new

Get trending papers in your email inbox!

Subscribe

Daily Papers

byAK and the research community

Nov 4

Reliable Fine-Grained Evaluation of Natural Language Math Proofs

Recent advances in large language models (LLMs) for mathematical reasoning have largely focused on tasks with easily verifiable final answers; however, generating and verifying natural language math proofs remains an open challenge. We identify the absence of a reliable, fine-grained evaluator for LLM-generated math proofs as a critical gap. To address this, we propose a systematic methodology for developing and validating evaluators that assign fine-grained scores on a 0-7 scale to model-generated math proofs. To enable this study, we introduce ProofBench, the first expert-annotated dataset of fine-grained proof ratings, spanning 145 problems from six major math competitions (USAMO, IMO, Putnam, etc) and 435 LLM-generated solutions from Gemini-2.5-pro, o3, and DeepSeek-R1. %with expert gradings. Using ProofBench as a testbed, we systematically explore the evaluator design space across key axes: the backbone model, input context, instructions and evaluation workflow. Our analysis delivers ProofGrader, an evaluator that combines a strong reasoning backbone LM, rich context from reference solutions and marking schemes, and a simple ensembling method; it achieves a low Mean Absolute Error (MAE) of 0.926 against expert scores, significantly outperforming naive baselines. Finally, we demonstrate its practical utility in a best-of-n selection task: at n=16, ProofGrader achieves an average score of 4.14 (out of 7), closing 78% of the gap between a naive binary evaluator (2.48) and the human oracle (4.62), highlighting its potential to advance downstream proof generation.

  • 9 authors
·
Oct 13

Lyra: Orchestrating Dual Correction in Automated Theorem Proving

Large Language Models (LLMs) present an intriguing avenue for exploration in the field of formal theorem proving. Nevertheless, their full potential, particularly concerning the mitigation of hallucinations and refinement through prover error messages, remains an area that has yet to be thoroughly investigated. To enhance the effectiveness of LLMs in the field, we introduce the Lyra, a new framework that employs two distinct correction mechanisms: Tool Correction (TC) and Conjecture Correction (CC). To implement Tool Correction in the post-processing of formal proofs, we leverage prior knowledge to utilize predefined prover tools (e.g., Sledgehammer) for guiding the replacement of incorrect tools. Tool Correction significantly contributes to mitigating hallucinations, thereby improving the overall accuracy of the proof. In addition, we introduce Conjecture Correction, an error feedback mechanism designed to interact with prover to refine formal proof conjectures with prover error messages. Compared to the previous refinement framework, the proposed Conjecture Correction refines generation with instruction but does not collect paired (generation, error & refinement) prompts. Our method has achieved state-of-the-art (SOTA) performance on both miniF2F validation (48.0% -> 55.3%) and test (45.5% -> 51.2%). We also present 3 IMO problems solved by Lyra. We believe Tool Correction (post-process for hallucination mitigation) and Conjecture Correction (subgoal adjustment from interaction with environment) could provide a promising avenue for future research in this field.

  • 9 authors
·
Sep 27, 2023

Strategies for Improving NL-to-FOL Translation with LLMs: Data Generation, Incremental Fine-Tuning, and Verification

Logical reasoning is a fundamental task in natural language processing that presents significant challenges to Large Language Models (LLMs). The inherent characteristics of logical reasoning makes it well-suited for symbolic representations such as first-order logic (FOL). Research in symbolic logical reasoning explored FOL generation using state-of-the-art LLMs (i.e., GPT-4) to produce FOL translations of natural language (NL) statements, but errors in translation are usually not the focus. We address this by categorizing the translation errors in FOL statements generated by LLMs. To make progress towards improving the quality of FOL translations for smaller language models such as LLaMA-2 13B and Mistral 7B, we create ProofFOL, a high-quality FOL-annotated subset of ProofWriter dataset using GPT-4o. The models fine-tuned on this silver standard data achieve a significant gain in performance when compared to larger language models such as LLaMA-2 70B. In addition to improving the model using large data, we also tackle the issue of data scarcity and introduce an incremental framework encompassing of data augmentation and verification steps. In the augmentation process, a single pair of (premises, conclusion) is split into multiple new instances based on the predicates and FOLs. This data is used for fine-tuning, and the inference on this model generates FOLs with fewer errors over the model trained on the original data. Our investigation on the translation errors leads to generation of a perturbation dataset, which is used to train a verifier that corrects potential syntactic and semantic FOL translation errors. We demonstrate an efficient method for making the most of a limited existing human-annotated dataset. Our results show state-of-the-art performance for ProofWriter and ProntoQA datasets using ProofFOL on LLaMA-2 and Mistral models.

