new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Oct 31

StoRM: A Diffusion-based Stochastic Regeneration Model for Speech Enhancement and Dereverberation

Diffusion models have shown a great ability at bridging the performance gap between predictive and generative approaches for speech enhancement. We have shown that they may even outperform their predictive counterparts for non-additive corruption types or when they are evaluated on mismatched conditions. However, diffusion models suffer from a high computational burden, mainly as they require to run a neural network for each reverse diffusion step, whereas predictive approaches only require one pass. As diffusion models are generative approaches they may also produce vocalizing and breathing artifacts in adverse conditions. In comparison, in such difficult scenarios, predictive models typically do not produce such artifacts but tend to distort the target speech instead, thereby degrading the speech quality. In this work, we present a stochastic regeneration approach where an estimate given by a predictive model is provided as a guide for further diffusion. We show that the proposed approach uses the predictive model to remove the vocalizing and breathing artifacts while producing very high quality samples thanks to the diffusion model, even in adverse conditions. We further show that this approach enables to use lighter sampling schemes with fewer diffusion steps without sacrificing quality, thus lifting the computational burden by an order of magnitude. Source code and audio examples are available online (https://uhh.de/inf-sp-storm).

  • 4 authors
·
Dec 22, 2022

CALM Before the STORM: Unlocking Native Reasoning for Optimization Modeling

Large Reasoning Models (LRMs) have demonstrated strong capabilities in complex multi-step reasoning, opening new opportunities for automating optimization modeling. However, existing domain adaptation methods, originally designed for earlier instruction-tuned models, often fail to exploit the advanced reasoning patterns of modern LRMs -- In particular, we show that direct fine-tuning on traditional non-reflective datasets leads to limited gains. To fully leverage LRMs' inherent reasoning abilities, we propose CALM (Corrective Adaptation with Lightweight Modification), a framework that progressively refines LRMs within their native reasoning modes for optimization modeling tasks. In CALM, an expert intervener identifies reasoning flaws and provides concise corrective hints, which the LRM incorporates to produce improved reasoning trajectories. These interventions modify fewer than 2.6\% of generated tokens, but generate high-quality data for soft adaptation through supervised fine-tuning. The adapted model is then further improved through reinforcement learning. Building on CALM, we develop STORM (Smart Thinking Optimization Reasoning Model), a 4B-parameter LRM that achieves a new state-of-the-art average accuracy of 68.9\% across five popular optimization modeling benchmarks, matching the performance of a 671B LRM. These results demonstrate that dynamic, hint-based data synthesis both preserves and amplifies the native reasoning patterns of modern LRMs, offering a more effective and scalable path towards expert-level performance on challenging optimization modeling tasks.

Foundation Models in Autonomous Driving: A Survey on Scenario Generation and Scenario Analysis

For autonomous vehicles, safe navigation in complex environments depends on handling a broad range of diverse and rare driving scenarios. Simulation- and scenario-based testing have emerged as key approaches to development and validation of autonomous driving systems. Traditional scenario generation relies on rule-based systems, knowledge-driven models, and data-driven synthesis, often producing limited diversity and unrealistic safety-critical cases. With the emergence of foundation models, which represent a new generation of pre-trained, general-purpose AI models, developers can process heterogeneous inputs (e.g., natural language, sensor data, HD maps, and control actions), enabling the synthesis and interpretation of complex driving scenarios. In this paper, we conduct a survey about the application of foundation models for scenario generation and scenario analysis in autonomous driving (as of May 2025). Our survey presents a unified taxonomy that includes large language models, vision-language models, multimodal large language models, diffusion models, and world models for the generation and analysis of autonomous driving scenarios. In addition, we review the methodologies, open-source datasets, simulation platforms, and benchmark challenges, and we examine the evaluation metrics tailored explicitly to scenario generation and analysis. Finally, the survey concludes by highlighting the open challenges and research questions, and outlining promising future research directions. All reviewed papers are listed in a continuously maintained repository, which contains supplementary materials and is available at https://github.com/TUM-AVS/FM-for-Scenario-Generation-Analysis.

  • 15 authors
·
Jun 13