capabilities of in-context learning methodologies combined with advanced language models, offering a promising avenue for future research in complex Text-to-SQL conversion tasks.
OneKE: A Dockerized Schema-Guided LLM Agent-based Knowledge Extraction System
We introduce OneKE, a dockerized schema-guided knowledge extraction system, which can extract knowledge from the Web and raw PDF Books, and support various domains (science, news, etc.). Specifically, we design OneKE with multiple agents and a configure knowledge base. Different agents perform their respective roles, enabling support for various extraction scenarios. The configure knowledge base facilitates schema configuration, error case debugging and correction, further improving the performance. Empirical evaluations on benchmark datasets demonstrate OneKE's efficacy, while case studies further elucidate its adaptability to diverse tasks across multiple domains, highlighting its potential for broad applications. We have open-sourced the Code at https://github.com/zjunlp/OneKE and released a Video at http://oneke.openkg.cn/demo.mp4.
RASAT: Integrating Relational Structures into Pretrained Seq2Seq Model for Text-to-SQL
Relational structures such as schema linking and schema encoding have been validated as a key component to qualitatively translating natural language into SQL queries. However, introducing these structural relations comes with prices: they often result in a specialized model structure, which largely prohibits using large pretrained models in text-to-SQL. To address this problem, we propose RASAT: a Transformer seq2seq architecture augmented with relation-aware self-attention that could leverage a variety of relational structures while inheriting the pretrained parameters from the T5 model effectively. Our model can incorporate almost all types of existing relations in the literature, and in addition, we propose introducing co-reference relations for the multi-turn scenario. Experimental results on three widely used text-to-SQL datasets, covering both single-turn and multi-turn scenarios, have shown that RASAT could achieve state-of-the-art results across all three benchmarks (75.5% EX on Spider, 52.6% IEX on SParC, and 37.4% IEX on CoSQL).
Youtu-GraphRAG: Vertically Unified Agents for Graph Retrieval-Augmented Complex Reasoning
Graph retrieval-augmented generation (GraphRAG) has effectively enhanced large language models in complex reasoning by organizing fragmented knowledge into explicitly structured graphs. Prior efforts have been made to improve either graph construction or graph retrieval in isolation, yielding suboptimal performance, especially when domain shifts occur. In this paper, we propose a vertically unified agentic paradigm, Youtu-GraphRAG, to jointly connect the entire framework as an intricate integration. Specifically, (i) a seed graph schema is introduced to bound the automatic extraction agent with targeted entity types, relations and attribute types, also continuously expanded for scalability over unseen domains; (ii) To obtain higher-level knowledge upon the schema, we develop novel dually-perceived community detection, fusing structural topology with subgraph semantics for comprehensive knowledge organization. This naturally yields a hierarchical knowledge tree that supports both top-down filtering and bottom-up reasoning with community summaries; (iii) An agentic retriever is designed to interpret the same graph schema to transform complex queries into tractable and parallel sub-queries. It iteratively performs reflection for more advanced reasoning; (iv) To alleviate the knowledge leaking problem in pre-trained LLM, we propose a tailored anonymous dataset and a novel 'Anonymity Reversion' task that deeply measures the real performance of the GraphRAG frameworks. Extensive experiments across six challenging benchmarks demonstrate the robustness of Youtu-GraphRAG, remarkably moving the Pareto frontier with up to 90.71% saving of token costs and 16.62% higher accuracy over state-of-the-art baselines. The results indicate our adaptability, allowing seamless domain transfer with minimal intervention on schema.
MeXtract: Light-Weight Metadata Extraction from Scientific Papers
Metadata plays a critical role in indexing, documenting, and analyzing scientific literature, yet extracting it accurately and efficiently remains a challenging task. Traditional approaches often rely on rule-based or task-specific models, which struggle to generalize across domains and schema variations. In this paper, we present MeXtract, a family of lightweight language models designed for metadata extraction from scientific papers. The models, ranging from 0.5B to 3B parameters, are built by fine-tuning Qwen 2.5 counterparts. In their size family, MeXtract achieves state-of-the-art performance on metadata extraction on the MOLE benchmark. To further support evaluation, we extend the MOLE benchmark to incorporate model-specific metadata, providing an out-of-domain challenging subset. Our experiments show that fine-tuning on a given schema not only yields high accuracy but also transfers effectively to unseen schemas, demonstrating the robustness and adaptability of our approach. We release all the code, datasets, and models openly for the research community.
You Only Read Once (YORO): Learning to Internalize Database Knowledge for Text-to-SQL
While significant progress has been made on the text-to-SQL task, recent solutions repeatedly encode the same database schema for every question, resulting in unnecessary high inference cost and often overlooking crucial database knowledge. To address these issues, we propose You Only Read Once (YORO), a novel paradigm that directly internalizes database knowledge into the parametric knowledge of a text-to-SQL model during training and eliminates the need for schema encoding during inference. YORO significantly reduces the input token length by 66%-98%. Despite its shorter inputs, our empirical results demonstrate YORO's competitive performances with traditional systems on three benchmarks as well as its significant outperformance on large databases. Furthermore, YORO excels in handling questions with challenging value retrievals such as abbreviation.
Representing Schema Structure with Graph Neural Networks for Text-to-SQL Parsing
Research on parsing language to SQL has largely ignored the structure of the database (DB) schema, either because the DB was very simple, or because it was observed at both training and test time. In Spider, a recently-released text-to-SQL dataset, new and complex DBs are given at test time, and so the structure of the DB schema can inform the predicted SQL query. In this paper, we present an encoder-decoder semantic parser, where the structure of the DB schema is encoded with a graph neural network, and this representation is later used at both encoding and decoding time. Evaluation shows that encoding the schema structure improves our parser accuracy from 33.8% to 39.4%, dramatically above the current state of the art, which is at 19.7%.
IGSQL: Database Schema Interaction Graph Based Neural Model for Context-Dependent Text-to-SQL Generation
Context-dependent text-to-SQL task has drawn much attention in recent years. Previous models on context-dependent text-to-SQL task only concentrate on utilizing historical user inputs. In this work, in addition to using encoders to capture historical information of user inputs, we propose a database schema interaction graph encoder to utilize historicalal information of database schema items. In decoding phase, we introduce a gate mechanism to weigh the importance of different vocabularies and then make the prediction of SQL tokens. We evaluate our model on the benchmark SParC and CoSQL datasets, which are two large complex context-dependent cross-domain text-to-SQL datasets. Our model outperforms previous state-of-the-art model by a large margin and achieves new state-of-the-art results on the two datasets. The comparison and ablation results demonstrate the efficacy of our model and the usefulness of the database schema interaction graph encoder.
HIE-SQL: History Information Enhanced Network for Context-Dependent Text-to-SQL Semantic Parsing
Recently, context-dependent text-to-SQL semantic parsing which translates natural language into SQL in an interaction process has attracted a lot of attention. Previous works leverage context-dependence information either from interaction history utterances or the previous predicted SQL queries but fail in taking advantage of both since of the mismatch between natural language and logic-form SQL. In this work, we propose a History Information Enhanced text-to-SQL model (HIE-SQL) to exploit context-dependence information from both history utterances and the last predicted SQL query. In view of the mismatch, we treat natural language and SQL as two modalities and propose a bimodal pre-trained model to bridge the gap between them. Besides, we design a schema-linking graph to enhance connections from utterances and the SQL query to the database schema. We show our history information enhanced methods improve the performance of HIE-SQL by a significant margin, which achieves new state-of-the-art results on the two context-dependent text-to-SQL benchmarks, the SparC and CoSQL datasets, at the writing time.
SQL-of-Thought: Multi-agentic Text-to-SQL with Guided Error Correction
Converting natural language queries into SQL queries is a crucial challenge in both industry and academia, aiming to increase access to databases and large-scale applications. This work examines how in-context learning and chain-of-thought can be utilized to develop a robust solution for text-to-SQL systems. We propose SQL-of-Thought: a multi-agent framework that decomposes the Text2SQL task into schema linking, subproblem identification, query plan generation, SQL generation, and a guided correction loop. Unlike prior systems that rely only on execution-based static correction, we introduce taxonomy-guided dynamic error modification informed by in-context learning. SQL-of-Thought achieves state-of-the-art results on the Spider dataset and its variants, combining guided error taxonomy with reasoning-based query planning.
RESDSQL: Decoupling Schema Linking and Skeleton Parsing for Text-to-SQL
One of the recent best attempts at Text-to-SQL is the pre-trained language model. Due to the structural property of the SQL queries, the seq2seq model takes the responsibility of parsing both the schema items (i.e., tables and columns) and the skeleton (i.e., SQL keywords). Such coupled targets increase the difficulty of parsing the correct SQL queries especially when they involve many schema items and logic operators. This paper proposes a ranking-enhanced encoding and skeleton-aware decoding framework to decouple the schema linking and the skeleton parsing. Specifically, for a seq2seq encoder-decode model, its encoder is injected by the most relevant schema items instead of the whole unordered ones, which could alleviate the schema linking effort during SQL parsing, and its decoder first generates the skeleton and then the actual SQL query, which could implicitly constrain the SQL parsing. We evaluate our proposed framework on Spider and its three robustness variants: Spider-DK, Spider-Syn, and Spider-Realistic. The experimental results show that our framework delivers promising performance and robustness. Our code is available at https://github.com/RUCKBReasoning/RESDSQL.
MAG-SQL: Multi-Agent Generative Approach with Soft Schema Linking and Iterative Sub-SQL Refinement for Text-to-SQL
Recent In-Context Learning based methods have achieved remarkable success in Text-to-SQL task. However, there is still a large gap between the performance of these models and human performance on datasets with complex database schema and difficult questions, such as BIRD. Besides, existing work has neglected to supervise intermediate steps when solving questions iteratively with question decomposition methods, and the schema linking methods used in these works are very rudimentary. To address these issues, we propose MAG-SQL, a multi-agent generative approach with soft schema linking and iterative Sub-SQL refinement. In our framework, an entity-based method with tables' summary is used to select the columns in database, and a novel targets-conditions decomposition method is introduced to decompose those complex questions. Additionally, we build a iterative generating module which includes a Sub-SQL Generator and Sub-SQL Refiner, introducing external oversight for each step of generation. Through a series of ablation studies, the effectiveness of each agent in our framework has been demonstrated. When evaluated on the BIRD benchmark with GPT-4, MAG-SQL achieves an execution accuracy of 61.08\%, compared to the baseline accuracy of 46.35\% for vanilla GPT-4 and the baseline accuracy of 57.56\% for MAC-SQL. Besides, our approach makes similar progress on Spider.
KNOW: A Real-World Ontology for Knowledge Capture with Large Language Models
We present KNOW--the Knowledge Navigator Ontology for the World--the first ontology designed to capture everyday knowledge to augment large language models (LLMs) in real-world generative AI use cases such as personal AI assistants. Our domain is human life, both its everyday concerns and its major milestones. We have limited the initial scope of the modeled concepts to only established human universals: spacetime (places, events) plus social (people, groups, organizations). The inclusion criteria for modeled concepts are pragmatic, beginning with universality and utility. We compare and contrast previous work such as Schema.org and Cyc--as well as attempts at a synthesis of knowledge graphs and language models--noting how LLMs already encode internally much of the commonsense tacit knowledge that took decades to capture in the Cyc project. We also make available code-generated software libraries for the 12 most popular programming languages, enabling the direct use of ontology concepts in software engineering. We emphasize simplicity and developer experience in promoting AI interoperability.
SBI-RAG: Enhancing Math Word Problem Solving for Students through Schema-Based Instruction and Retrieval-Augmented Generation
Many students struggle with math word problems (MWPs), often finding it difficult to identify key information and select the appropriate mathematical operations.Schema-based instruction (SBI) is an evidence-based strategy that helps students categorize problems based on their structure, improving problem-solving accuracy. Building on this, we propose a Schema-Based Instruction Retrieval-Augmented Generation (SBI-RAG) framework that incorporates a large language model (LLM).Our approach emphasizes step-by-step reasoning by leveraging schemas to guide solution generation. We evaluate its performance on the GSM8K dataset, comparing it with GPT-4 and GPT-3.5 Turbo, and introduce a "reasoning score" metric to assess solution quality. Our findings suggest that SBI-RAG enhances reasoning clarity and problem-solving accuracy, potentially providing educational benefits for students
Magneto: Combining Small and Large Language Models for Schema Matching
Recent advances in language models opened new opportunities to address complex schema matching tasks. Schema matching approaches have been proposed that demonstrate the usefulness of language models, but they have also uncovered important limitations: Small language models (SLMs) require training data (which can be both expensive and challenging to obtain), and large language models (LLMs) often incur high computational costs and must deal with constraints imposed by context windows. We present Magneto, a cost-effective and accurate solution for schema matching that combines the advantages of SLMs and LLMs to address their limitations. By structuring the schema matching pipeline in two phases, retrieval and reranking, Magneto can use computationally efficient SLM-based strategies to derive candidate matches which can then be reranked by LLMs, thus making it possible to reduce runtime without compromising matching accuracy. We propose a self-supervised approach to fine-tune SLMs which uses LLMs to generate syntactically diverse training data, and prompting strategies that are effective for reranking. We also introduce a new benchmark, developed in collaboration with domain experts, which includes real biomedical datasets and presents new challenges to schema matching methods. Through a detailed experimental evaluation, using both our new and existing benchmarks, we show that Magneto is scalable and attains high accuracy for datasets from different domains.
Knowledge Graph-based Retrieval-Augmented Generation for Schema Matching
Traditional similarity-based schema matching methods are incapable of resolving semantic ambiguities and conflicts in domain-specific complex mapping scenarios due to missing commonsense and domain-specific knowledge. The hallucination problem of large language models (LLMs) also makes it challenging for LLM-based schema matching to address the above issues. Therefore, we propose a Knowledge Graph-based Retrieval-Augmented Generation model for Schema Matching, referred to as the KG-RAG4SM. In particular, KG-RAG4SM introduces novel vector-based, graph traversal-based, and query-based graph retrievals, as well as a hybrid approach and ranking schemes that identify the most relevant subgraphs from external large knowledge graphs (KGs). We showcase that KG-based retrieval-augmented LLMs are capable of generating more accurate results for complex matching cases without any re-training. Our experimental results show that KG-RAG4SM outperforms the LLM-based state-of-the-art (SOTA) methods (e.g., Jellyfish-8B) by 35.89% and 30.50% in terms of precision and F1 score on the MIMIC dataset, respectively; KG-RAG4SM with GPT-4o-mini outperforms the pre-trained language model (PLM)-based SOTA methods (e.g., SMAT) by 69.20% and 21.97% in terms of precision and F1 score on the Synthea dataset, respectively. The results also demonstrate that our approach is more efficient in end-to-end schema matching, and scales to retrieve from large KGs. Our case studies on the dataset from the real-world schema matching scenario exhibit that the hallucination problem of LLMs for schema matching is well mitigated by our solution.
Matching Table Metadata with Business Glossaries Using Large Language Models
Enterprises often own large collections of structured data in the form of large databases or an enterprise data lake. Such data collections come with limited metadata and strict access policies that could limit access to the data contents and, therefore, limit the application of classic retrieval and analysis solutions. As a result, there is a need for solutions that can effectively utilize the available metadata. In this paper, we study the problem of matching table metadata to a business glossary containing data labels and descriptions. The resulting matching enables the use of an available or curated business glossary for retrieval and analysis without or before requesting access to the data contents. One solution to this problem is to use manually-defined rules or similarity measures on column names and glossary descriptions (or their vector embeddings) to find the closest match. However, such approaches need to be tuned through manual labeling and cannot handle many business glossaries that contain a combination of simple as well as complex and long descriptions. In this work, we leverage the power of large language models (LLMs) to design generic matching methods that do not require manual tuning and can identify complex relations between column names and glossaries. We propose methods that utilize LLMs in two ways: a) by generating additional context for column names that can aid with matching b) by using LLMs to directly infer if there is a relation between column names and glossary descriptions. Our preliminary experimental results show the effectiveness of our proposed methods.
Importance of Synthesizing High-quality Data for Text-to-SQL Parsing
Recently, there has been increasing interest in synthesizing data to improve downstream text-to-SQL tasks. In this paper, we first examined the existing synthesized datasets and discovered that state-of-the-art text-to-SQL algorithms did not further improve on popular benchmarks when trained with augmented synthetic data. We observed two shortcomings: illogical synthetic SQL queries from independent column sampling and arbitrary table joins. To address these issues, we propose a novel synthesis framework that incorporates key relationships from schema, imposes strong typing, and conducts schema-distance-weighted column sampling. We also adopt an intermediate representation (IR) for the SQL-to-text task to further improve the quality of the generated natural language questions. When existing powerful semantic parsers are pre-finetuned on our high-quality synthesized data, our experiments show that these models have significant accuracy boosts on popular benchmarks, including new state-of-the-art performance on Spider.