  • 4 authors
·
Sep 24, 2024

TextGrad: Automatic "Differentiation" via Text

AI is undergoing a paradigm shift, with breakthroughs achieved by systems orchestrating multiple large language models (LLMs) and other complex components. As a result, developing principled and automated optimization methods for compound AI systems is one of the most important new challenges. Neural networks faced a similar challenge in its early days until backpropagation and automatic differentiation transformed the field by making optimization turn-key. Inspired by this, we introduce TextGrad, a powerful framework performing automatic ``differentiation'' via text. TextGrad backpropagates textual feedback provided by LLMs to improve individual components of a compound AI system. In our framework, LLMs provide rich, general, natural language suggestions to optimize variables in computation graphs, ranging from code snippets to molecular structures. TextGrad follows PyTorch's syntax and abstraction and is flexible and easy-to-use. It works out-of-the-box for a variety of tasks, where the users only provide the objective function without tuning components or prompts of the framework. We showcase TextGrad's effectiveness and generality across a diverse range of applications, from question answering and molecule optimization to radiotherapy treatment planning. Without modifying the framework, TextGrad improves the zero-shot accuracy of GPT-4o in Google-Proof Question Answering from 51% to 55%, yields 20% relative performance gain in optimizing LeetCode-Hard coding problem solutions, improves prompts for reasoning, designs new druglike small molecules with desirable in silico binding, and designs radiation oncology treatment plans with high specificity. TextGrad lays a foundation to accelerate the development of the next-generation of AI systems.

  • 7 authors
·
Jun 11, 2024

Alchemy: Amplifying Theorem-Proving Capability through Symbolic Mutation

Formal proofs are challenging to write even for experienced experts. Recent progress in Neural Theorem Proving (NTP) shows promise in expediting this process. However, the formal corpora available on the Internet are limited compared to the general text, posing a significant data scarcity challenge for NTP. To address this issue, this work proposes Alchemy, a general framework for data synthesis that constructs formal theorems through symbolic mutation. Specifically, for each candidate theorem in Mathlib, we identify all invocable theorems that can be used to rewrite or apply to it. Subsequently, we mutate the candidate theorem by replacing the corresponding term in the statement with its equivalent form or antecedent. As a result, our method increases the number of theorems in Mathlib by an order of magnitude, from 110k to 6M. Furthermore, we perform continual pretraining and supervised finetuning on this augmented corpus for large language models. Experimental results demonstrate the effectiveness of our approach, achieving a 5% absolute performance improvement on Leandojo benchmark. Additionally, our synthetic data achieve a 2.5% absolute performance gain on the out-of-distribution miniF2F benchmark. To provide further insights, we conduct a comprehensive analysis of synthetic data composition and the training paradigm, offering valuable guidance for developing a strong theorem prover.

  • 5 authors
·
Oct 21, 2024 3

GLoRe: When, Where, and How to Improve LLM Reasoning via Global and Local Refinements

State-of-the-art language models can exhibit impressive reasoning refinement capabilities on math, science or coding tasks. However, recent work demonstrates that even the best models struggle to identify when and where to refine without access to external feedback. Outcome-based Reward Models (ORMs), trained to predict correctness of the final answer indicating when to refine, offer one convenient solution for deciding when to refine. Process Based Reward Models (PRMs), trained to predict correctness of intermediate steps, can then be used to indicate where to refine. But they are expensive to train, requiring extensive human annotations. In this paper, we propose Stepwise ORMs (SORMs) which are trained, only on synthetic data, to approximate the expected future reward of the optimal policy or V^{star}. More specifically, SORMs are trained to predict the correctness of the final answer when sampling the current policy many times (rather than only once as in the case of ORMs). Our experiments show that SORMs can more accurately detect incorrect reasoning steps compared to ORMs, thus improving downstream accuracy when doing refinements. We then train global refinement models, which take only the question and a draft solution as input and predict a corrected solution, and local refinement models which also take as input a critique indicating the location of the first reasoning error. We generate training data for both models synthetically by reusing data used to train the SORM. We find combining global and local refinements, using the ORM as a reranker, significantly outperforms either one individually, as well as a best of three sample baseline. With this strategy we can improve the accuracy of a LLaMA-2 13B model (already fine-tuned with RL) on GSM8K from 53\% to 65\% when greedily sampled.