DB-Explore: Automated Database Exploration and Instruction Synthesis for Text-to-SQL
Recent text-to-SQL systems powered by large language models (LLMs) have demonstrated remarkable performance in translating natural language queries into SQL. However, these systems often struggle with complex database structures and domain-specific queries, as they primarily focus on enhancing logical reasoning and SQL syntax while overlooking the critical need for comprehensive database understanding. To address this limitation, we propose DB-Explore, a novel framework that systematically aligns LLMs with database knowledge through automated exploration and instruction synthesis. DB-Explore constructs database graphs to capture complex relational schemas, leverages GPT-4 to systematically mine structural patterns and semantic knowledge, and synthesizes instructions to distill this knowledge for efficient fine-tuning of LLMs. Our framework enables comprehensive database understanding through diverse sampling strategies and automated instruction generation, bridging the gap between database structures and language models. Experiments conducted on the SPIDER and BIRD benchmarks validate the effectiveness of DB-Explore, achieving an execution accuracy of 52.1% on BIRD and 84.0% on SPIDER. Notably, our open-source implementation, based on the Qwen2.5-coder-7B model, outperforms multiple GPT-4-driven text-to-SQL systems in comparative evaluations, and achieves near state-of-the-art performance with minimal computational cost.
Description-Driven Task-Oriented Dialog Modeling
Task-oriented dialogue (TOD) systems are required to identify key information from conversations for the completion of given tasks. Such information is conventionally specified in terms of intents and slots contained in task-specific ontology or schemata. Since these schemata are designed by system developers, the naming convention for slots and intents is not uniform across tasks, and may not convey their semantics effectively. This can lead to models memorizing arbitrary patterns in data, resulting in suboptimal performance and generalization. In this paper, we propose that schemata should be modified by replacing names or notations entirely with natural language descriptions. We show that a language description-driven system exhibits better understanding of task specifications, higher performance on state tracking, improved data efficiency, and effective zero-shot transfer to unseen tasks. Following this paradigm, we present a simple yet effective Description-Driven Dialog State Tracking (D3ST) model, which relies purely on schema descriptions and an "index-picking" mechanism. We demonstrate the superiority in quality, data efficiency and robustness of our approach as measured on the MultiWOZ (Budzianowski et al.,2018), SGD (Rastogi et al., 2020), and the recent SGD-X (Lee et al., 2021) benchmarks.
Induce, Edit, Retrieve: Language Grounded Multimodal Schema for Instructional Video Retrieval
Schemata are structured representations of complex tasks that can aid artificial intelligence by allowing models to break down complex tasks into intermediate steps. We propose a novel system that induces schemata from web videos and generalizes them to capture unseen tasks with the goal of improving video retrieval performance. Our system proceeds in three major phases: (1) Given a task with related videos, we construct an initial schema for a task using a joint video-text model to match video segments with text representing steps from wikiHow; (2) We generalize schemata to unseen tasks by leveraging language models to edit the text within existing schemata. Through generalization, we can allow our schemata to cover a more extensive range of tasks with a small amount of learning data; (3) We conduct zero-shot instructional video retrieval with the unseen task names as the queries. Our schema-guided approach outperforms existing methods for video retrieval, and we demonstrate that the schemata induced by our system are better than those generated by other models.
SADGA: Structure-Aware Dual Graph Aggregation Network for Text-to-SQL
The Text-to-SQL task, aiming to translate the natural language of the questions into SQL queries, has drawn much attention recently. One of the most challenging problems of Text-to-SQL is how to generalize the trained model to the unseen database schemas, also known as the cross-domain Text-to-SQL task. The key lies in the generalizability of (i) the encoding method to model the question and the database schema and (ii) the question-schema linking method to learn the mapping between words in the question and tables/columns in the database schema. Focusing on the above two key issues, we propose a Structure-Aware Dual Graph Aggregation Network (SADGA) for cross-domain Text-to-SQL. In SADGA, we adopt the graph structure to provide a unified encoding model for both the natural language question and database schema. Based on the proposed unified modeling, we further devise a structure-aware aggregation method to learn the mapping between the question-graph and schema-graph. The structure-aware aggregation method is featured with Global Graph Linking, Local Graph Linking, and Dual-Graph Aggregation Mechanism. We not only study the performance of our proposal empirically but also achieved 3rd place on the challenging Text-to-SQL benchmark Spider at the time of writing.
What's In Your Field? Mapping Scientific Research with Knowledge Graphs and Large Language Models
The scientific literature's exponential growth makes it increasingly challenging to navigate and synthesize knowledge across disciplines. Large language models (LLMs) are powerful tools for understanding scientific text, but they fail to capture detailed relationships across large bodies of work. Unstructured approaches, like retrieval augmented generation, can sift through such corpora to recall relevant facts; however, when millions of facts influence the answer, unstructured approaches become cost prohibitive. Structured representations offer a natural complement -- enabling systematic analysis across the whole corpus. Recent work enhances LLMs with unstructured or semistructured representations of scientific concepts; to complement this, we try extracting structured representations using LLMs. By combining LLMs' semantic understanding with a schema of scientific concepts, we prototype a system that answers precise questions about the literature as a whole. Our schema applies across scientific fields and we extract concepts from it using only 20 manually annotated abstracts. To demonstrate the system, we extract concepts from 30,000 papers on arXiv spanning astrophysics, fluid dynamics, and evolutionary biology. The resulting database highlights emerging trends and, by visualizing the knowledge graph, offers new ways to explore the ever-growing landscape of scientific knowledge. Demo: abby101/surveyor-0 on HF Spaces. Code: https://github.com/chiral-carbon/kg-for-science.
X-SQL: reinforce schema representation with context
In this work, we present X-SQL, a new network architecture for the problem of parsing natural language to SQL query. X-SQL proposes to enhance the structural schema representation with the contextual output from BERT-style pre-training model, and together with type information to learn a new schema representation for down-stream tasks. We evaluated X-SQL on the WikiSQL dataset and show its new state-of-the-art performance.
SGD-X: A Benchmark for Robust Generalization in Schema-Guided Dialogue Systems
Zero/few-shot transfer to unseen services is a critical challenge in task-oriented dialogue research. The Schema-Guided Dialogue (SGD) dataset introduced a paradigm for enabling models to support any service in zero-shot through schemas, which describe service APIs to models in natural language. We explore the robustness of dialogue systems to linguistic variations in schemas by designing SGD-X - a benchmark extending SGD with semantically similar yet stylistically diverse variants for every schema. We observe that two top state tracking models fail to generalize well across schema variants, measured by joint goal accuracy and a novel metric for measuring schema sensitivity. Additionally, we present a simple model-agnostic data augmentation method to improve schema robustness.
Docs2KG: Unified Knowledge Graph Construction from Heterogeneous Documents Assisted by Large Language Models
Even for a conservative estimate, 80% of enterprise data reside in unstructured files, stored in data lakes that accommodate heterogeneous formats. Classical search engines can no longer meet information seeking needs, especially when the task is to browse and explore for insight formulation. In other words, there are no obvious search keywords to use. Knowledge graphs, due to their natural visual appeals that reduce the human cognitive load, become the winning candidate for heterogeneous data integration and knowledge representation. In this paper, we introduce Docs2KG, a novel framework designed to extract multimodal information from diverse and heterogeneous unstructured documents, including emails, web pages, PDF files, and Excel files. Dynamically generates a unified knowledge graph that represents the extracted key information, Docs2KG enables efficient querying and exploration of document data lakes. Unlike existing approaches that focus on domain-specific data sources or pre-designed schemas, Docs2KG offers a flexible and extensible solution that can adapt to various document structures and content types. The proposed framework unifies data processing supporting a multitude of downstream tasks with improved domain interpretability. Docs2KG is publicly accessible at https://docs2kg.ai4wa.com, and a demonstration video is available at https://docs2kg.ai4wa.com/Video.
From Natural Language to SQL: Review of LLM-based Text-to-SQL Systems
LLMs when used with Retrieval Augmented Generation (RAG), are greatly improving the SOTA of translating natural language queries to structured and correct SQL. Unlike previous reviews, this survey provides a comprehensive study of the evolution of LLM-based text-to-SQL systems, from early rule-based models to advanced LLM approaches that use (RAG) systems. We discuss benchmarks, evaluation methods, and evaluation metrics. Also, we uniquely study the use of Graph RAGs for better contextual accuracy and schema linking in these systems. Finally, we highlight key challenges such as computational efficiency, model robustness, and data privacy toward improvements of LLM-based text-to-SQL systems.
Think Inside the JSON: Reinforcement Strategy for Strict LLM Schema Adherence
In this paper, we address the challenge of enforcing strict schema adherence in large language model (LLM) generation by leveraging LLM reasoning capabilities. Building on the DeepSeek R1 reinforcement learning framework, our approach trains structured reasoning skills of a 1.5B parameter model through a novel pipeline that combines synthetic reasoning dataset construction with custom reward functions under Group Relative Policy Optimization (GRPO). Specifically, we first perform R1 reinforcement learning on a 20K sample unstructured-to-structured dataset, mirroring the original DeepSeek R1 methods, to establish core reasoning abilities. Subsequently, we performed supervised fine-tuning on a separate 10K reasoning sample dataset, focusing on refining schema adherence for downstream tasks. Despite the relatively modest training scope, requiring approximately 20 hours on an 8xH100 GPU cluster for GRPO training and 3 hours on 1xA100 for SFT, our model demonstrates robust performance in enforcing schema consistency. We compare our ThinkJSON approach against the original DeepSeek R1 (671B), distilled versions of DeepSeek R1 (Qwen-1.5B and Qwen-7B), and Gemini 2.0 Flash (70B), showcasing its effectiveness in real-world applications. Our results underscore the practical utility of a resource-efficient framework for schema-constrained text generation.
ArxivDIGESTables: Synthesizing Scientific Literature into Tables using Language Models
When conducting literature reviews, scientists often create literature review tables - tables whose rows are publications and whose columns constitute a schema, a set of aspects used to compare and contrast the papers. Can we automatically generate these tables using language models (LMs)? In this work, we introduce a framework that leverages LMs to perform this task by decomposing it into separate schema and value generation steps. To enable experimentation, we address two main challenges: First, we overcome a lack of high-quality datasets to benchmark table generation by curating and releasing arxivDIGESTables, a new dataset of 2,228 literature review tables extracted from ArXiv papers that synthesize a total of 7,542 research papers. Second, to support scalable evaluation of model generations against human-authored reference tables, we develop DecontextEval, an automatic evaluation method that aligns elements of tables with the same underlying aspects despite differing surface forms. Given these tools, we evaluate LMs' abilities to reconstruct reference tables, finding this task benefits from additional context to ground the generation (e.g. table captions, in-text references). Finally, through a human evaluation study we find that even when LMs fail to fully reconstruct a reference table, their generated novel aspects can still be useful.
Atomic Reasoning for Scientific Table Claim Verification
Scientific texts often convey authority due to their technical language and complex data. However, this complexity can sometimes lead to the spread of misinformation. Non-experts are particularly susceptible to misleading claims based on scientific tables due to their high information density and perceived credibility. Existing table claim verification models, including state-of-the-art large language models (LLMs), often struggle with precise fine-grained reasoning, resulting in errors and a lack of precision in verifying scientific claims. Inspired by Cognitive Load Theory, we propose that enhancing a model's ability to interpret table-based claims involves reducing cognitive load by developing modular, reusable reasoning components (i.e., atomic skills). We introduce a skill-chaining schema that dynamically composes these skills to facilitate more accurate and generalizable reasoning with a reduced cognitive load. To evaluate this, we create SciAtomicBench, a cross-domain benchmark with fine-grained reasoning annotations. With only 350 fine-tuning examples, our model trained by atomic reasoning outperforms GPT-4o's chain-of-thought method, achieving state-of-the-art results with far less training data.
SMUTF: Schema Matching Using Generative Tags and Hybrid Features
We introduce SMUTF, a unique approach for large-scale tabular data schema matching (SM), which assumes that supervised learning does not affect performance in open-domain tasks, thereby enabling effective cross-domain matching. This system uniquely combines rule-based feature engineering, pre-trained language models, and generative large language models. In an innovative adaptation inspired by the Humanitarian Exchange Language, we deploy 'generative tags' for each data column, enhancing the effectiveness of SM. SMUTF exhibits extensive versatility, working seamlessly with any pre-existing pre-trained embeddings, classification methods, and generative models. Recognizing the lack of extensive, publicly available datasets for SM, we have created and open-sourced the HDXSM dataset from the public humanitarian data. We believe this to be the most exhaustive SM dataset currently available. In evaluations across various public datasets and the novel HDXSM dataset, SMUTF demonstrated exceptional performance, surpassing existing state-of-the-art models in terms of accuracy and efficiency, and} improving the F1 score by 11.84% and the AUC of ROC by 5.08%.
Mapping and Cleaning Open Commonsense Knowledge Bases with Generative Translation
Structured knowledge bases (KBs) are the backbone of many know\-ledge-intensive applications, and their automated construction has received considerable attention. In particular, open information extraction (OpenIE) is often used to induce structure from a text. However, although it allows high recall, the extracted knowledge tends to inherit noise from the sources and the OpenIE algorithm. Besides, OpenIE tuples contain an open-ended, non-canonicalized set of relations, making the extracted knowledge's downstream exploitation harder. In this paper, we study the problem of mapping an open KB into the fixed schema of an existing KB, specifically for the case of commonsense knowledge. We propose approaching the problem by generative translation, i.e., by training a language model to generate fixed-schema assertions from open ones. Experiments show that this approach occupies a sweet spot between traditional manual, rule-based, or classification-based canonicalization and purely generative KB construction like COMET. Moreover, it produces higher mapping accuracy than the former while avoiding the association-based noise of the latter.
MultiSpider: Towards Benchmarking Multilingual Text-to-SQL Semantic Parsing
Text-to-SQL semantic parsing is an important NLP task, which greatly facilitates the interaction between users and the database and becomes the key component in many human-computer interaction systems. Much recent progress in text-to-SQL has been driven by large-scale datasets, but most of them are centered on English. In this work, we present MultiSpider, the largest multilingual text-to-SQL dataset which covers seven languages (English, German, French, Spanish, Japanese, Chinese, and Vietnamese). Upon MultiSpider, we further identify the lexical and structural challenges of text-to-SQL (caused by specific language properties and dialect sayings) and their intensity across different languages. Experimental results under three typical settings (zero-shot, monolingual and multilingual) reveal a 6.1% absolute drop in accuracy in non-English languages. Qualitative and quantitative analyses are conducted to understand the reason for the performance drop of each language. Besides the dataset, we also propose a simple schema augmentation framework SAVe (Schema-Augmentation-with-Verification), which significantly boosts the overall performance by about 1.8% and closes the 29.5% performance gap across languages.
DBCopilot: Scaling Natural Language Querying to Massive Databases
Text-to-SQL simplifies database interactions by enabling non-experts to convert their natural language (NL) questions into Structured Query Language (SQL) queries. While recent advances in large language models (LLMs) have improved the zero-shot text-to-SQL paradigm, existing methods face scalability challenges when dealing with massive, dynamically changing databases. This paper introduces DBCopilot, a framework that addresses these challenges by employing a compact and flexible copilot model for routing across massive databases. Specifically, DBCopilot decouples the text-to-SQL process into schema routing and SQL generation, leveraging a lightweight sequence-to-sequence neural network-based router to formulate database connections and navigate natural language questions through databases and tables. The routed schemas and questions are then fed into LLMs for efficient SQL generation. Furthermore, DBCopilot also introduced a reverse schema-to-question generation paradigm, which can learn and adapt the router over massive databases automatically without requiring manual intervention. Experimental results demonstrate that DBCopilot is a scalable and effective solution for real-world text-to-SQL tasks, providing a significant advancement in handling large-scale schemas.
Improving Relational Database Interactions with Large Language Models: Column Descriptions and Their Impact on Text-to-SQL Performance
Relational databases often suffer from uninformative descriptors of table contents, such as ambiguous columns and hard-to-interpret values, impacting both human users and Text-to-SQL models. This paper explores the use of large language models (LLMs) to generate informative column descriptions as a semantic layer for relational databases. Using the BIRD-Bench development set, we created ColSQL, a dataset with gold-standard column descriptions generated and refined by LLMs and human annotators. We evaluated several instruction-tuned models, finding that GPT-4o and Command R+ excelled in generating high-quality descriptions. Additionally, we applied an LLM-as-a-judge to evaluate model performance. Although this method does not align well with human evaluations, we included it to explore its potential and to identify areas for improvement. More work is needed to improve the reliability of automatic evaluations for this task. We also find that detailed column descriptions significantly improve Text-to-SQL execution accuracy, especially when columns are uninformative. This study establishes LLMs as effective tools for generating detailed metadata, enhancing the usability of relational databases.
CodeS: Towards Building Open-source Language Models for Text-to-SQL
Language models have shown promising performance on the task of translating natural language questions into SQL queries (Text-to-SQL). However, most of the state-of-the-art (SOTA) approaches rely on powerful yet closed-source large language models (LLMs), such as ChatGPT and GPT-4, which may have the limitations of unclear model architectures, data privacy risks, and expensive inference overheads. To address the limitations, we introduce CodeS, a series of pre-trained language models with parameters ranging from 1B to 15B, specifically designed for the text-to-SQL task. CodeS is a fully open-source language model, which achieves superior accuracy with much smaller parameter sizes. This paper studies the research challenges in building CodeS. To enhance the SQL generation abilities of CodeS, we adopt an incremental pre-training approach using a specifically curated SQL-centric corpus. Based on this, we address the challenges of schema linking and rapid domain adaptation through strategic prompt construction and a bi-directional data augmentation technique. We conduct comprehensive evaluations on multiple datasets, including the widely used Spider benchmark, the newly released BIRD benchmark, robustness-diagnostic benchmarks such as Spider-DK, Spider-Syn, Spider-Realistic, and Dr.Spider, as well as two real-world datasets created for financial and academic applications. The experimental results show that our CodeS achieves new SOTA accuracy and robustness on nearly all challenging text-to-SQL benchmarks.
YAGO 4.5: A Large and Clean Knowledge Base with a Rich Taxonomy
Knowledge Bases (KBs) find applications in many knowledge-intensive tasks and, most notably, in information retrieval. Wikidata is one of the largest public general-purpose KBs. Yet, its collaborative nature has led to a convoluted schema and taxonomy. The YAGO 4 KB cleaned up the taxonomy by incorporating the ontology of Schema.org, resulting in a cleaner structure amenable to automated reasoning. However, it also cut away large parts of the Wikidata taxonomy, which is essential for information retrieval. In this paper, we extend YAGO 4 with a large part of the Wikidata taxonomy - while respecting logical constraints and the distinction between classes and instances. This yields YAGO 4.5, a new, logically consistent version of YAGO that adds a rich layer of informative classes. An intrinsic and an extrinsic evaluation show the value of the new resource.
Mention Extraction and Linking for SQL Query Generation
On the WikiSQL benchmark, state-of-the-art text-to-SQL systems typically take a slot-filling approach by building several dedicated models for each type of slots. Such modularized systems are not only complex butalso of limited capacity for capturing inter-dependencies among SQL clauses. To solve these problems, this paper proposes a novel extraction-linking approach, where a unified extractor recognizes all types of slot mentions appearing in the question sentence before a linker maps the recognized columns to the table schema to generate executable SQL queries. Trained with automatically generated annotations, the proposed method achieves the first place on the WikiSQL benchmark.
Knowledge-to-SQL: Enhancing SQL Generation with Data Expert LLM
Generating accurate SQL for user queries (text-to-SQL) is a long-standing problem since the generation of the SQL requires comprehending the query and database and retrieving the accurate data from the database accordingly. Existing models rely on the comprehensive ability of Large Language Models (LLMs) to generate the SQL according to the database schema. However, there is some necessary knowledge that is not explicitly included in the database schema or has been learned by LLMs. Thus, the generated SQL of the knowledge-insufficient queries may be inaccurate, which negatively impacts the robustness of the text-to-SQL models. To deal with this situation, we propose the Knowledge-to-SQL framework, which employs tailored Data Expert LLM (DELLM) to provide helpful knowledge for all types of text-to-SQL models. Specifically, we provide the detailed design of DELLM, in terms of table reading, and the basic fine-tuning process. We further provide a Preference Learning via Database Feedback (PLDBF) training strategy to guide the DELLM to generate more helpful knowledge for LLMs. Extensive experiments verify DELLM can enhance the state-of-the-art LLMs on text-to-SQL tasks. The model structure and the parameter weight of DELLM are released for further research.
STRuCT-LLM: Unifying Tabular and Graph Reasoning with Reinforcement Learning for Semantic Parsing
We propose STRuCT-LLM, a unified framework for training large language models (LLMs) to perform structured reasoning over both relational and graph-structured data. Our approach jointly optimizes Text-to-SQL and Text-to-Cypher tasks using reinforcement learning (RL) combined with Chain-of-Thought (CoT) supervision. To support fine-grained optimization in graph-based parsing, we introduce a topology-aware reward function based on graph edit distance. Unlike prior work that treats relational and graph formalisms in isolation, STRuCT-LLM leverages shared abstractions between SQL and Cypher to induce cross-formalism transfer, enabling SQL training to improve Cypher performance and vice versa - even without shared schemas. Our largest model (QwQ-32B) achieves substantial relative improvements across tasks: on semantic parsing, Spider improves by 13.5\% and Text2Cypher by 73.1\%. The model also demonstrates strong zero-shot generalization, improving performance on downstream tabular QA (TableBench: 8.5\%) and knowledge graph QA (CR-LT-KGQA: 1.7\%) without any QA-specific supervision. These results demonstrate both the effectiveness of executable queries as scaffolds for structured reasoning and the synergistic benefits of jointly training on SQL and Cypher (code available at https://github.com/bouv/STRuCT-LLM).
Towards Complex Text-to-SQL in Cross-Domain Database with Intermediate Representation
We present a neural approach called IRNet for complex and cross-domain Text-to-SQL. IRNet aims to address two challenges: 1) the mismatch between intents expressed in natural language (NL) and the implementation details in SQL; 2) the challenge in predicting columns caused by the large number of out-of-domain words. Instead of end-to-end synthesizing a SQL query, IRNet decomposes the synthesis process into three phases. In the first phase, IRNet performs a schema linking over a question and a database schema. Then, IRNet adopts a grammar-based neural model to synthesize a SemQL query which is an intermediate representation that we design to bridge NL and SQL. Finally, IRNet deterministically infers a SQL query from the synthesized SemQL query with domain knowledge. On the challenging Text-to-SQL benchmark Spider, IRNet achieves 46.7% accuracy, obtaining 19.5% absolute improvement over previous state-of-the-art approaches. At the time of writing, IRNet achieves the first position on the Spider leaderboard.
TASER: Table Agents for Schema-guided Extraction and Recommendation
Real-world financial documents report essential information about an entity's financial holdings that can span millions of different financial instrument types. Yet, these details are often buried in messy, multi-page, fragmented tables - for example, 99.4% of the tables in our dataset have no bounding boxes with the maximum number of rows amounting to 426 per table across 44 pages. To tackle these unique challenges from real-world tables, we present a continuously learning, agentic table extraction system, TASER (Table Agents for Schema-guided Extraction and Recommendation) that extracts highly unstructured, multi-page, heterogeneous tables into normalized, schema-conforming outputs. Our table agents execute on table detection, classification, extraction, and recommendations by leveraging an initial schema. Then, our Recommender Agent reviews the outputs, recommends schema revisions, and decides on the final recommendations, enabling TASER to outperform existing table detection models such as Table Transformer by 10.1%. Within this continuous learning process, we highlight that larger batch sizes result in a 104.3% increase in schema recommendations that are actionable and utilized, resulting in a 9.8% increase in extracted holdings - highlighting the importance of a continuous learning process. To train TASER, we have manually labeled 22,584 pages (28,150,449 tokens), 3,213 tables for $731,685,511,687 of holdings culminating in one of the first real financial table datasets. We release our dataset TASERTab to enable the research community to access real-world financial tables and outputs. Our results highlight the promise of agentic, schema-guided extraction systems for robust understanding of real-world financial tables.
PARALLELPROMPT: Extracting Parallelism from Large Language Model Queries
LLM serving systems typically treat user prompts as monolithic inputs, optimizing inference through decoding tricks or inter-query batching. However, many real-world prompts contain latent semantic parallelism--decomposable structures where subtasks can be executed independently to reduce latency while preserving meaning. We introduce PARALLELPROMPT, the first benchmark for measuring intra-query parallelism in natural user prompts. Our dataset comprises over 37,000 real-world prompts from public LLM chat logs, each annotated with a structured schema capturing task templates, shared context, and iteration inputs. These schemas are extracted using LLM-assisted prompting with rule-based multilingual validation. To evaluate the benefits of decomposition, we provide an execution suite that benchmarks serial vs. parallel strategies, measuring latency, structural adherence, and semantic fidelity. Our results show that intra-query parallelism can be successfully parsed in over 75% of curated datasets, unlocking up to 5x speedups on tasks like translation, comprehension, and comparative analysis, with minimal quality degradation. By releasing this benchmark, curation pipeline, and evaluation suite, we provide the first standardized testbed for studying structure-aware execution in LLM serving pipelines.
TinySQL: A Progressive Text-to-SQL Dataset for Mechanistic Interpretability Research
Mechanistic interpretability research faces a gap between analyzing simple circuits in toy tasks and discovering features in large models. To bridge this gap, we propose text-to-SQL generation as an ideal task to study, as it combines the formal structure of toy tasks with real-world complexity. We introduce TinySQL, a synthetic dataset, progressing from basic to advanced SQL operations, and train models ranging from 33M to 1B parameters to establish a comprehensive testbed for interpretability. We apply multiple complementary interpretability techniques, including Edge Attribution Patching and Sparse Autoencoders, to identify minimal circuits and components supporting SQL generation. We compare circuits for different SQL subskills, evaluating their minimality, reliability, and identifiability. Finally, we conduct a layerwise logit lens analysis to reveal how models compose SQL queries across layers: from intent recognition to schema resolution to structured generation. Our work provides a robust framework for probing and comparing interpretability methods in a structured, progressively complex setting.
Position-aware Automatic Circuit Discovery
A widely used strategy to discover and understand language model mechanisms is circuit analysis. A circuit is a minimal subgraph of a model's computation graph that executes a specific task. We identify a gap in existing circuit discovery methods: they assume circuits are position-invariant, treating model components as equally relevant across input positions. This limits their ability to capture cross-positional interactions or mechanisms that vary across positions. To address this gap, we propose two improvements to incorporate positionality into circuits, even on tasks containing variable-length examples. First, we extend edge attribution patching, a gradient-based method for circuit discovery, to differentiate between token positions. Second, we introduce the concept of a dataset schema, which defines token spans with similar semantics across examples, enabling position-aware circuit discovery in datasets with variable length examples. We additionally develop an automated pipeline for schema generation and application using large language models. Our approach enables fully automated discovery of position-sensitive circuits, yielding better trade-offs between circuit size and faithfulness compared to prior work.
Speculative Ad-hoc Querying
Analyzing large datasets requires responsive query execution, but executing SQL queries on massive datasets can be slow. This paper explores whether query execution can begin even before the user has finished typing, allowing results to appear almost instantly. We propose SpeQL, a system that leverages Large Language Models (LLMs) to predict likely queries based on the database schema, the user's past queries, and their incomplete query. Since exact query prediction is infeasible, SpeQL speculates on partial queries in two ways: 1) it predicts the query structure to compile and plan queries in advance, and 2) it precomputes smaller temporary tables that are much smaller than the original database, but are still predicted to contain all information necessary to answer the user's final query. Additionally, SpeQL continuously displays results for speculated queries and subqueries in real time, aiding exploratory analysis. A utility/user study showed that SpeQL improved task completion time, and participants reported that its speculative display of results helped them discover patterns in the data more quickly. In the study, SpeQL improves user's query latency by up to 289times and kept the overhead reasonable, at 4$ per hour.
Fundamental Challenges in Evaluating Text2SQL Solutions and Detecting Their Limitations
In this work, we dive into the fundamental challenges of evaluating Text2SQL solutions and highlight potential failure causes and the potential risks of relying on aggregate metrics in existing benchmarks. We identify two largely unaddressed limitations in current open benchmarks: (1) data quality issues in the evaluation data, mainly attributed to the lack of capturing the probabilistic nature of translating a natural language description into a structured query (e.g., NL ambiguity), and (2) the bias introduced by using different match functions as approximations for SQL equivalence. To put both limitations into context, we propose a unified taxonomy of all Text2SQL limitations that can lead to both prediction and evaluation errors. We then motivate the taxonomy by providing a survey of Text2SQL limitations using state-of-the-art Text2SQL solutions and benchmarks. We describe the causes of limitations with real-world examples and propose potential mitigation solutions for each category in the taxonomy. We conclude by highlighting the open challenges encountered when deploying such mitigation strategies or attempting to automatically apply the taxonomy.
CodexGraph: Bridging Large Language Models and Code Repositories via Code Graph Databases
Large Language Models (LLMs) excel in stand-alone code tasks like HumanEval and MBPP, but struggle with handling entire code repositories. This challenge has prompted research on enhancing LLM-codebase interaction at a repository scale. Current solutions rely on similarity-based retrieval or manual tools and APIs, each with notable drawbacks. Similarity-based retrieval often has low recall in complex tasks, while manual tools and APIs are typically task-specific and require expert knowledge, reducing their generalizability across diverse code tasks and real-world applications. To mitigate these limitations, we introduce \framework, a system that integrates LLM agents with graph database interfaces extracted from code repositories. By leveraging the structural properties of graph databases and the flexibility of the graph query language, \framework enables the LLM agent to construct and execute queries, allowing for precise, code structure-aware context retrieval and code navigation. We assess \framework using three benchmarks: CrossCodeEval, SWE-bench, and EvoCodeBench. Additionally, we develop five real-world coding applications. With a unified graph database schema, \framework demonstrates competitive performance and potential in both academic and real-world environments, showcasing its versatility and efficacy in software engineering. Our application demo: https://github.com/modelscope/modelscope-agent/tree/master/apps/codexgraph_agent.
What Makes a Maze Look Like a Maze?
A unique aspect of human visual understanding is the ability to flexibly interpret abstract concepts: acquiring lifted rules explaining what they symbolize, grounding them across familiar and unfamiliar contexts, and making predictions or reasoning about them. While off-the-shelf vision-language models excel at making literal interpretations of images (e.g., recognizing object categories such as tree branches), they still struggle to make sense of such visual abstractions (e.g., how an arrangement of tree branches may form the walls of a maze). To address this challenge, we introduce Deep Schema Grounding (DSG), a framework that leverages explicit structured representations of visual abstractions for grounding and reasoning. At the core of DSG are schemas--dependency graph descriptions of abstract concepts that decompose them into more primitive-level symbols. DSG uses large language models to extract schemas, then hierarchically grounds concrete to abstract components of the schema onto images with vision-language models. The grounded schema is used to augment visual abstraction understanding. We systematically evaluate DSG and different methods in reasoning on our new Visual Abstractions Dataset, which consists of diverse, real-world images of abstract concepts and corresponding question-answer pairs labeled by humans. We show that DSG significantly improves the abstract visual reasoning performance of vision-language models, and is a step toward human-aligned understanding of visual abstractions.
Knowledge Base Construction for Knowledge-Augmented Text-to-SQL
Text-to-SQL aims to translate natural language queries into SQL statements, which is practical as it enables anyone to easily retrieve the desired information from databases. Recently, many existing approaches tackle this problem with Large Language Models (LLMs), leveraging their strong capability in understanding user queries and generating corresponding SQL code. Yet, the parametric knowledge in LLMs might be limited to covering all the diverse and domain-specific queries that require grounding in various database schemas, which makes generated SQLs less accurate oftentimes. To tackle this, we propose constructing the knowledge base for text-to-SQL, a foundational source of knowledge, from which we retrieve and generate the necessary knowledge for given queries. In particular, unlike existing approaches that either manually annotate knowledge or generate only a few pieces of knowledge for each query, our knowledge base is comprehensive, which is constructed based on a combination of all the available questions and their associated database schemas along with their relevant knowledge, and can be reused for unseen databases from different datasets and domains. We validate our approach on multiple text-to-SQL datasets, considering both the overlapping and non-overlapping database scenarios, where it outperforms relevant baselines substantially.