  • 7 authors
·
Feb 13, 2024 1

Towards Neural Synthesis for SMT-Assisted Proof-Oriented Programming

Proof-oriented programs mix computational content with proofs of program correctness. However, the human effort involved in programming and proving is still substantial, despite the use of Satisfiability Modulo Theories (SMT) solvers to automate proofs in languages such as F*. Seeking to spur research on using AI to automate the construction of proof-oriented programs, we curate a dataset of 600K lines of open-source F* programs and proofs, including software used in production systems ranging from Windows and Linux, to Python and Firefox. Our dataset includes around 32K top-level F* definitions, each representing a type-directed program and proof synthesis problem -- producing a definition given a formal specification expressed as an F* type. We provide a program-fragment checker that queries F* to check the correctness of candidate solutions. We believe this is the largest corpus of SMT-assisted program proofs coupled with a reproducible program-fragment checker. Grounded in this dataset, we investigate the use of AI to synthesize programs and their proofs in F*, with promising results. Our main finding in that the performance of fine-tuned smaller language models (such as Phi-2 or StarCoder) compare favorably with large language models (such as GPT-4), at a much lower computational cost. We also identify various type-based retrieval augmentation techniques and find that they boost performance significantly. With detailed error analysis and case studies, we identify potential strengths and weaknesses of models and techniques and suggest directions for future improvements.

  • 7 authors
·
May 2, 2024

MUSTARD: Mastering Uniform Synthesis of Theorem and Proof Data

Recent large language models (LLMs) have witnessed significant advancement in various tasks, including mathematical reasoning and theorem proving. As these two tasks require strict and formal multi-step inference, they are appealing domains for exploring the reasoning ability of LLMs but still face important challenges. Previous studies such as Chain-of-Thought (CoT) have revealed the effectiveness of intermediate steps guidance. However, such step-wise annotation requires heavy labor, leading to insufficient training steps for current benchmarks. To fill this gap, this work introduces MUSTARD, a data generation framework that masters uniform synthesis of theorem and proof data of high quality and diversity. MUSTARD synthesizes data in three stages: (1) It samples a few mathematical concept seeds as the problem category. (2) Then, it prompts a generative language model with the sampled concepts to obtain both the problems and their step-wise formal solutions. (3) Lastly, the framework utilizes a proof assistant (e.g., Lean Prover) to filter the valid proofs. With the proposed MUSTARD, we present a theorem-and-proof benchmark MUSTARDSAUCE with 5,866 valid data points. Each data point contains an informal statement, an informal proof, and a translated formal proof that passes the prover validation. We perform extensive analysis and demonstrate that MUSTARD generates validated high-quality step-by-step data. We further apply the MUSTARDSAUCE for fine-tuning smaller language models. The fine-tuned Llama 2-7B achieves a 15.41% average relative performance gain in automated theorem proving, and 8.18% in math word problems. Codes and data are available at https://github.com/Eleanor-H/MUSTARD.