Knowledge-Aware Procedural Text Understanding with Multi-Stage Training
Procedural text describes dynamic state changes during a step-by-step natural process (e.g., photosynthesis). In this work, we focus on the task of procedural text understanding, which aims to comprehend such documents and track entities' states and locations during a process. Although recent approaches have achieved substantial progress, their results are far behind human performance. Two challenges, the difficulty of commonsense reasoning and data insufficiency, still remain unsolved, which require the incorporation of external knowledge bases. Previous works on external knowledge injection usually rely on noisy web mining tools and heuristic rules with limited applicable scenarios. In this paper, we propose a novel KnOwledge-Aware proceduraL text understAnding (KOALA) model, which effectively leverages multiple forms of external knowledge in this task. Specifically, we retrieve informative knowledge triples from ConceptNet and perform knowledge-aware reasoning while tracking the entities. Besides, we employ a multi-stage training schema which fine-tunes the BERT model over unlabeled data collected from Wikipedia before further fine-tuning it on the final model. Experimental results on two procedural text datasets, ProPara and Recipes, verify the effectiveness of the proposed methods, in which our model achieves state-of-the-art performance in comparison to various baselines.
Querying Large Language Models with SQL
In many use-cases, information is stored in text but not available in structured data. However, extracting data from natural language text to precisely fit a schema, and thus enable querying, is a challenging task. With the rise of pre-trained Large Language Models (LLMs), there is now an effective solution to store and use information extracted from massive corpora of text documents. Thus, we envision the use of SQL queries to cover a broad range of data that is not captured by traditional databases by tapping the information in LLMs. To ground this vision, we present Galois, a prototype based on a traditional database architecture, but with new physical operators for querying the underlying LLM. The main idea is to execute some operators of the the query plan with prompts that retrieve data from the LLM. For a large class of SQL queries, querying LLMs returns well structured relations, with encouraging qualitative results. Preliminary experimental results make pre-trained LLMs a promising addition to the field of database systems, introducing a new direction for hybrid query processing. However, we pinpoint several research challenges that must be addressed to build a DBMS that exploits LLMs. While some of these challenges necessitate integrating concepts from the NLP literature, others offer novel research avenues for the DB community.
TableQA: a Large-Scale Chinese Text-to-SQL Dataset for Table-Aware SQL Generation
Parsing natural language to corresponding SQL (NL2SQL) with data driven approaches like deep neural networks attracts much attention in recent years. Existing NL2SQL datasets assume that condition values should appear exactly in natural language questions and the queries are answerable given the table. However, these assumptions may fail in practical scenarios, because user may use different expressions for the same content in the table, and query information outside the table without the full picture of contents in table. Therefore we present TableQA, a large-scale cross-domain Natural Language to SQL dataset in Chinese language consisting 64,891 questions and 20,311 unique SQL queries on over 6,000 tables. Different from exisiting NL2SQL datasets, TableQA requires to generalize well not only to SQL skeletons of different questions and table schemas, but also to the various expressions for condition values. Experiment results show that the state-of-the-art model with 95.1% condition value accuracy on WikiSQL only gets 46.8% condition value accuracy and 43.0% logic form accuracy on TableQA, indicating the proposed dataset is challenging and necessary to handle. Two table-aware approaches are proposed to alleviate the problem, the end-to-end approaches obtains 51.3% and 47.4% accuracy on the condition value and logic form tasks, with improvement of 4.7% and 3.4% respectively.
RAG+: Enhancing Retrieval-Augmented Generation with Application-Aware Reasoning
The integration of external knowledge through Retrieval-Augmented Generation (RAG) has become foundational in enhancing large language models (LLMs) for knowledge-intensive tasks. However, existing RAG paradigms often overlook the cognitive step of applying knowledge, leaving a gap between retrieved facts and task-specific reasoning. In this work, we introduce RAG+, a principled and modular extension that explicitly incorporates application-aware reasoning into the RAG pipeline. RAG+ constructs a dual corpus consisting of knowledge and aligned application examples, created either manually or automatically, and retrieves both jointly during inference. This design enables LLMs not only to access relevant information but also to apply it within structured, goal-oriented reasoning processes. Experiments across mathematical, legal, and medical domains, conducted on multiple models, demonstrate that RAG+ consistently outperforms standard RAG variants, achieving average improvements of 3-5%, and peak gains up to 7.5% in complex scenarios. By bridging retrieval with actionable application, RAG+ advances a more cognitively grounded framework for knowledge integration, representing a step toward more interpretable and capable LLMs.
GitTables: A Large-Scale Corpus of Relational Tables
The success of deep learning has sparked interest in improving relational table tasks, like data preparation and search, with table representation models trained on large table corpora. Existing table corpora primarily contain tables extracted from HTML pages, limiting the capability to represent offline database tables. To train and evaluate high-capacity models for applications beyond the Web, we need resources with tables that resemble relational database tables. Here we introduce GitTables, a corpus of 1M relational tables extracted from GitHub. Our continuing curation aims at growing the corpus to at least 10M tables. Analyses of GitTables show that its structure, content, and topical coverage differ significantly from existing table corpora. We annotate table columns in GitTables with semantic types, hierarchical relations and descriptions from Schema.org and DBpedia. The evaluation of our annotation pipeline on the T2Dv2 benchmark illustrates that our approach provides results on par with human annotations. We present three applications of GitTables, demonstrating its value for learned semantic type detection models, schema completion methods, and benchmarks for table-to-KG matching, data search, and preparation. We make the corpus and code available at https://gittables.github.io.
CQR-SQL: Conversational Question Reformulation Enhanced Context-Dependent Text-to-SQL Parsers
Context-dependent text-to-SQL is the task of translating multi-turn questions into database-related SQL queries. Existing methods typically focus on making full use of history context or previously predicted SQL for currently SQL parsing, while neglecting to explicitly comprehend the schema and conversational dependency, such as co-reference, ellipsis and user focus change. In this paper, we propose CQR-SQL, which uses auxiliary Conversational Question Reformulation (CQR) learning to explicitly exploit schema and decouple contextual dependency for SQL parsing. Specifically, we first present a schema enhanced recursive CQR method to produce domain-relevant self-contained questions. Secondly, we train CQR-SQL models to map the semantics of multi-turn questions and auxiliary self-contained questions into the same latent space through schema grounding consistency task and tree-structured SQL parsing consistency task, which enhances the abilities of SQL parsing by adequately contextual understanding. At the time of writing, our CQR-SQL achieves new state-of-the-art results on two context-dependent text-to-SQL benchmarks SParC and CoSQL.
Template Guided Text Generation for Task-Oriented Dialogue
Virtual assistants such as Google Assistant, Amazon Alexa, and Apple Siri enable users to interact with a large number of services and APIs on the web using natural language. In this work, we investigate two methods for Natural Language Generation (NLG) using a single domain-independent model across a large number of APIs. First, we propose a schema-guided approach which conditions the generation on a schema describing the API in natural language. Our second method investigates the use of a small number of templates, growing linearly in number of slots, to convey the semantics of the API. To generate utterances for an arbitrary slot combination, a few simple templates are first concatenated to give a semantically correct, but possibly incoherent and ungrammatical utterance. A pre-trained language model is subsequently employed to rewrite it into coherent, natural sounding text. Through automatic metrics and human evaluation, we show that our method improves over strong baselines, is robust to out-of-domain inputs and shows improved sample efficiency.
MOLE: Metadata Extraction and Validation in Scientific Papers Using LLMs
Metadata extraction is essential for cataloging and preserving datasets, enabling effective research discovery and reproducibility, especially given the current exponential growth in scientific research. While Masader (Alyafeai et al.,2021) laid the groundwork for extracting a wide range of metadata attributes from Arabic NLP datasets' scholarly articles, it relies heavily on manual annotation. In this paper, we present MOLE, a framework that leverages Large Language Models (LLMs) to automatically extract metadata attributes from scientific papers covering datasets of languages other than Arabic. Our schema-driven methodology processes entire documents across multiple input formats and incorporates robust validation mechanisms for consistent output. Additionally, we introduce a new benchmark to evaluate the research progress on this task. Through systematic analysis of context length, few-shot learning, and web browsing integration, we demonstrate that modern LLMs show promising results in automating this task, highlighting the need for further future work improvements to ensure consistent and reliable performance. We release the code: https://github.com/IVUL-KAUST/MOLE and dataset: https://huggingface.co/datasets/IVUL-KAUST/MOLE for the research community.
N-Best Hypotheses Reranking for Text-To-SQL Systems
Text-to-SQL task maps natural language utterances to structured queries that can be issued to a database. State-of-the-art (SOTA) systems rely on finetuning large, pre-trained language models in conjunction with constrained decoding applying a SQL parser. On the well established Spider dataset, we begin with Oracle studies: specifically, choosing an Oracle hypothesis from a SOTA model's 10-best list, yields a 7.7% absolute improvement in both exact match (EM) and execution (EX) accuracy, showing significant potential improvements with reranking. Identifying coherence and correctness as reranking approaches, we design a model generating a query plan and propose a heuristic schema linking algorithm. Combining both approaches, with T5-Large, we obtain a consistent 1% improvement in EM accuracy, and a ~2.5% improvement in EX, establishing a new SOTA for this task. Our comprehensive error studies on DEV data show the underlying difficulty in making progress on this task.
Observatory: Characterizing Embeddings of Relational Tables
Language models and specialized table embedding models have recently demonstrated strong performance on many tasks over tabular data. Researchers and practitioners are keen to leverage these models in many new application contexts; but limited understanding of the strengths and weaknesses of these models, and the table representations they generate, makes the process of finding a suitable model for a given task reliant on trial and error. There is an urgent need to gain a comprehensive understanding of these models to minimize inefficiency and failures in downstream usage. To address this need, we propose Observatory, a formal framework to systematically analyze embedding representations of relational tables. Motivated both by invariants of the relational data model and by statistical considerations regarding data distributions, we define eight primitive properties, and corresponding measures to quantitatively characterize table embeddings for these properties. Based on these properties, we define an extensible framework to evaluate language and table embedding models. We collect and synthesize a suite of datasets and use Observatory to analyze nine such models. Our analysis provides insights into the strengths and weaknesses of learned representations over tables. We find, for example, that some models are sensitive to table structure such as column order, that functional dependencies are rarely reflected in embeddings, and that specialized table embedding models have relatively lower sample fidelity. Such insights help researchers and practitioners better anticipate model behaviors and select appropriate models for their downstream tasks, while guiding researchers in the development of new models.
Generating Structured Outputs from Language Models: Benchmark and Studies
Reliably generating structured outputs has become a critical capability for modern language model (LM) applications. Constrained decoding has emerged as the dominant technology across sectors for enforcing structured outputs during generation. Despite its growing adoption, little has been done with the systematic evaluation of the behaviors and performance of constrained decoding. Constrained decoding frameworks have standardized around JSON Schema as a structured data format, with most uses guaranteeing constraint compliance given a schema. However, there is poor understanding of the effectiveness of the methods in practice. We present an evaluation framework to assess constrained decoding approaches across three critical dimensions: efficiency in generating constraint-compliant outputs, coverage of diverse constraint types, and quality of the generated outputs. To facilitate this evaluation, we introduce JSONSchemaBench, a benchmark for constrained decoding comprising 10K real-world JSON schemas that encompass a wide range of constraints with varying complexity. We pair the benchmark with the existing official JSON Schema Test Suite and evaluate six state-of-the-art constrained decoding frameworks, including Guidance, Outlines, Llamacpp, XGrammar, OpenAI, and Gemini. Through extensive experiments, we gain insights into the capabilities and limitations of constrained decoding on structured generation with real-world JSON schemas. Our work provides actionable insights for improving constrained decoding frameworks and structured generation tasks, setting a new standard for evaluating constrained decoding and structured generation. We release JSONSchemaBench at https://github.com/guidance-ai/jsonschemabench
From Theory to Practice: Plug and Play with Succinct Data Structures
Engineering efficient implementations of compact and succinct structures is a time-consuming and challenging task, since there is no standard library of easy-to- use, highly optimized, and composable components. One consequence is that measuring the practical impact of new theoretical proposals is a difficult task, since older base- line implementations may not rely on the same basic components, and reimplementing from scratch can be very time-consuming. In this paper we present a framework for experimentation with succinct data structures, providing a large set of configurable components, together with tests, benchmarks, and tools to analyze resource requirements. We demonstrate the functionality of the framework by recomposing succinct solutions for document retrieval.
HiddenTables & PyQTax: A Cooperative Game and Dataset For TableQA to Ensure Scale and Data Privacy Across a Myriad of Taxonomies
A myriad of different Large Language Models (LLMs) face a common challenge in contextually analyzing table question-answering tasks. These challenges are engendered from (1) finite context windows for large tables, (2) multi-faceted discrepancies amongst tokenization patterns against cell boundaries, and (3) various limitations stemming from data confidentiality in the process of using external models such as gpt-3.5-turbo. We propose a cooperative game dubbed "HiddenTables" as a potential resolution to this challenge. In essence, "HiddenTables" is played between the code-generating LLM "Solver" and the "Oracle" which evaluates the ability of the LLM agents to solve Table QA tasks. This game is based on natural language schemas and importantly, ensures the security of the underlying data. We provide evidential experiments on a diverse set of tables that demonstrate an LLM's collective inability to generalize and perform on complex queries, handle compositional dependencies, and align natural language to programmatic commands when concrete table schemas are provided. Unlike encoder-based models, we have pushed the boundaries of "HiddenTables" to not be limited by the number of rows - therefore we exhibit improved efficiency in prompt and completion tokens. Our infrastructure has spawned a new dataset "PyQTax" that spans across 116,671 question-table-answer triplets and provides additional fine-grained breakdowns & labels for varying question taxonomies. Therefore, in tandem with our academic contributions regarding LLMs' deficiency in TableQA tasks, "HiddenTables" is a tactile manifestation of how LLMs can interact with massive datasets while ensuring data security and minimizing generation costs.
ReFoRCE: A Text-to-SQL Agent with Self-Refinement, Format Restriction, and Column Exploration
Text-to-SQL systems have unlocked easier access to critical data insights by enabling natural language queries over structured databases. However, deploying such systems in enterprise environments remains challenging due to factors such as large, complex schemas (> 3000 columns), diverse SQL dialects (e.g., BigQuery, Snowflake) and sophisticated query requirements (e.g., transformation, analytics). Current state-of-the-art performance on the Spider 2.0 dataset -- a benchmark built to mimic such complex environments -- remains limited at 20%. Key limitations include inadequate instruction-following, poor long-context comprehension, weak self-refinement, and insufficient dialect-specific knowledge. To address these gaps, we propose ReFoRCE (Self-Refinement Agent with Format Restriction and Column Exploration) which introduces (1) table compression to mitigate long-context limitations (2) format restriction to ensure accurate answer format, and (3) iterative column exploration for enhanced schema understanding. Additionally, it employs self-refinement pipeline consisting of (1) parallelized workflows with voting mechanisms and (2) a Common Table Expression (CTE) based refinement approach to handle unresolved cases. ReFoRCE achieves state-of-the-art results scoring 31.26 on the Spider 2.0-Snow and scoring 30.35 on the Spider 2.0-Lite tasks.
GraPPa: Grammar-Augmented Pre-Training for Table Semantic Parsing
We present GraPPa, an effective pre-training approach for table semantic parsing that learns a compositional inductive bias in the joint representations of textual and tabular data. We construct synthetic question-SQL pairs over high-quality tables via a synchronous context-free grammar (SCFG) induced from existing text-to-SQL datasets. We pre-train our model on the synthetic data using a novel text-schema linking objective that predicts the syntactic role of a table field in the SQL for each question-SQL pair. To maintain the model's ability to represent real-world data, we also include masked language modeling (MLM) over several existing table-and-language datasets to regularize the pre-training process. On four popular fully supervised and weakly supervised table semantic parsing benchmarks, GraPPa significantly outperforms RoBERTa-large as the feature representation layers and establishes new state-of-the-art results on all of them.
MLCPD: A Unified Multi-Language Code Parsing Dataset with Universal AST Schema
We introduce the MultiLang Code Parser Dataset (MLCPD), a large-scale, language-agnostic dataset unifying syntactic and structural representations of code across ten major programming languages. MLCPD contains over seven million parsed source files normalized under our proposed universal Abstract Syntax Tree (AST) schema, enabling consistent cross-language reasoning, structural learning, and multilingual software analysis. Unlike existing corpora that focus purely on token-level code or isolated parsers, MLCPD provides both hierarchical tree representations and rich metadata for every file, ensuring lossless syntactic coverage and structural uniformity. Each entry includes a normalized schema, language-level metadata, and abstracted node semantics stored in Parquet format for scalable retrieval. Empirical analyses reveal strong cross-language structural regularities-demonstrating that syntactic graphs from languages as diverse as Python, Java, and Go can be aligned under a shared schema. We release the dataset publicly on Hugging Face and the accompanying codebase on GitHub, which includes complete pipelines for dataset reproduction, grammar compilation, and a visualization tool for exploring the unified AST across languages. Together, these resources establish MLCPD as an open, reproducible foundation for future research in cross-language representation learning and program analysis.