  • 9 authors
·
Feb 14, 2024

APOLLO: Automated LLM and Lean Collaboration for Advanced Formal Reasoning

Formal reasoning and automated theorem proving constitute a challenging subfield of machine learning, in which machines are tasked with proving mathematical theorems using formal languages like Lean. A formal verification system can check whether a formal proof is correct or not almost instantaneously, but generating a completely correct formal proof with large language models (LLMs) remains a formidable task. The usual approach in the literature is to prompt the LLM many times (up to several thousands) until one of the generated proofs passes the verification system. In this work, we present APOLLO (Automated PrOof repair via LLM and Lean cOllaboration), a modular, model-agnostic pipeline that combines the strengths of the Lean compiler with an LLM's reasoning abilities to achieve better proof-generation results at a low sampling budget. Apollo directs a fully automated process in which the LLM generates proofs for theorems, a set of agents analyze the proofs, fix the syntax errors, identify the mistakes in the proofs using Lean, isolate failing sub-lemmas, utilize automated solvers, and invoke an LLM on each remaining goal with a low top-K budget. The repaired sub-proofs are recombined and reverified, iterating up to a user-controlled maximum number of attempts. On the miniF2F benchmark, we establish a new state-of-the-art accuracy of 75.0% among 7B-parameter models while keeping the sampling budget below one thousand. Moreover, Apollo raises the state-of-the-art accuracy for Goedel-Prover-SFT to 65.6% while cutting sample complexity from 25,600 to a few hundred. General-purpose models (o3-mini, o4-mini) jump from 3-7% to over 40% accuracy. Our results demonstrate that targeted, compiler-guided repair of LLM outputs yields dramatic gains in both efficiency and correctness, suggesting a general paradigm for scalable automated theorem proving.

  • 3 authors
·
May 8

EvolProver: Advancing Automated Theorem Proving by Evolving Formalized Problems via Symmetry and Difficulty

Large Language Models (LLMs) for formal theorem proving have shown significant promise, yet they often lack generalizability and are fragile to even minor transformations of problem statements. To address this limitation, we introduce a novel data augmentation pipeline designed to enhance model robustness from two perspectives: symmetry and difficulty. From the symmetry perspective, we propose two complementary methods: EvolAST, an Abstract Syntax Tree (AST) based approach that targets syntactic symmetry to generate semantically equivalent problem variants, and EvolDomain, which leverages LLMs to address semantic symmetry by translating theorems across mathematical domains. From the difficulty perspective, we propose EvolDifficulty, which uses carefully designed evolutionary instructions to guide LLMs in generating new theorems with a wider range of difficulty. We then use the evolved data to train EvolProver, a 7B-parameter non-reasoning theorem prover. EvolProver establishes a new state-of-the-art (SOTA) on FormalMATH-Lite with a 53.8% pass@32 rate, surpassing all models of comparable size, including reasoning-based models. It also sets new SOTA records for non-reasoning models on MiniF2F-Test (69.8% pass@32), Ineq-Comp-Seed (52.2% pass@32), and Ineq-Comp-Transformed (34.0% pass@32). Ablation studies further confirm our data augmentation pipeline's effectiveness across multiple benchmarks.

  • 9 authors
·
Oct 1 2

LINC: A Neurosymbolic Approach for Logical Reasoning by Combining Language Models with First-Order Logic Provers

Logical reasoning, i.e., deductively inferring the truth value of a conclusion from a set of premises, is an important task for artificial intelligence with wide potential impacts on science, mathematics, and society. While many prompting-based strategies have been proposed to enable Large Language Models (LLMs) to do such reasoning more effectively, they still appear unsatisfactory, often failing in subtle and unpredictable ways. In this work, we investigate the validity of instead reformulating such tasks as modular neurosymbolic programming, which we call LINC: Logical Inference via Neurosymbolic Computation. In LINC, the LLM acts as a semantic parser, translating premises and conclusions from natural language to expressions in first-order logic. These expressions are then offloaded to an external theorem prover, which symbolically performs deductive inference. Leveraging this approach, we observe significant performance gains on FOLIO and a balanced subset of ProofWriter for three different models in nearly all experimental conditions we evaluate. On ProofWriter, augmenting the comparatively small open-source StarCoder+ (15.5B parameters) with LINC even outperforms GPT-3.5 and GPT-4 with Chain-of-Thought (CoT) prompting by an absolute 38% and 10%, respectively. When used with GPT-4, LINC scores 26% higher than CoT on ProofWriter while performing comparatively on FOLIO. Further analysis reveals that although both methods on average succeed roughly equally often on this dataset, they exhibit distinct and complementary failure modes. We thus provide promising evidence for how logical reasoning over natural language can be tackled through jointly leveraging LLMs alongside symbolic provers. All corresponding code is publicly available at https://github.com/benlipkin/linc

  • 7 authors
·
Oct 23, 2023

Proof2Hybrid: Automatic Mathematical Benchmark Synthesis for Proof-Centric Problems