Universal Information Extraction as Unified Semantic Matching
The challenge of information extraction (IE) lies in the diversity of label schemas and the heterogeneity of structures. Traditional methods require task-specific model design and rely heavily on expensive supervision, making them difficult to generalize to new schemas. In this paper, we decouple IE into two basic abilities, structuring and conceptualizing, which are shared by different tasks and schemas. Based on this paradigm, we propose to universally model various IE tasks with Unified Semantic Matching (USM) framework, which introduces three unified token linking operations to model the abilities of structuring and conceptualizing. In this way, USM can jointly encode schema and input text, uniformly extract substructures in parallel, and controllably decode target structures on demand. Empirical evaluation on 4 IE tasks shows that the proposed method achieves state-of-the-art performance under the supervised experiments and shows strong generalization ability in zero/few-shot transfer settings.
Pistis-RAG: A Scalable Cascading Framework Towards Trustworthy Retrieval-Augmented Generation
In Greek mythology, Pistis symbolized good faith, trust, and reliability, echoing the core principles of RAG in LLM systems. Pistis-RAG, a scalable multi-stage framework, effectively addresses the challenges of large-scale retrieval-augmented generation (RAG). Each stage plays a distinct role: matching refines the search space, pre-ranking prioritizes semantically relevant documents, and ranking aligns with the large language model's (LLM) preferences. The reasoning and aggregating stage supports the implementation of complex chain-of-thought (CoT) methods within this cascading structure. We argue that the lack of strong alignment between LLMs and the external knowledge ranking methods used in RAG tasks is relevant to the reliance on the model-centric paradigm in RAG frameworks. A content-centric approach would prioritize seamless integration between the LLMs and external information sources, optimizing the content transformation process for each specific task. Critically, our ranking stage deviates from traditional RAG approaches by recognizing that semantic relevance alone may not directly translate to improved generation. This is due to the sensitivity of the few-shot prompt order, as highlighted in prior work lu2021fantastically. Current RAG frameworks fail to account for this crucial factor. We introduce a novel ranking stage specifically designed for RAG systems. It adheres to information retrieval principles while considering the unique business scenario captured by LLM preferences and user feedback. Our approach integrates in-context learning (ICL) methods and reasoning steps to incorporate user feedback, ensuring efficient alignment. Experiments on the MMLU benchmark demonstrate a 9.3\% performance improvement. The model and code will be open-sourced on GitHub. Experiments on real-world, large-scale data validate our framework's scalability.
FORGE: Forming Semantic Identifiers for Generative Retrieval in Industrial Datasets
Semantic identifiers (SIDs) have gained increasing attention in generative retrieval (GR) due to their meaningful semantic discriminability. However, current research on SIDs faces three main challenges: (1) the absence of large-scale public datasets with multimodal features, (2) limited investigation into optimization strategies for SID generation, which typically rely on costly GR training for evaluation, and (3) slow online convergence in industrial deployment. To address these challenges, we propose FORGE, a comprehensive benchmark for FOrming semantic identifieR in Generative rEtrieval with industrial datasets. Specifically, FORGE is equipped with a dataset comprising 14 billion user interactions and multimodal features of 250 million items sampled from Taobao, one of the biggest e-commerce platforms in China. Leveraging this dataset, FORGE explores several optimizations to enhance the SID construction and validates their effectiveness via offline experiments across different settings and tasks. Further online analysis conducted on our platform, which serves over 300 million users daily, reveals a 0.35% increase in transaction count, highlighting the practical impact of our method. Regarding the expensive SID validation accompanied by the full training of GRs, we propose two novel metrics of SID that correlate positively with recommendation performance, enabling convenient evaluations without any GR training. For real-world applications, FORGE introduces an offline pretraining schema that reduces online convergence by half. The code and data are available at https://github.com/selous123/al_sid.
SPARKLE: Enhancing SPARQL Generation with Direct KG Integration in Decoding
Existing KBQA methods have traditionally relied on multi-stage methodologies, involving tasks such as entity linking, subgraph retrieval and query structure generation. However, multi-stage approaches are dependent on the accuracy of preceding steps, leading to cascading errors and increased inference time. Although a few studies have explored the use of end-to-end models, they often suffer from lower accuracy and generate inoperative query that is not supported by the underlying data. Furthermore, most prior approaches are limited to the static training data, potentially overlooking the evolving nature of knowledge bases over time. To address these challenges, we present a novel end-to-end natural language to SPARQL framework, SPARKLE. Notably SPARKLE leverages the structure of knowledge base directly during the decoding, effectively integrating knowledge into the query generation. Our study reveals that simply referencing knowledge base during inference significantly reduces the occurrence of inexecutable query generations. SPARKLE achieves new state-of-the-art results on SimpleQuestions-Wiki and highest F1 score on LCQuAD 1.0 (among models not using gold entities), while getting slightly lower result on the WebQSP dataset. Finally, we demonstrate SPARKLE's fast inference speed and its ability to adapt when the knowledge base differs between the training and inference stages.
Improving Text-to-SQL Semantic Parsing with Fine-grained Query Understanding
Most recent research on Text-to-SQL semantic parsing relies on either parser itself or simple heuristic based approach to understand natural language query (NLQ). When synthesizing a SQL query, there is no explicit semantic information of NLQ available to the parser which leads to undesirable generalization performance. In addition, without lexical-level fine-grained query understanding, linking between query and database can only rely on fuzzy string match which leads to suboptimal performance in real applications. In view of this, in this paper we present a general-purpose, modular neural semantic parsing framework that is based on token-level fine-grained query understanding. Our framework consists of three modules: named entity recognizer (NER), neural entity linker (NEL) and neural semantic parser (NSP). By jointly modeling query and database, NER model analyzes user intents and identifies entities in the query. NEL model links typed entities to schema and cell values in database. Parser model leverages available semantic information and linking results and synthesizes tree-structured SQL queries based on dynamically generated grammar. Experiments on SQUALL, a newly released semantic parsing dataset, show that we can achieve 56.8% execution accuracy on WikiTableQuestions (WTQ) test set, which outperforms the state-of-the-art model by 2.7%.
Meaning Typed Prompting: A Technique for Efficient, Reliable Structured Output Generation
Extending Large Language Models (LLMs) to advanced applications requires reliable structured output generation. Existing methods which often rely on rigid JSON schemas, can lead to unreliable outputs, diminished reasoning capabilities, and increased computational overhead, limiting LLMs' adaptability for complex tasks. We introduce Meaning Typed Prompting (MTP), a technique for efficient structured output generation that integrates types, meanings, and abstractions, such as variables and classes, into the prompting process. By utilizing expressive type definitions, MTP enhances output clarity and reduces dependence on complex abstractions, simplifying development, and improving implementation efficiency. This enables LLMs to understand relationships and generate structured data more effectively. Empirical evaluations on multiple benchmarks demonstrate that MTP outperforms existing frameworks in accuracy, reliability, consistency, and token efficiency. We present Semantix, a framework that implements MTP, providing practical insights into its application.
Semantic Decomposition of Question and SQL for Text-to-SQL Parsing
Text-to-SQL semantic parsing faces challenges in generalizing to cross-domain and complex queries. Recent research has employed a question decomposition strategy to enhance the parsing of complex SQL queries. However, this strategy encounters two major obstacles: (1) existing datasets lack question decomposition; (2) due to the syntactic complexity of SQL, most complex queries cannot be disentangled into sub-queries that can be readily recomposed. To address these challenges, we propose a new modular Query Plan Language (QPL) that systematically decomposes SQL queries into simple and regular sub-queries. We develop a translator from SQL to QPL by leveraging analysis of SQL server query optimization plans, and we augment the Spider dataset with QPL programs. Experimental results demonstrate that the modular nature of QPL benefits existing semantic-parsing architectures, and training text-to-QPL parsers is more effective than text-to-SQL parsing for semantically equivalent queries. The QPL approach offers two additional advantages: (1) QPL programs can be paraphrased as simple questions, which allows us to create a dataset of (complex question, decomposed questions). Training on this dataset, we obtain a Question Decomposer for data retrieval that is sensitive to database schemas. (2) QPL is more accessible to non-experts for complex queries, leading to more interpretable output from the semantic parser.
SeaKR: Self-aware Knowledge Retrieval for Adaptive Retrieval Augmented Generation
This paper introduces Self-aware Knowledge Retrieval (SeaKR), a novel adaptive RAG model that extracts self-aware uncertainty of LLMs from their internal states. SeaKR activates retrieval when the LLMs present high self-aware uncertainty for generation. To effectively integrate retrieved knowledge snippets, SeaKR re-ranks them based on LLM's self-aware uncertainty to preserve the snippet that reduces their uncertainty to the utmost. To facilitate solving complex tasks that require multiple retrievals, SeaKR utilizes their self-aware uncertainty to choose among different reasoning strategies. Our experiments on both complex and simple Question Answering datasets show that SeaKR outperforms existing adaptive RAG methods. We release our code at https://github.com/THU-KEG/SeaKR.
DocCGen: Document-based Controlled Code Generation
Recent developments show that Large Language Models (LLMs) produce state-of-the-art performance on natural language (NL) to code generation for resource-rich general-purpose languages like C++, Java, and Python. However, their practical usage for structured domain-specific languages (DSLs) such as YAML, JSON is limited due to domain-specific schema, grammar, and customizations generally unseen by LLMs during pre-training. Efforts have been made to mitigate this challenge via in-context learning through relevant examples or by fine-tuning. However, it suffers from problems, such as limited DSL samples and prompt sensitivity but enterprises maintain good documentation of the DSLs. Therefore, we propose DocCGen, a framework that can leverage such rich knowledge by breaking the NL-to-Code generation task for structured code languages into a two-step process. First, it detects the correct libraries using the library documentation that best matches the NL query. Then, it utilizes schema rules extracted from the documentation of these libraries to constrain the decoding. We evaluate our framework for two complex structured languages, Ansible YAML and Bash command, consisting of two settings: Out-of-domain (OOD) and In-domain (ID). Our extensive experiments show that DocCGen consistently improves different-sized language models across all six evaluation metrics, reducing syntactic and semantic errors in structured code. We plan to open-source the datasets and code to motivate research in constrained code generation.
MiniRAG: Towards Extremely Simple Retrieval-Augmented Generation
The growing demand for efficient and lightweight Retrieval-Augmented Generation (RAG) systems has highlighted significant challenges when deploying Small Language Models (SLMs) in existing RAG frameworks. Current approaches face severe performance degradation due to SLMs' limited semantic understanding and text processing capabilities, creating barriers for widespread adoption in resource-constrained scenarios. To address these fundamental limitations, we present MiniRAG, a novel RAG system designed for extreme simplicity and efficiency. MiniRAG introduces two key technical innovations: (1) a semantic-aware heterogeneous graph indexing mechanism that combines text chunks and named entities in a unified structure, reducing reliance on complex semantic understanding, and (2) a lightweight topology-enhanced retrieval approach that leverages graph structures for efficient knowledge discovery without requiring advanced language capabilities. Our extensive experiments demonstrate that MiniRAG achieves comparable performance to LLM-based methods even when using SLMs while requiring only 25\% of the storage space. Additionally, we contribute a comprehensive benchmark dataset for evaluating lightweight RAG systems under realistic on-device scenarios with complex queries. We fully open-source our implementation and datasets at: https://github.com/HKUDS/MiniRAG.
E-SQL: Direct Schema Linking via Question Enrichment in Text-to-SQL
Translating Natural Language Queries into Structured Query Language (Text-to-SQL or NLQ-to-SQL) is a critical task extensively studied by both the natural language processing and database communities, aimed at providing a natural language interface to databases (NLIDB) and lowering the barrier for non-experts. Despite recent advancements made through the use of Large Language Models (LLMs), significant challenges remain. These include handling complex database schemas, resolving ambiguity in user queries, and generating SQL queries with intricate structures that accurately reflect the user's intent. In this work, we introduce E-SQL, a novel pipeline specifically designed to address these challenges through direct schema linking and candidate predicate augmentation. E-SQL enhances the natural language query by incorporating relevant database items (i.e., tables, columns, and values) and conditions directly into the question and SQL construction plan, bridging the gap between the query and the database structure. The pipeline leverages candidate predicate augmentation to mitigate erroneous or incomplete predicates in generated SQLs. Comprehensive evaluations on the BIRD benchmark illustrate that E-SQL achieves competitive performance, particularly excelling in complex queries with a 66.29% execution accuracy on the test set. A further observation from our experiments reveals that incorporating schema filtering into the translation pipeline does not have a positive impact on performance when the most advanced proprietary LLMs are used. Additionally, our experiments with small LLMs highlight the importance and positive impact of enriched questions on their performance. Without fine-tuning, single-prompt SQL generation using enriched questions with DeepSeek Coder 7B Instruct 1.5v achieves 56.45% execution accuracy on the BIRD development set.
Small Language Models for Agentic Systems: A Survey of Architectures, Capabilities, and Deployment Trade offs
Small language models (SLMs; 1-12B params, sometimes up to 20B) are sufficient and often superior for agentic workloads where the objective is schema- and API-constrained accuracy rather than open-ended generation. We synthesize recent evidence across open and proprietary SLMs (Phi-4-Mini, Qwen-2.5-7B, Gemma-2-9B, Llama-3.2-1B/3B, Ministral-3B/8B, Apple on-device 3B, DeepSeek-R1-Distill) and connect it to modern evaluations (BFCL v3/v4, StableToolBench) and serving stacks (vLLM, SGLang, TensorRT-LLM) paired with guided decoding libraries (XGrammar, Outlines). We formalize SLM-default, LLM-fallback systems with uncertainty-aware routing and verifier cascades, and propose engineering metrics that reflect real production goals: cost per successful task (CPS), schema validity rate, executable call rate, p50/p95 latency, and energy per request. Guided decoding, strict JSON Schema outputs, and validator-first tool execution close much of the capability gap with larger models and often let SLMs match or surpass LLMs on tool use, function calling, and RAG at 10x-100x lower token cost with materially better latency and energy. We provide design patterns for agent stacks that prioritize SLMs: schema-first prompting, type-safe function registries, confidence scoring with verifier rollups, and lightweight adaptation via LoRA/QLoRA. We also delineate limits where fallback remains valuable (open-domain reasoning and some long-horizon planning). The result is a practical blueprint for building fast, inexpensive, and reliable agents that default to SLMs while preserving headroom with targeted LLM assistance. Keywords: small language models, agents, function calling, structured outputs, JSON Schema, guided decoding, LoRA/QLoRA, routing, energy efficiency, edge inference
Holistic Reasoning with Long-Context LMs: A Benchmark for Database Operations on Massive Textual Data
The rapid increase in textual information means we need more efficient methods to sift through, organize, and understand it all. While retrieval-augmented generation (RAG) models excel in accessing information from large document collections, they struggle with complex tasks that require aggregation and reasoning over information spanning across multiple documents--what we call holistic reasoning. Long-context language models (LCLMs) have great potential for managing large-scale documents, but their holistic reasoning capabilities remain unclear. In this work, we introduce HoloBench, a novel framework that brings database reasoning operations into text-based contexts, making it easier to systematically evaluate how LCLMs handle holistic reasoning across large documents. Our approach adjusts key factors such as context length, information density, distribution of information, and query complexity to evaluate LCLMs comprehensively. Our experiments show that the amount of information in the context has a bigger influence on LCLM performance than the actual context length. Furthermore, the complexity of queries affects performance more than the amount of information, particularly for different types of queries. Interestingly, queries that involve finding maximum or minimum values are easier for LCLMs and are less affected by context length, even though they pose challenges for RAG systems. However, tasks requiring the aggregation of multiple pieces of information show a noticeable drop in accuracy as context length increases. Additionally, we find that while grouping relevant information generally improves performance, the optimal positioning varies across models. Our findings surface both the advancements and the ongoing challenges in achieving a holistic understanding of long contexts.
HetaRAG: Hybrid Deep Retrieval-Augmented Generation across Heterogeneous Data Stores
Retrieval-augmented generation (RAG) has become a dominant paradigm for mitigating knowledge hallucination and staleness in large language models (LLMs) while preserving data security. By retrieving relevant evidence from private, domain-specific corpora and injecting it into carefully engineered prompts, RAG delivers trustworthy responses without the prohibitive cost of fine-tuning. Traditional retrieval-augmented generation (RAG) systems are text-only and often rely on a single storage backend, most commonly a vector database. In practice, this monolithic design suffers from unavoidable trade-offs: vector search captures semantic similarity yet loses global context; knowledge graphs excel at relational precision but struggle with recall; full-text indexes are fast and exact yet semantically blind; and relational engines such as MySQL provide strong transactional guarantees but no semantic understanding. We argue that these heterogeneous retrieval paradigms are complementary, and propose a principled fusion scheme to orchestrate them synergistically, mitigating the weaknesses of any single modality. In this work we introduce HetaRAG, a hybrid, deep-retrieval augmented generation framework that orchestrates cross-modal evidence from heterogeneous data stores. We plan to design a system that unifies vector indices, knowledge graphs, full-text engines, and structured databases into a single retrieval plane, dynamically routing and fusing evidence to maximize recall, precision, and contextual fidelity. To achieve this design goal, we carried out preliminary explorations and constructed an initial RAG pipeline; this technical report provides a brief overview. The partial code is available at https://github.com/KnowledgeXLab/HetaRAG.
A Survey of Graph Retrieval-Augmented Generation for Customized Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities in a wide range of tasks, yet their application to specialized domains remains challenging due to the need for deep expertise. Retrieval-augmented generation (RAG) has emerged as a promising solution to customize LLMs for professional fields by seamlessly integrating external knowledge bases, enabling real-time access to domain-specific expertise during inference. Despite its potential, traditional RAG systems, based on flat text retrieval, face three critical challenges: (i) complex query understanding in professional contexts, (ii) difficulties in knowledge integration across distributed sources, and (iii) system efficiency bottlenecks at scale. This survey presents a systematic analysis of Graph-based Retrieval-Augmented Generation (GraphRAG), a new paradigm that revolutionizes domain-specific LLM applications. GraphRAG addresses traditional RAG limitations through three key innovations: (i) graph-structured knowledge representation that explicitly captures entity relationships and domain hierarchies, (ii) efficient graph-based retrieval techniques that enable context-preserving knowledge retrieval with multihop reasoning ability, and (iii) structure-aware knowledge integration algorithms that leverage retrieved knowledge for accurate and logical coherent generation of LLMs. In this survey, we systematically analyze the technical foundations of GraphRAG and examine current implementations across various professional domains, identifying key technical challenges and promising research directions. All the related resources of GraphRAG, including research papers, open-source data, and projects, are collected for the community in blue{https://github.com/DEEP-PolyU/Awesome-GraphRAG}.
CypherBench: Towards Precise Retrieval over Full-scale Modern Knowledge Graphs in the LLM Era
Retrieval from graph data is crucial for augmenting large language models (LLM) with both open-domain knowledge and private enterprise data, and it is also a key component in the recent GraphRAG system (edge et al., 2024). Despite decades of research on knowledge graphs and knowledge base question answering, leading LLM frameworks (e.g. Langchain and LlamaIndex) have only minimal support for retrieval from modern encyclopedic knowledge graphs like Wikidata. In this paper, we analyze the root cause and suggest that modern RDF knowledge graphs (e.g. Wikidata, Freebase) are less efficient for LLMs due to overly large schemas that far exceed the typical LLM context window, use of resource identifiers, overlapping relation types and lack of normalization. As a solution, we propose property graph views on top of the underlying RDF graph that can be efficiently queried by LLMs using Cypher. We instantiated this idea on Wikidata and introduced CypherBench, the first benchmark with 11 large-scale, multi-domain property graphs with 7.8 million entities and over 10,000 questions. To achieve this, we tackled several key challenges, including developing an RDF-to-property graph conversion engine, creating a systematic pipeline for text-to-Cypher task generation, and designing new evaluation metrics.
Scaling Beyond Context: A Survey of Multimodal Retrieval-Augmented Generation for Document Understanding
Document understanding is critical for applications from financial analysis to scientific discovery. Current approaches, whether OCR-based pipelines feeding Large Language Models (LLMs) or native Multimodal LLMs (MLLMs), face key limitations: the former loses structural detail, while the latter struggles with context modeling. Retrieval-Augmented Generation (RAG) helps ground models in external data, but documents' multimodal nature, i.e., combining text, tables, charts, and layout, demands a more advanced paradigm: Multimodal RAG. This approach enables holistic retrieval and reasoning across all modalities, unlocking comprehensive document intelligence. Recognizing its importance, this paper presents a systematic survey of Multimodal RAG for document understanding. We propose a taxonomy based on domain, retrieval modality, and granularity, and review advances involving graph structures and agentic frameworks. We also summarize key datasets, benchmarks, and applications, and highlight open challenges in efficiency, fine-grained representation, and robustness, providing a roadmap for future progress in document AI.
Key-Augmented Neural Triggers for Knowledge Sharing
Repository-level code comprehension and knowledge sharing remain core challenges in software engineering. Large language models (LLMs) have shown promise by generating explanations of program structure and logic. However, these approaches still face limitations: First, relevant knowledge is distributed across multiple files within a repository, aka semantic fragmentation. Second, retrieval inefficiency and attention saturation degrade performance in RAG pipelines, where long, unaligned contexts overwhelm attention. Third, repository specific training data is scarce and often outdated. Finally, proprietary LLMs hinder industrial adoption due to privacy and deployment constraints. To address these issues, we propose Key-Augmented Neural Triggers (KANT), a novel approach that embeds knowledge anchors into both training and inference. Unlike prior methods, KANT enables internal access to repository specific knowledge, reducing fragmentation and grounding inference in localized context. Moreover, we synthesize specialized data directly from code. At inference, knowledge anchors replace verbose context, reducing token overhead and latency while supporting efficient, on premise deployment. We evaluate KANT via: a qualitative human evaluation of the synthesized dataset's intent coverage and quality across five dimensions; compare against SOTA baselines across five qualitative dimensions and inference speed; and replication across different LLMs to assess generalizability. Results show that the synthetic training data aligned with information-seeking needs. KANT achieved over 60% preference from human annotators and a LocalStack expert (preferring 79% of cases). Also, KANT reduced inference latency by up to 85% across all models. Overall, it is well-suited for scalable, low-latency, on-premise deployments, providing a strong foundation for code comprehension.
Learning Contextual Representations for Semantic Parsing with Generation-Augmented Pre-Training
Most recently, there has been significant interest in learning contextual representations for various NLP tasks, by leveraging large scale text corpora to train large neural language models with self-supervised learning objectives, such as Masked Language Model (MLM). However, based on a pilot study, we observe three issues of existing general-purpose language models when they are applied to text-to-SQL semantic parsers: fail to detect column mentions in the utterances, fail to infer column mentions from cell values, and fail to compose complex SQL queries. To mitigate these issues, we present a model pre-training framework, Generation-Augmented Pre-training (GAP), that jointly learns representations of natural language utterances and table schemas by leveraging generation models to generate pre-train data. GAP MODEL is trained on 2M utterance-schema pairs and 30K utterance-schema-SQL triples, whose utterances are produced by generative models. Based on experimental results, neural semantic parsers that leverage GAP MODEL as a representation encoder obtain new state-of-the-art results on both SPIDER and CRITERIA-TO-SQL benchmarks.
Evaluating Structured Decoding for Text-to-Table Generation: Evidence from Three Datasets
We present a comprehensive evaluation of structured decoding for text-to-table generation with large language models (LLMs). While previous work has primarily focused on unconstrained generation of tables, the impact of enforcing structural constraints during generation remains underexplored. We systematically compare schema-guided (structured) decoding to standard one-shot prompting across three diverse benchmarks - E2E, Rotowire, and Livesum - using open-source LLMs of up to 32B parameters, assessing the performance of table generation approaches in resource-constrained settings. Our experiments cover a wide range of evaluation metrics at cell, row, and table levels. Results demonstrate that structured decoding significantly enhances the validity and alignment of generated tables, particularly in scenarios demanding precise numerical alignment (Rotowire), but may degrade performance in contexts involving densely packed textual information (E2E) or extensive aggregation over lengthy texts (Livesum). We further analyze the suitability of different evaluation metrics and discuss the influence of model size.
SEMMA: A Semantic Aware Knowledge Graph Foundation Model
Knowledge Graph Foundation Models (KGFMs) have shown promise in enabling zero-shot reasoning over unseen graphs by learning transferable patterns. However, most existing KGFMs rely solely on graph structure, overlooking the rich semantic signals encoded in textual attributes. We introduce SEMMA, a dual-module KGFM that systematically integrates transferable textual semantics alongside structure. SEMMA leverages Large Language Models (LLMs) to enrich relation identifiers, generating semantic embeddings that subsequently form a textual relation graph, which is fused with the structural component. Across 54 diverse KGs, SEMMA outperforms purely structural baselines like ULTRA in fully inductive link prediction. Crucially, we show that in more challenging generalization settings, where the test-time relation vocabulary is entirely unseen, structural methods collapse while SEMMA is 2x more effective. Our findings demonstrate that textual semantics are critical for generalization in settings where structure alone fails, highlighting the need for foundation models that unify structural and linguistic signals in knowledge reasoning.
Table Foundation Models: on knowledge pre-training for tabular learning
Table foundation models bring high hopes to data science: pre-trained on tabular data to embark knowledge or priors, they should facilitate downstream tasks on tables. One specific challenge is that of data semantics: numerical entries take their meaning from context, e.g., column name. Pre-trained neural networks that jointly model column names and table entries have recently boosted prediction accuracy. While these models outline the promises of world knowledge to interpret table values, they lack the convenience of popular foundation models in text or vision. Indeed, they must be fine-tuned to bring benefits, come with sizeable computation costs, and cannot easily be reused or combined with other architectures. Here we introduce TARTE, a foundation model that transforms tables to knowledge-enhanced vector representations using the string to capture semantics. Pre-trained on large relational data, TARTE yields representations that facilitate subsequent learning with little additional cost. These representations can be fine-tuned or combined with other learners, giving models that push the state-of-the-art prediction performance and improve the prediction/computation performance trade-off. Specialized to a task or a domain, TARTE gives domain-specific representations that facilitate further learning. Our study demonstrates an effective approach to knowledge pre-training for tabular learning.
SQLNet: Generating Structured Queries From Natural Language Without Reinforcement Learning
Synthesizing SQL queries from natural language is a long-standing open problem and has been attracting considerable interest recently. Toward solving the problem, the de facto approach is to employ a sequence-to-sequence-style model. Such an approach will necessarily require the SQL queries to be serialized. Since the same SQL query may have multiple equivalent serializations, training a sequence-to-sequence-style model is sensitive to the choice from one of them. This phenomenon is documented as the "order-matters" problem. Existing state-of-the-art approaches rely on reinforcement learning to reward the decoder when it generates any of the equivalent serializations. However, we observe that the improvement from reinforcement learning is limited. In this paper, we propose a novel approach, i.e., SQLNet, to fundamentally solve this problem by avoiding the sequence-to-sequence structure when the order does not matter. In particular, we employ a sketch-based approach where the sketch contains a dependency graph so that one prediction can be done by taking into consideration only the previous predictions that it depends on. In addition, we propose a sequence-to-set model as well as the column attention mechanism to synthesize the query based on the sketch. By combining all these novel techniques, we show that SQLNet can outperform the prior art by 9% to 13% on the WikiSQL task.
StructLM: Towards Building Generalist Models for Structured Knowledge Grounding
Structured data sources, such as tables, graphs, and databases, are ubiquitous knowledge sources. Despite the demonstrated capabilities of large language models (LLMs) on plain text, their proficiency in interpreting and utilizing structured data remains limited. Our investigation reveals a notable deficiency in LLMs' ability to process structured data, e.g., ChatGPT lags behind state-of-the-art (SoTA) model by an average of 35%. To augment the Structured Knowledge Grounding (SKG) capabilities in LLMs, we have developed a comprehensive instruction tuning dataset comprising 1.1 million examples. Utilizing this dataset, we train a series of models, referred to as StructLM, based on the Code-LLaMA architecture, ranging from 7B to 34B parameters. Our StructLM series surpasses task-specific models on 14 out of 18 evaluated datasets and establishes new SoTA achievements on 7 SKG tasks. Furthermore, StructLM demonstrates exceptional generalization across 6 novel SKG tasks. Contrary to expectations, we observe that scaling model size offers marginal benefits, with StructLM-34B showing only slight improvements over StructLM-7B. This suggests that structured knowledge grounding is still a challenging task and requires more innovative design to push to a new level.
ALTER: Augmentation for Large-Table-Based Reasoning
While extensive research has explored the use of large language models (LLMs) for table-based reasoning, most approaches struggle with scalability when applied to large tables. To maintain the superior comprehension abilities of LLMs in these scenarios, we introduce ALTER(Augmentation for Large-Table-Based Reasoning)-a framework designed to harness the latent augmentation potential in both free-form natural language (NL) questions, via the query augmentor, and semi-structured tabular data, through the table augmentor. By utilizing only a small subset of relevant data from the table and supplementing it with pre-augmented schema, semantic, and literal information, ALTER achieves outstanding performance on table-based reasoning benchmarks. We also provide a detailed analysis of large-table scenarios, comparing different methods and various partitioning principles. In these scenarios, our method outperforms all other approaches and exhibits robustness and efficiency against perturbations.
Rationalization Models for Text-to-SQL
We introduce a framework for generating Chain-of-Thought (CoT) rationales to enhance text-to-SQL model fine-tuning. These rationales consist of intermediate SQL statements and explanations, serving as incremental steps toward constructing the final SQL query. The process begins with manually annotating a small set of examples, which are then used to prompt a large language model in an iterative, dynamic few-shot knowledge distillation procedure from a teacher model. A rationalization model is subsequently trained on the validated decomposed queries, enabling extensive synthetic CoT annotations for text-to-SQL datasets. To evaluate the approach, we fine-tune small language models with and without these rationales on the BIRD dataset. Results indicate that step-by-step query generation improves execution accuracy, especially for moderately and highly complex queries, while also enhancing explainability.
FastRAG: Retrieval Augmented Generation for Semi-structured Data
Efficiently processing and interpreting network data is critical for the operation of increasingly complex networks. Recent advances in Large Language Models (LLM) and Retrieval-Augmented Generation (RAG) techniques have improved data processing in network management. However, existing RAG methods like VectorRAG and GraphRAG struggle with the complexity and implicit nature of semi-structured technical data, leading to inefficiencies in time, cost, and retrieval. This paper introduces FastRAG, a novel RAG approach designed for semi-structured data. FastRAG employs schema learning and script learning to extract and structure data without needing to submit entire data sources to an LLM. It integrates text search with knowledge graph (KG) querying to improve accuracy in retrieving context-rich information. Evaluation results demonstrate that FastRAG provides accurate question answering, while improving up to 90% in time and 85% in cost compared to GraphRAG.
Feather-SQL: A Lightweight NL2SQL Framework with Dual-Model Collaboration Paradigm for Small Language Models
Natural Language to SQL (NL2SQL) has seen significant advancements with large language models (LLMs). However, these models often depend on closed-source systems and high computational resources, posing challenges in data privacy and deployment. In contrast, small language models (SLMs) struggle with NL2SQL tasks, exhibiting poor performance and incompatibility with existing frameworks. To address these issues, we introduce Feather-SQL, a new lightweight framework tailored for SLMs. Feather-SQL improves SQL executability and accuracy through 1) schema pruning and linking, 2) multi-path and multi-candidate generation. Additionally, we introduce the 1+1 Model Collaboration Paradigm, which pairs a strong general-purpose chat model with a fine-tuned SQL specialist, combining strong analytical reasoning with high-precision SQL generation. Experimental results on BIRD demonstrate that Feather-SQL improves NL2SQL performance on SLMs, with around 10% boost for models without fine-tuning. The proposed paradigm raises the accuracy ceiling of SLMs to 54.76%, highlighting its effectiveness.
ST-Raptor: LLM-Powered Semi-Structured Table Question Answering
Semi-structured tables, widely used in real-world applications (e.g., financial reports, medical records, transactional orders), often involve flexible and complex layouts (e.g., hierarchical headers and merged cells). These tables generally rely on human analysts to interpret table layouts and answer relevant natural language questions, which is costly and inefficient. To automate the procedure, existing methods face significant challenges. First, methods like NL2SQL require converting semi-structured tables into structured ones, which often causes substantial information loss. Second, methods like NL2Code and multi-modal LLM QA struggle to understand the complex layouts of semi-structured tables and cannot accurately answer corresponding questions. To this end, we propose ST-Raptor, a tree-based framework for semi-structured table question answering using large language models. First, we introduce the Hierarchical Orthogonal Tree (HO-Tree), a structural model that captures complex semi-structured table layouts, along with an effective algorithm for constructing the tree. Second, we define a set of basic tree operations to guide LLMs in executing common QA tasks. Given a user question, ST-Raptor decomposes it into simpler sub-questions, generates corresponding tree operation pipelines, and conducts operation-table alignment for accurate pipeline execution. Third, we incorporate a two-stage verification mechanism: forward validation checks the correctness of execution steps, while backward validation evaluates answer reliability by reconstructing queries from predicted answers. To benchmark the performance, we present SSTQA, a dataset of 764 questions over 102 real-world semi-structured tables. Experiments show that ST-Raptor outperforms nine baselines by up to 20% in answer accuracy. The code is available at https://github.com/weAIDB/ST-Raptor.