Evaluating the mathematical capability of Large Language Models (LLMs) is a critical yet challenging frontier. Existing benchmarks fall short, particularly for proof-centric problems, as manual creation is unscalable and costly, leaving the true mathematical abilities of LLMs largely unassessed. To overcome these barriers, we propose Proof2Hybrid, the first fully automated framework that synthesizes high-quality, proof-centric benchmarks from natural language mathematical corpora. The key novelty of our solution is Proof2X, a roadmap of converting mathematical proofs into various kinds of questions that are easy to verify. Instructed by this roadmap, we propose a new type of hybrid-formatted questions, named ``m-out-of-n multiple judge questions'', specifically designed to enable robust, automatic evaluation while being resilient to guessing and superficial pattern matching inherent in traditional formats. As a demonstration of our framework, we introduce AlgGeoTest, a benchmark for algebraic geometry--a frontier domain of modern mathematics--comprising 456 challenging items. Our extensive evaluations on state-of-the-art LLMs using AlgGeoTest reveal profound deficits in their comprehension of algebraic geometry, providing a more precise measure of their true mathematical capabilities. Our framework and benchmark pave the way for a new wave of in-depth research into the mathematical intelligence of AI systems.

  • 9 authors
·
Aug 4

Hilbert: Recursively Building Formal Proofs with Informal Reasoning

Large Language Models (LLMs) demonstrate impressive mathematical reasoning abilities, but their solutions frequently contain errors that cannot be automatically verified. Formal theorem proving systems such as Lean 4 offer automated verification with complete accuracy, motivating recent efforts to build specialized prover LLMs that generate verifiable proofs in formal languages. However, a significant gap remains: current prover LLMs solve substantially fewer problems than general-purpose LLMs operating in natural language. We introduce Hilbert, an agentic framework that bridges this gap by combining the complementary strengths of informal reasoning and formal verification. Our system orchestrates four components: an informal LLM that excels at mathematical reasoning, a specialized prover LLM optimized for Lean 4 tactics, a formal verifier, and a semantic theorem retriever. Given a problem that the prover is unable to solve, Hilbert employs recursive decomposition to split the problem into subgoals that it solves with the prover or reasoner LLM. It leverages verifier feedback to refine incorrect proofs as necessary. Experimental results demonstrate that Hilbert substantially outperforms existing approaches on key benchmarks, achieving 99.2% on miniF2F, 6.6% points above the best publicly available method. Hilbert achieves the best known result on PutnamBench. It solves 462/660 problems (70.0%), outperforming proprietary approaches like SeedProver (50.4%) and achieving a 422% improvement over the best publicly available baseline. Thus, Hilbert effectively narrows the gap between informal reasoning and formal proof generation.

  • 6 authors
·
Sep 26

Small Edits, Big Consequences: Telling Good from Bad Robustness in Large Language Models

Large language models (LLMs) now write code in settings where misreading a single word can break safety or cost money, yet we still expect them to overlook stray typos. To probe where useful robustness ends and harmful insensitivity begins, we compile 50 LeetCode problems and craft three minimal prompt perturbations that should vary in importance: (i) progressive underspecification deleting 10 % of words per step; (ii) lexical flip swapping a pivotal quantifier ("max" to "min"); and (iii) jargon inflation replacing a common noun with an obscure technical synonym. Six frontier models, including three "reasoning-tuned" versions, solve each mutated prompt, and their Python outputs are checked against the original test suites to reveal whether they reused the baseline solution or adapted. Among 11 853 generations we observe a sharp double asymmetry. Models remain correct in 85 % of cases even after 90 % of the prompt is missing, showing over-robustness to underspecification, yet only 54 % react to a single quantifier flip that reverses the task, with reasoning-tuned variants even less sensitive than their bases. Jargon edits lie in between, passing through 56 %. Current LLMs thus blur the line between harmless noise and meaning - changing edits, often treating both as ignorable. Masking salient anchors such as function names can force re - evaluation. We advocate evaluation and training protocols that reward differential sensitivity: stay steady under benign noise but adapt - or refuse - when semantics truly change.