Thinkquel: A Model Dedicated to Text-to-dbt Using Synthetic Data and a Span-Aware Objective
Transforming natural-language requests into reliable, production-ready data transformations remains challenging: correctness depends on precise schema linking and warehouse-specific SQL dialects, while the strongest supervision available during training--execution success and result matching--are provided only at the sequence level. At the same time, assembling large, execution-validated corpora is costly, and token-level objectives misalign with these global signals, yielding unstable optimization and limited portability. We introduce Thinkquel, a fine-tuned model for producing robust, portable, and execution-validated database queries. Methodologies in Thinkquel integrates a novel synthetic data pipeline, TS-SQL, that leverages dbt as a portable intermediate representation with a span-aware reinforcement learning objective, and Token-Sequence GRPO (TS-GRPO), specifically designed to bridge the gap between token-level training signals and sequence-level execution rewards when finetuning LLMs. On the 500-example TS-SQL test set, Thinkquel (32B) reaches 93.2\% execution success and 61.8\% exact-result match with a two-stage SFT curriculum, improving over the base model by 67.2\% (exec.) and 44.4\% (match). In Spider (14B) experiments, TS-GRPO increases training stability and speeds convergence of the execution-match reward relative to GRPO and GSPO.
WikiDBGraph: Large-Scale Database Graph of Wikidata for Collaborative Learning
Tabular data, ubiquitous and rich in informational value, is an increasing focus for deep representation learning, yet progress is hindered by studies centered on single tables or isolated databases, which limits model capabilities due to data scale. While collaborative learning approaches such as federated learning, transfer learning, split learning, and tabular foundation models aim to learn from multiple correlated databases, they are challenged by a scarcity of real-world interconnected tabular resources. Current data lakes and corpora largely consist of isolated databases lacking defined inter-database correlations. To overcome this, we introduce WikiDBGraph, a large-scale graph of 100,000 real-world tabular databases from WikiData, interconnected by 17 million edges and characterized by 13 node and 12 edge properties derived from its database schema and data distribution. WikiDBGraph's weighted edges identify both instance- and feature-overlapped databases. Experiments on these newly identified databases confirm that collaborative learning yields superior performance, thereby offering considerable promise for structured foundation model training while also exposing key challenges and future directions for learning from interconnected tabular data.
AdapterSwap: Continuous Training of LLMs with Data Removal and Access-Control Guarantees
Large language models (LLMs) are increasingly capable of completing knowledge intensive tasks by recalling information from a static pretraining corpus. Here we are concerned with LLMs in the context of evolving data requirements. For instance: batches of new data that are introduced periodically; subsets of data with user-based access controls; or requirements on dynamic removal of documents with guarantees that associated knowledge cannot be recalled. We wish to satisfy these requirements while at the same time ensuring a model does not forget old information when new data becomes available. To address these issues, we introduce AdapterSwap, a training and inference scheme that organizes knowledge from a data collection into a set of low-rank adapters, which are dynamically composed during inference. Our experiments demonstrate AdapterSwap's ability to support efficient continual learning, while also enabling organizations to have fine-grained control over data access and deletion.
Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More?
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases. Leveraging LCLMs' ability to natively ingest and process entire corpora of information offers numerous advantages. It enhances user-friendliness by eliminating the need for specialized knowledge of tools, provides robust end-to-end modeling that minimizes cascading errors in complex pipelines, and allows for the application of sophisticated prompting techniques across the entire system. To assess this paradigm shift, we introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning. Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks. However, LCLMs still face challenges in areas like compositional reasoning that are required in SQL-like tasks. Notably, prompting strategies significantly influence performance, emphasizing the need for continued research as context lengths grow. Overall, LOFT provides a rigorous testing ground for LCLMs, showcasing their potential to supplant existing paradigms and tackle novel tasks as model capabilities scale.
Metasql: A Generate-then-Rank Framework for Natural Language to SQL Translation
The Natural Language Interface to Databases (NLIDB) empowers non-technical users with database access through intuitive natural language (NL) interactions. Advanced approaches, utilizing neural sequence-to-sequence models or large-scale language models, typically employ auto-regressive decoding to generate unique SQL queries sequentially. While these translation models have greatly improved the overall translation accuracy, surpassing 70% on NLIDB benchmarks, the use of auto-regressive decoding to generate single SQL queries may result in sub-optimal outputs, potentially leading to erroneous translations. In this paper, we propose Metasql, a unified generate-then-rank framework that can be flexibly incorporated with existing NLIDBs to consistently improve their translation accuracy. Metasql introduces query metadata to control the generation of better SQL query candidates and uses learning-to-rank algorithms to retrieve globally optimized queries. Specifically, Metasql first breaks down the meaning of the given NL query into a set of possible query metadata, representing the basic concepts of the semantics. These metadata are then used as language constraints to steer the underlying translation model toward generating a set of candidate SQL queries. Finally, Metasql ranks the candidates to identify the best matching one for the given NL query. Extensive experiments are performed to study Metasql on two public NLIDB benchmarks. The results show that the performance of the translation models can be effectively improved using Metasql.
Towards Foundation Models for Relational Databases [Vision Paper]
Tabular representation learning has recently gained a lot of attention. However, existing approaches only learn a representation from a single table, and thus ignore the potential to learn from the full structure of relational databases, including neighboring tables that can contain important information for a contextualized representation. Moreover, current models are significantly limited in scale, which prevents that they learn from large databases. In this paper, we thus introduce our vision of relational representation learning, that can not only learn from the full relational structure, but also can scale to larger database sizes that are commonly found in real-world. Moreover, we also discuss opportunities and challenges we see along the way to enable this vision and present initial very promising results. Overall, we argue that this direction can lead to foundation models for relational databases that are today only available for text and images.
Select to Know: An Internal-External Knowledge Self-Selection Framework for Domain-Specific Question Answering
Large Language Models (LLMs) perform well in general QA but often struggle in domain-specific scenarios. Retrieval-Augmented Generation (RAG) introduces external knowledge but suffers from hallucinations and latency due to noisy retrievals. Continued pretraining internalizes domain knowledge but is costly and lacks cross-domain flexibility. We attribute this challenge to the long-tail distribution of domain knowledge, which leaves partial yet useful internal knowledge underutilized. We further argue that knowledge acquisition should be progressive, mirroring human learning: first understanding concepts, then applying them to complex reasoning. To address this, we propose Selct2Know (S2K), a cost-effective framework that internalizes domain knowledge through an internal-external knowledge self-selection strategy and selective supervised fine-tuning. We also introduce a structured reasoning data generation pipeline and integrate GRPO to enhance reasoning ability. Experiments on medical, legal, and financial QA benchmarks show that S2K consistently outperforms existing methods and matches domain-pretrained LLMs with significantly lower cost.
Spider: A Large-Scale Human-Labeled Dataset for Complex and Cross-Domain Semantic Parsing and Text-to-SQL Task
We present Spider, a large-scale, complex and cross-domain semantic parsing and text-to-SQL dataset annotated by 11 college students. It consists of 10,181 questions and 5,693 unique complex SQL queries on 200 databases with multiple tables, covering 138 different domains. We define a new complex and cross-domain semantic parsing and text-to-SQL task where different complex SQL queries and databases appear in train and test sets. In this way, the task requires the model to generalize well to both new SQL queries and new database schemas. Spider is distinct from most of the previous semantic parsing tasks because they all use a single database and the exact same programs in the train set and the test set. We experiment with various state-of-the-art models and the best model achieves only 12.4% exact matching accuracy on a database split setting. This shows that Spider presents a strong challenge for future research. Our dataset and task are publicly available at https://yale-lily.github.io/spider
Structured prompt interrogation and recursive extraction of semantics (SPIRES): A method for populating knowledge bases using zero-shot learning
Creating knowledge bases and ontologies is a time consuming task that relies on a manual curation. AI/NLP approaches can assist expert curators in populating these knowledge bases, but current approaches rely on extensive training data, and are not able to populate arbitrary complex nested knowledge schemas. Here we present Structured Prompt Interrogation and Recursive Extraction of Semantics (SPIRES), a Knowledge Extraction approach that relies on the ability of Large Language Models (LLMs) to perform zero-shot learning (ZSL) and general-purpose query answering from flexible prompts and return information conforming to a specified schema. Given a detailed, user-defined knowledge schema and an input text, SPIRES recursively performs prompt interrogation against GPT-3+ to obtain a set of responses matching the provided schema. SPIRES uses existing ontologies and vocabularies to provide identifiers for all matched elements. We present examples of use of SPIRES in different domains, including extraction of food recipes, multi-species cellular signaling pathways, disease treatments, multi-step drug mechanisms, and chemical to disease causation graphs. Current SPIRES accuracy is comparable to the mid-range of existing Relation Extraction (RE) methods, but has the advantage of easy customization, flexibility, and, crucially, the ability to perform new tasks in the absence of any training data. This method supports a general strategy of leveraging the language interpreting capabilities of LLMs to assemble knowledge bases, assisting manual knowledge curation and acquisition while supporting validation with publicly-available databases and ontologies external to the LLM. SPIRES is available as part of the open source OntoGPT package: https://github.com/ monarch-initiative/ontogpt.
Modular RAG: Transforming RAG Systems into LEGO-like Reconfigurable Frameworks
Retrieval-augmented Generation (RAG) has markedly enhanced the capabilities of Large Language Models (LLMs) in tackling knowledge-intensive tasks. The increasing demands of application scenarios have driven the evolution of RAG, leading to the integration of advanced retrievers, LLMs and other complementary technologies, which in turn has amplified the intricacy of RAG systems. However, the rapid advancements are outpacing the foundational RAG paradigm, with many methods struggling to be unified under the process of "retrieve-then-generate". In this context, this paper examines the limitations of the existing RAG paradigm and introduces the modular RAG framework. By decomposing complex RAG systems into independent modules and specialized operators, it facilitates a highly reconfigurable framework. Modular RAG transcends the traditional linear architecture, embracing a more advanced design that integrates routing, scheduling, and fusion mechanisms. Drawing on extensive research, this paper further identifies prevalent RAG patterns-linear, conditional, branching, and looping-and offers a comprehensive analysis of their respective implementation nuances. Modular RAG presents innovative opportunities for the conceptualization and deployment of RAG systems. Finally, the paper explores the potential emergence of new operators and paradigms, establishing a solid theoretical foundation and a practical roadmap for the continued evolution and practical deployment of RAG technologies.
Executable Knowledge Graphs for Replicating AI Research
Replicating AI research is a crucial yet challenging task for large language model (LLM) agents. Existing approaches often struggle to generate executable code, primarily due to insufficient background knowledge and the limitations of retrieval-augmented generation (RAG) methods, which fail to capture latent technical details hidden in referenced papers. Furthermore, previous approaches tend to overlook valuable implementation-level code signals and lack structured knowledge representations that support multi-granular retrieval and reuse. To overcome these challenges, we propose Executable Knowledge Graphs (xKG), a modular and pluggable knowledge base that automatically integrates technical insights, code snippets, and domain-specific knowledge extracted from scientific literature. When integrated into three agent frameworks with two different LLMs, xKG shows substantial performance gains (10.9% with o3-mini) on PaperBench, demonstrating its effectiveness as a general and extensible solution for automated AI research replication. Code will released at https://github.com/zjunlp/xKG.
TrustSQL: Benchmarking Text-to-SQL Reliability with Penalty-Based Scoring
Text-to-SQL enables users to interact with databases using natural language, simplifying the retrieval and synthesis of information. Despite the remarkable success of large language models (LLMs) in translating natural language questions into SQL queries, widespread deployment remains limited due to two primary challenges. First, the effective use of text-to-SQL models depends on users' understanding of the model's capabilities-the scope of questions the model can correctly answer. Second, the absence of abstention mechanisms can lead to incorrect SQL generation going unnoticed, thereby undermining trust in the model's output. To enable wider deployment, it is crucial to address these challenges in model design and enhance model evaluation to build trust in the model's output. To this end, we introduce TrustSQL, a novel comprehensive benchmark designed to evaluate text-to-SQL reliability-defined as a model's ability to correctly handle any type of input question by generating correct SQL queries for feasible questions and abstaining from generating infeasible ones (e.g., due to schema incompatibility or functionalities beyond SQL). We evaluate existing methods using a novel penalty-based scoring metric with two modeling approaches: (1) pipeline-based methods combining SQL generators with infeasible question detectors and SQL error detectors for abstention; and (2) unified methods using a single model for the entire task. Our experimental results reveal that achieving high scores under severe penalties requires significant effort and provide a new perspective on developing text-to-SQL models for safer deployment. TrustSQL is available at https://github.com/glee4810/TrustSQL.
SHARE: An SLM-based Hierarchical Action CorREction Assistant for Text-to-SQL
Current self-correction approaches in text-to-SQL face two critical limitations: 1) Conventional self-correction methods rely on recursive self-calls of LLMs, resulting in multiplicative computational overhead, and 2) LLMs struggle to implement effective error detection and correction for declarative SQL queries, as they fail to demonstrate the underlying reasoning path. In this work, we propose SHARE, an SLM-based Hierarchical Action corREction assistant that enables LLMs to perform more precise error localization and efficient correction. SHARE orchestrates three specialized Small Language Models (SLMs) in a sequential pipeline, where it first transforms declarative SQL queries into stepwise action trajectories that reveal underlying reasoning, followed by a two-phase granular refinement. We further propose a novel hierarchical self-evolution strategy for data-efficient training. Experimental results demonstrate that SHARE effectively enhances self-correction capabilities while proving robust across various LLMs. Furthermore, our comprehensive analysis shows that SHARE maintains strong performance even in low-resource training settings, which is particularly valuable for text-to-SQL applications with data privacy constraints.
Graph Retrieval-Augmented Generation: A Survey
Recently, Retrieval-Augmented Generation (RAG) has achieved remarkable success in addressing the challenges of Large Language Models (LLMs) without necessitating retraining. By referencing an external knowledge base, RAG refines LLM outputs, effectively mitigating issues such as ``hallucination'', lack of domain-specific knowledge, and outdated information. However, the complex structure of relationships among different entities in databases presents challenges for RAG systems. In response, GraphRAG leverages structural information across entities to enable more precise and comprehensive retrieval, capturing relational knowledge and facilitating more accurate, context-aware responses. Given the novelty and potential of GraphRAG, a systematic review of current technologies is imperative. This paper provides the first comprehensive overview of GraphRAG methodologies. We formalize the GraphRAG workflow, encompassing Graph-Based Indexing, Graph-Guided Retrieval, and Graph-Enhanced Generation. We then outline the core technologies and training methods at each stage. Additionally, we examine downstream tasks, application domains, evaluation methodologies, and industrial use cases of GraphRAG. Finally, we explore future research directions to inspire further inquiries and advance progress in the field.
EllieSQL: Cost-Efficient Text-to-SQL with Complexity-Aware Routing
Text-to-SQL automatically translates natural language queries to SQL, allowing non-technical users to retrieve data from databases without specialized SQL knowledge. Despite the success of advanced LLM-based Text-to-SQL approaches on leaderboards, their unsustainable computational costs--often overlooked--stand as the "elephant in the room" in current leaderboard-driven research, limiting their economic practicability for real-world deployment and widespread adoption. To tackle this, we exploratively propose EllieSQL, a complexity-aware routing framework that assigns queries to suitable SQL generation pipelines based on estimated complexity. We investigate multiple routers to direct simple queries to efficient approaches while reserving computationally intensive methods for complex cases. Drawing from economics, we introduce the Token Elasticity of Performance (TEP) metric, capturing cost-efficiency by quantifying the responsiveness of performance gains relative to token investment in SQL generation. Experiments show that compared to always using the most advanced methods in our study, EllieSQL with the Qwen2.5-0.5B-DPO router reduces token use by over 40% without compromising performance on Bird development set, achieving more than a 2x boost in TEP over non-routing approaches. This not only advances the pursuit of cost-efficient Text-to-SQL but also invites the community to weigh resource efficiency alongside performance, contributing to progress in sustainable Text-to-SQL.