  • 2 authors
·
Jul 14

Can Language Models Falsify? Evaluating Algorithmic Reasoning with Counterexample Creation

There is growing excitement about the potential of Language Models (LMs) to accelerate scientific discovery. Falsifying hypotheses is key to scientific progress, as it allows claims to be iteratively refined over time. This process requires significant researcher effort, reasoning, and ingenuity. Yet current benchmarks for LMs predominantly assess their ability to generate solutions rather than challenge them. We advocate for developing benchmarks that evaluate this inverse capability - creating counterexamples for subtly incorrect solutions. To demonstrate this approach, we start with the domain of algorithmic problem solving, where counterexamples can be evaluated automatically using code execution. Specifically, we introduce REFUTE, a dynamically updating benchmark that includes recent problems and incorrect submissions from programming competitions, where human experts successfully identified counterexamples. Our analysis finds that the best reasoning agents, even OpenAI o3-mini (high) with code execution feedback, can create counterexamples for only <9% of incorrect solutions in REFUTE, even though ratings indicate its ability to solve up to 48% of these problems from scratch. We hope our work spurs progress in evaluating and enhancing LMs' ability to falsify incorrect solutions - a capability that is crucial for both accelerating research and making models self-improve through reliable reflective reasoning.

  • 6 authors
·
Feb 26 2

Can LLMs Correct Themselves? A Benchmark of Self-Correction in LLMs

Self-correction of large language models (LLMs) emerges as a critical component for enhancing their reasoning performance. Although various self-correction methods have been proposed, a comprehensive evaluation of these methods remains largely unexplored, and the question of whether LLMs can truly correct themselves is a matter of significant interest and concern. In this study, we introduce CorrectBench, a benchmark developed to evaluate the effectiveness of self-correction strategies, including intrinsic, external, and fine-tuned approaches, across three tasks: commonsense reasoning, mathematical reasoning, and code generation. Our findings reveal that: 1) Self-correction methods can improve accuracy, especially for complex reasoning tasks; 2) Mixing different self-correction strategies yields further improvements, though it reduces efficiency; 3) Reasoning LLMs (e.g., DeepSeek-R1) have limited optimization under additional self-correction methods and have high time costs. Interestingly, a comparatively simple chain-of-thought (CoT) baseline demonstrates competitive accuracy and efficiency. These results underscore the potential of self-correction to enhance LLM's reasoning performance while highlighting the ongoing challenge of improving their efficiency. Consequently, we advocate for further research focused on optimizing the balance between reasoning capabilities and operational efficiency. Project Page: https://correctbench.github.io/

  • 14 authors
·
Oct 16 2

MPS-Prover: Advancing Stepwise Theorem Proving by Multi-Perspective Search and Data Curation

Automated Theorem Proving (ATP) in formal languages remains a formidable challenge in AI, demanding rigorous logical deduction and navigating vast search spaces. While large language models (LLMs) have shown promising performance, existing stepwise provers often suffer from biased search guidance, leading to inefficiencies and suboptimal proof strategies. This paper introduces the Multi-Perspective Search Prover (MPS-Prover), a novel stepwise ATP system designed to overcome these limitations. MPS-Prover incorporates two key innovations: a highly effective post-training data curation strategy that prunes approximately 40% of redundant training data without sacrificing performance, and a multi-perspective tree search mechanism. This search integrates a learned critic model with strategically designed heuristic rules to diversify tactic selection, prevent getting trapped in unproductive states, and enhance search robustness. Extensive evaluations demonstrate that MPS-Prover achieves state-of-the-art performance on multiple challenging benchmarks, including miniF2F and ProofNet, outperforming prior 7B parameter models. Furthermore, our analyses reveal that MPS-Prover generates significantly shorter and more diverse proofs compared to existing stepwise and whole-proof methods, highlighting its efficiency and efficacy. Our work advances the capabilities of LLM-based formal reasoning and offers a robust framework and a comprehensive analysis for developing more powerful theorem provers.

  • 7 authors
·
May 16 2

Prover-Verifier Games improve legibility of LLM outputs

One way to increase confidence in the outputs of Large Language Models (LLMs) is to support them with reasoning that is clear and easy to check -- a property we call legibility. We study legibility in the context of solving grade-school math problems and show that optimizing chain-of-thought solutions only for answer correctness can make them less legible. To mitigate the loss in legibility, we propose a training algorithm inspired by Prover-Verifier Game from Anil et al. (2021). Our algorithm iteratively trains small verifiers to predict solution correctness, "helpful" provers to produce correct solutions that the verifier accepts, and "sneaky" provers to produce incorrect solutions that fool the verifier. We find that the helpful prover's accuracy and the verifier's robustness to adversarial attacks increase over the course of training. Furthermore, we show that legibility training transfers to time-constrained humans tasked with verifying solution correctness. Over course of LLM training human accuracy increases when checking the helpful prover's solutions, and decreases when checking the sneaky prover's solutions. Hence, training for checkability by small verifiers is a plausible technique for increasing output legibility. Our results suggest legibility training against small verifiers as a practical avenue for increasing legibility of large LLMs to humans, and thus could help with alignment of superhuman models.

  • 6 authors
·
Jul 18, 2024

Prompt Engineering a Prompt Engineer

Prompt engineering is a challenging yet crucial task for optimizing the performance of large language models (LLMs). It requires complex reasoning to examine the model's errors, hypothesize what is missing or misleading in the current prompt, and communicate the task with clarity. While recent works indicate that LLMs can be meta-prompted to perform automatic prompt engineering, their potentials may not be fully untapped due to the lack of sufficient guidance to elicit complex reasoning capabilities in LLMs in the meta-prompt. In this work, we investigate the problem of "prompt engineering a prompt engineer" -- constructing a meta-prompt that more effectively guides LLMs to perform automatic prompt engineering. We introduce and analyze key components, such as a step-by-step reasoning template and context specification, which lead to improved performance. In addition, inspired by common optimization concepts such as batch size, step size and momentum, we introduce their verbalized counterparts to the meta-prompt and investigate their effects. Our final method, named PE2, finds a prompt that outperforms "let's think step by step" by 6.3% on the MultiArith dataset and 3.1% on the GSM8K dataset. To demonstrate its versatility, we apply PE2 to the Instruction Induction benchmark, a suite of counterfactual tasks, and a lengthy, real-world industrial prompt. In these settings, PE2 achieves strong performance and outperforms prior automatic prompt engineering baselines. Further, we show that PE2 makes meaningful and targeted prompt edits, amends erroneous or incomplete prompts, and presents non-trivial counterfactual reasoning abilities.

  • 4 authors
·
Nov 9, 2023 1

DeepTheorem: Advancing LLM Reasoning for Theorem Proving Through Natural Language and Reinforcement Learning

Theorem proving serves as a major testbed for evaluating complex reasoning abilities in large language models (LLMs). However, traditional automated theorem proving (ATP) approaches rely heavily on formal proof systems that poorly align with LLMs' strength derived from informal, natural language knowledge acquired during pre-training. In this work, we propose DeepTheorem, a comprehensive informal theorem-proving framework exploiting natural language to enhance LLM mathematical reasoning. DeepTheorem includes a large-scale benchmark dataset consisting of 121K high-quality IMO-level informal theorems and proofs spanning diverse mathematical domains, rigorously annotated for correctness, difficulty, and topic categories, accompanied by systematically constructed verifiable theorem variants. We devise a novel reinforcement learning strategy (RL-Zero) explicitly tailored to informal theorem proving, leveraging the verified theorem variants to incentivize robust mathematical inference. Additionally, we propose comprehensive outcome and process evaluation metrics examining proof correctness and the quality of reasoning steps. Extensive experimental analyses demonstrate DeepTheorem significantly improves LLM theorem-proving performance compared to existing datasets and supervised fine-tuning protocols, achieving state-of-the-art accuracy and reasoning quality. Our findings highlight DeepTheorem's potential to fundamentally advance automated informal theorem proving and mathematical exploration.

STP: Self-play LLM Theorem Provers with Iterative Conjecturing and Proving

A fundamental challenge in formal theorem proving by LLMs is the lack of high-quality training data. Although reinforcement learning or expert iteration partially mitigates this issue by alternating between LLM generating proofs and finetuning them on correctly generated ones, performance quickly plateaus due to the scarcity of correct proofs (sparse rewards). To keep improving the models with limited data, we draw inspiration from mathematicians, who continuously develop new results, partly by proposing novel conjectures or exercises (which are often variants of known results) and attempting to solve them. We design the Self-play Theorem Prover (STP) that simultaneously takes on two roles, conjecturer and prover, each providing training signals to the other. The conjecturer is trained iteratively on previously generated conjectures that are barely provable by the current prover, which incentivizes it to generate increasingly challenging conjectures over time. The prover attempts to prove the conjectures with standard expert iteration. We evaluate STP with both Lean and Isabelle formal versifiers. With 19.8 billion tokens generated during the training in Lean, STP proves 26.3% of the statements in the LeanWorkbook dataset, doubling the previous best result of 13.2% achieved through expert iteration. The final model achieves state-of-the-art performance among whole-proof generation methods on miniF2F-test (61.7%, pass@3200), Proofnet-test (23.1%, pass@3200) and PutnamBench (8/644, pass@3200).