Tabular Data Understanding with LLMs: A Survey of Recent Advances and Challenges
Tables have gained significant attention in large language models (LLMs) and multimodal large language models (MLLMs) due to their complex and flexible structure. Unlike linear text inputs, tables are two-dimensional, encompassing formats that range from well-structured database tables to complex, multi-layered spreadsheets, each with different purposes. This diversity in format and purpose has led to the development of specialized methods and tasks, instead of universal approaches, making navigation of table understanding tasks challenging. To address these challenges, this paper introduces key concepts through a taxonomy of tabular input representations and an introduction of table understanding tasks. We highlight several critical gaps in the field that indicate the need for further research: (1) the predominance of retrieval-focused tasks that require minimal reasoning beyond mathematical and logical operations; (2) significant challenges faced by models when processing complex table structures, large-scale tables, length context, or multi-table scenarios; and (3) the limited generalization of models across different tabular representations and formats.
MatSKRAFT: A framework for large-scale materials knowledge extraction from scientific tables
Scientific progress increasingly depends on synthesizing knowledge across vast literature, yet most experimental data remains trapped in semi-structured formats that resist systematic extraction and analysis. Here, we present MatSKRAFT, a computational framework that automatically extracts and integrates materials science knowledge from tabular data at unprecedented scale. Our approach transforms tables into graph-based representations processed by constraint-driven GNNs that encode scientific principles directly into model architecture. MatSKRAFT significantly outperforms state-of-the-art large language models, achieving F1 scores of 88.68 for property extraction and 71.35 for composition extraction, while processing data 19-496times faster than them (compared to the slowest and the fastest models, respectively) with modest hardware requirements. Applied to nearly 69,000 tables from more than 47,000 research publications, we construct a comprehensive database containing over 535,000 entries, including 104,000 compositions that expand coverage beyond major existing databases, pending manual validation. This systematic approach reveals previously overlooked materials with distinct property combinations and enables data-driven discovery of composition-property relationships forming the cornerstone of materials and scientific discovery.
Grounding LLM Reasoning with Knowledge Graphs
Knowledge Graphs (KGs) are valuable tools for representing relationships between entities in a structured format. Traditionally, these knowledge bases are queried to extract specific information. However, question-answering (QA) over such KGs poses a challenge due to the intrinsic complexity of natural language compared to the structured format and the size of these graphs. Despite these challenges, the structured nature of KGs can provide a solid foundation for grounding the outputs of Large Language Models (LLMs), offering organizations increased reliability and control. Recent advancements in LLMs have introduced reasoning methods at inference time to improve their performance and maximize their capabilities. In this work, we propose integrating these reasoning strategies with KGs to anchor every step or "thought" of the reasoning chains in KG data. Specifically, we evaluate both agentic and automated search methods across several reasoning strategies, including Chain-of-Thought (CoT), Tree-of-Thought (ToT), and Graph-of-Thought (GoT), using GRBench, a benchmark dataset for graph reasoning with domain-specific graphs. Our experiments demonstrate that this approach consistently outperforms baseline models, highlighting the benefits of grounding LLM reasoning processes in structured KG data.
A Survey of Context Engineering for Large Language Models
The performance of Large Language Models (LLMs) is fundamentally determined by the contextual information provided during inference. This survey introduces Context Engineering, a formal discipline that transcends simple prompt design to encompass the systematic optimization of information payloads for LLMs. We present a comprehensive taxonomy decomposing Context Engineering into its foundational components and the sophisticated implementations that integrate them into intelligent systems. We first examine the foundational components: context retrieval and generation, context processing and context management. We then explore how these components are architecturally integrated to create sophisticated system implementations: retrieval-augmented generation (RAG), memory systems and tool-integrated reasoning, and multi-agent systems. Through this systematic analysis of over 1300 research papers, our survey not only establishes a technical roadmap for the field but also reveals a critical research gap: a fundamental asymmetry exists between model capabilities. While current models, augmented by advanced context engineering, demonstrate remarkable proficiency in understanding complex contexts, they exhibit pronounced limitations in generating equally sophisticated, long-form outputs. Addressing this gap is a defining priority for future research. Ultimately, this survey provides a unified framework for both researchers and engineers advancing context-aware AI.
MCP-Bench: Benchmarking Tool-Using LLM Agents with Complex Real-World Tasks via MCP Servers
We introduce MCP-Bench, a benchmark for evaluating large language models (LLMs) on realistic, multi-step tasks that demand tool use, cross-tool coordination, precise parameter control, and planning/reasoning for solving tasks. Built on the Model Context Protocol (MCP), MCP-Bench connects LLMs to 28 representative live MCP servers spanning 250 tools across domains such as finance, traveling, scientific computing, and academic search. Unlike prior API-based benchmarks, each MCP server provides a set of complementary tools designed to work together, enabling the construction of authentic, multi-step tasks with rich input-output coupling. Tasks in MCP-Bench test agents' ability to retrieve relevant tools from fuzzy instructions without explicit tool names, plan multi-hop execution trajectories for complex objectives, ground responses in intermediate tool outputs, and orchestrate cross-domain workflows - capabilities not adequately evaluated by existing benchmarks that rely on explicit tool specifications, shallow few-step workflows, and isolated domain operations. We propose a multi-faceted evaluation framework covering tool-level schema understanding and usage, trajectory-level planning, and task completion. Experiments on 20 advanced LLMs reveal persistent challenges in MCP-Bench. Code and data: https://github.com/Accenture/mcp-bench.
When Thoughts Meet Facts: Reusable Reasoning for Long-Context LMs
Recent Long-Context Language Models (LCLMs) can process hundreds of thousands of tokens in a single prompt, enabling new opportunities for knowledge-intensive multi-hop reasoning by integrating large sets of retrieved documents or, in some cases, directly all necessary information. However, simply feeding more documents into the context window fails to capture how evidence should be connected. We address this gap with thought templates, which recast reasoning as reusable thought caches, derived from prior problem solving traces, structuring how evidence is combined and guiding multi-hop inference with factual documents. To keep these templates effective, we propose an update strategy that iteratively refines templates derived from training data through natural-language feedback. Across diverse benchmarks and LCLM families, our approach delivers consistent gains over strong baselines in both retrieval-based and retrieval-free settings. Furthermore, we show that optimized templates can be distilled into smaller open-source models, demonstrating its broad applicability and transparent reasoning reuse. We refer to our framework as Thought Template Augmented LCLMs (ToTAL).
CultureScope: A Dimensional Lens for Probing Cultural Understanding in LLMs
As large language models (LLMs) are increasingly deployed in diverse cultural environments, evaluating their cultural understanding capability has become essential for ensuring trustworthy and culturally aligned applications. However, most existing benchmarks lack comprehensiveness and are challenging to scale and adapt across different cultural contexts, because their frameworks often lack guidance from well-established cultural theories and tend to rely on expert-driven manual annotations. To address these issues, we propose CultureScope, the most comprehensive evaluation framework to date for assessing cultural understanding in LLMs. Inspired by the cultural iceberg theory, we design a novel dimensional schema for cultural knowledge classification, comprising 3 layers and 140 dimensions, which guides the automated construction of culture-specific knowledge bases and corresponding evaluation datasets for any given languages and cultures. Experimental results demonstrate that our method can effectively evaluate cultural understanding. They also reveal that existing large language models lack comprehensive cultural competence, and merely incorporating multilingual data does not necessarily enhance cultural understanding. All code and data files are available at https://github.com/HoganZinger/Culture
What is Event Knowledge Graph: A Survey
Besides entity-centric knowledge, usually organized as Knowledge Graph (KG), events are also an essential kind of knowledge in the world, which trigger the spring up of event-centric knowledge representation form like Event KG (EKG). It plays an increasingly important role in many downstream applications, such as search, question-answering, recommendation, financial quantitative investments, and text generation. This paper provides a comprehensive survey of EKG from history, ontology, instance, and application views. Specifically, to characterize EKG thoroughly, we focus on its history, definition, schema induction, acquisition, related representative graphs/systems, and applications. The development processes and trends are studied therein. We further summarize prospective directions to facilitate future research on EKG.
Effects of structure on reasoning in instance-level Self-Discover
The drive for predictable LLM reasoning in their integration with compound systems has popularized structured outputs, yet concerns remain about performance trade-offs compared to unconstrained natural language. At the same time, training on unconstrained Chain of Thought (CoT) traces has brought about a new class of strong reasoning models that nevertheless present novel compute budget and faithfulness challenges. This paper introduces iSelf-Discover, an instance-level adaptation of the Self-Discover framework, and using it compares dynamically generated structured JSON reasoning with its unstructured counterpart. Our empirical evaluation across diverse benchmarks using state-of-the-art open-source models supports a consistent advantage for unstructured reasoning. Notably, on the complex MATH benchmark, unstructured plans achieved relative performance improvements of up to 18.90\% over structured approaches. Zero-shot unstructured iSelf-Discover variants are also shown to outperform their five-shot structured counterparts, underscoring the significance of this gap, even when structured plans are dynamically generated to ensure reasoning precedes the final answer. We further demonstrate that the optimal granularity of plan generation (instance-level vs. task-level) is context-dependent. These findings invite re-evaluation of the reliance on structured formats for complex problem-solving and how compound systems should be organized.
STaRK: Benchmarking LLM Retrieval on Textual and Relational Knowledge Bases
Answering real-world user queries, such as product search, often requires accurate retrieval of information from semi-structured knowledge bases or databases that involve blend of unstructured (e.g., textual descriptions of products) and structured (e.g., entity relations of products) information. However, previous works have mostly studied textual and relational retrieval tasks as separate topics. To address the gap, we develop STARK, a large-scale Semi-structure retrieval benchmark on Textual and Relational Knowledge Bases. We design a novel pipeline to synthesize natural and realistic user queries that integrate diverse relational information and complex textual properties, as well as their ground-truth answers. Moreover, we rigorously conduct human evaluation to validate the quality of our benchmark, which covers a variety of practical applications, including product recommendations, academic paper searches, and precision medicine inquiries. Our benchmark serves as a comprehensive testbed for evaluating the performance of retrieval systems, with an emphasis on retrieval approaches driven by large language models (LLMs). Our experiments suggest that the STARK datasets present significant challenges to the current retrieval and LLM systems, indicating the demand for building more capable retrieval systems that can handle both textual and relational aspects.
Self-MoE: Towards Compositional Large Language Models with Self-Specialized Experts
We present Self-MoE, an approach that transforms a monolithic LLM into a compositional, modular system of self-specialized experts, named MiXSE (MiXture of Self-specialized Experts). Our approach leverages self-specialization, which constructs expert modules using self-generated synthetic data, each equipped with a shared base LLM and incorporating self-optimized routing. This allows for dynamic and capability-specific handling of various target tasks, enhancing overall capabilities, without extensive human-labeled data and added parameters. Our empirical results reveal that specializing LLMs may exhibit potential trade-offs in performances on non-specialized tasks. On the other hand, our Self-MoE demonstrates substantial improvements over the base LLM across diverse benchmarks such as knowledge, reasoning, math, and coding. It also consistently outperforms other methods, including instance merging and weight merging, while offering better flexibility and interpretability by design with semantic experts and routing. Our findings highlight the critical role of modularity and the potential of self-improvement in achieving efficient, scalable, and adaptable systems.
Reasoning of Large Language Models over Knowledge Graphs with Super-Relations
While large language models (LLMs) have made significant progress in processing and reasoning over knowledge graphs, current methods suffer from a high non-retrieval rate. This limitation reduces the accuracy of answering questions based on these graphs. Our analysis reveals that the combination of greedy search and forward reasoning is a major contributor to this issue. To overcome these challenges, we introduce the concept of super-relations, which enables both forward and backward reasoning by summarizing and connecting various relational paths within the graph. This holistic approach not only expands the search space, but also significantly improves retrieval efficiency. In this paper, we propose the ReKnoS framework, which aims to Reason over Knowledge Graphs with Super-Relations. Our framework's key advantages include the inclusion of multiple relation paths through super-relations, enhanced forward and backward reasoning capabilities, and increased efficiency in querying LLMs. These enhancements collectively lead to a substantial improvement in the successful retrieval rate and overall reasoning performance. We conduct extensive experiments on nine real-world datasets to evaluate ReKnoS, and the results demonstrate the superior performance of ReKnoS over existing state-of-the-art baselines, with an average accuracy gain of 2.92%.
Sketch2FullStack: Generating Skeleton Code of Full Stack Website and Application from Sketch using Deep Learning and Computer Vision
For a full-stack web or app development, it requires a software firm or more specifically a team of experienced developers to contribute a large portion of their time and resources to design the website and then convert it to code. As a result, the efficiency of the development team is significantly reduced when it comes to converting UI wireframes and database schemas into an actual working system. It would save valuable resources and fasten the overall workflow if the clients or developers can automate this process of converting the pre-made full-stack website design to get a partially working if not fully working code. In this paper, we present a novel approach of generating the skeleton code from sketched images using Deep Learning and Computer Vision approaches. The dataset for training are first-hand sketched images of low fidelity wireframes, database schemas and class diagrams. The approach consists of three parts. First, the front-end or UI elements detection and extraction from custom-made UI wireframes. Second, individual database table creation from schema designs and lastly, creating a class file from class diagrams.
Neural Databases
In recent years, neural networks have shown impressive performance gains on long-standing AI problems, and in particular, answering queries from natural language text. These advances raise the question of whether they can be extended to a point where we can relax the fundamental assumption of database management, namely, that our data is represented as fields of a pre-defined schema. This paper presents a first step in answering that question. We describe NeuralDB, a database system with no pre-defined schema, in which updates and queries are given in natural language. We develop query processing techniques that build on the primitives offered by the state of the art Natural Language Processing methods. We begin by demonstrating that at the core, recent NLP transformers, powered by pre-trained language models, can answer select-project-join queries if they are given the exact set of relevant facts. However, they cannot scale to non-trivial databases and cannot perform aggregation queries. Based on these findings, we describe a NeuralDB architecture that runs multiple Neural SPJ operators in parallel, each with a set of database sentences that can produce one of the answers to the query. The result of these operators is fed to an aggregation operator if needed. We describe an algorithm that learns how to create the appropriate sets of facts to be fed into each of the Neural SPJ operators. Importantly, this algorithm can be trained by the Neural SPJ operator itself. We experimentally validate the accuracy of NeuralDB and its components, showing that we can answer queries over thousands of sentences with very high accuracy.
Sparks of Tabular Reasoning via Text2SQL Reinforcement Learning
This work reframes the Text-to-SQL task as a pathway for teaching large language models (LLMs) to reason over and manipulate tabular data--moving beyond the traditional focus on query generation. We propose a two-stage framework that leverages SQL supervision to develop transferable table reasoning capabilities. First, we synthesize detailed chain-of-thought (CoT) traces from real-world SQL queries, providing step-by-step, clause-level supervision that teaches the model how to traverse, filter, and aggregate table fields. Second, we introduce a Group Relative Policy Optimization (GRPO) reinforcement learning objective that connects SQL execution accuracy to generalizable reasoning by encouraging steps that extend beyond task-specific syntax and transfer across datasets. Empirically, our approach improves performance on standard Text-to-SQL benchmarks and achieves substantial gains on reasoning-intensive datasets such as BIRD and CRT-QA, demonstrating enhanced generalization and interpretability. Specifically, the distilled-quantized LLaMA model achieved a relative 33.9\% increase in accuracy when trained on Text-to-SQL tasks, while Qwen achieved a relative 14.5\% increase. These results suggest that SQL can serve not only as a target formalism but also as an effective scaffold for learning robust, transferable reasoning over structured data.
Structured Prompting and Feedback-Guided Reasoning with LLMs for Data Interpretation
Large language models (LLMs) have demonstrated remarkable capabilities in natural language understanding and task generalization. However, their application to structured data analysis remains fragile due to inconsistencies in schema interpretation, misalignment between user intent and model output, and limited mechanisms for self-correction when failures occur. This paper introduces the STROT Framework (Structured Task Reasoning and Output Transformation), a method for structured prompting and feedback-driven transformation logic generation aimed at improving the reliability and semantic alignment of LLM-based analytical workflows. STROT begins with lightweight schema introspection and sample-based field classification, enabling dynamic context construction that captures both the structure and statistical profile of the input data. This contextual information is embedded in structured prompts that guide the model toward generating task-specific, interpretable outputs. To address common failure modes in complex queries, STROT incorporates a refinement mechanism in which the model iteratively revises its outputs based on execution feedback and validation signals. Unlike conventional approaches that rely on static prompts or single-shot inference, STROT treats the LLM as a reasoning agent embedded within a controlled analysis loop -- capable of adjusting its output trajectory through planning and correction. The result is a robust and reproducible framework for reasoning over structured data with LLMs, applicable to diverse data exploration and analysis tasks where interpretability, stability, and correctness are essential.