  • 2 authors
·
Jan 31

Towards Robust Mathematical Reasoning

Finding the right north-star metrics is highly critical for advancing the mathematical reasoning capabilities of foundation models, especially given that existing evaluations are either too easy or only focus on getting correct short answers. To address these issues, we present IMO-Bench, a suite of advanced reasoning benchmarks, vetted by a panel of top specialists and that specifically targets the level of the International Mathematical Olympiad (IMO), the most prestigious venue for young mathematicians. IMO-AnswerBench first tests models on 400 diverse Olympiad problems with verifiable short answers. IMO-Proof Bench is the next-level evaluation for proof-writing capabilities, which includes both basic and advanced IMO level problems as well as detailed grading guidelines to facilitate automatic grading. These benchmarks played a crucial role in our historic achievement of the gold-level performance at IMO 2025 with Gemini Deep Think (Luong and Lockhart, 2025). Our model achieved 80.0% on IMO-AnswerBench and 65.7% on the advanced IMO-Proof Bench, surpassing the best non-Gemini models by large margins of 6.9% and 42.4% respectively. We also showed that autograders built with Gemini reasoning correlate well with human evaluations and construct IMO-GradingBench, with 1000 human gradings on proofs, to enable further progress in automatic evaluation of long-form answers. We hope that IMO-Bench will help the community towards advancing robust mathematical reasoning and release it at https://imobench.github.io/.

Subtle Errors Matter: Preference Learning via Error-injected Self-editing

Large Language Models (LLMs) have exhibited strong mathematical reasoning and computational prowess, tackling tasks ranging from basic arithmetic to advanced competition-level problems. However, frequently occurring subtle errors, such as miscalculations or incorrect substitutions, limit the models' full mathematical potential. Existing studies to improve mathematical ability typically involve distilling reasoning skills from stronger LLMs or applying preference learning to step-wise response pairs. Although these methods leverage samples of varying granularity to mitigate reasoning errors, they overlook the frequently occurring subtle errors. A major reason is that sampled preference pairs involve differences unrelated to the errors, which may distract the model from focusing on subtle errors. In this work, we propose a novel preference learning framework called eRror-Injected Self-Editing (RISE), which injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation. In detail, RISE uses the model itself to edit a small number of tokens in the solution, injecting designed subtle errors. Then, pairs composed of self-edited solutions and their corresponding correct ones, along with pairs of correct and incorrect solutions obtained through sampling, are used together for subtle error-aware DPO training. Compared with other preference learning methods, RISE further refines the training objective to focus on predefined errors and their tokens, without requiring fine-grained sampling or preference annotation. Extensive experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.

  • 10 authors
·
Oct 9, 2024

ReForm: Reflective Autoformalization with Prospective Bounded Sequence Optimization

Autoformalization, which translates natural language mathematics into machine-verifiable formal statements, is critical for using formal mathematical reasoning to solve math problems stated in natural language. While Large Language Models can generate syntactically correct formal statements, they often fail to preserve the original problem's semantic intent. This limitation arises from the LLM approaches' treating autoformalization as a simplistic translation task which lacks mechanisms for self-reflection and iterative refinement that human experts naturally employ. To address these issues, we propose ReForm, a Reflective Autoformalization method that tightly integrates semantic consistency evaluation into the autoformalization process. This enables the model to iteratively generate formal statements, assess its semantic fidelity, and self-correct identified errors through progressive refinement. To effectively train this reflective model, we introduce Prospective Bounded Sequence Optimization (PBSO), which employs different rewards at different sequence positions to ensure that the model develops both accurate autoformalization and correct semantic validations, preventing superficial critiques that would undermine the purpose of reflection. Extensive experiments across four autoformalization benchmarks demonstrate that ReForm achieves an average improvement of 17.2 percentage points over the strongest baselines. To further ensure evaluation reliability, we introduce ConsistencyCheck, a benchmark of 859 expert-annotated items that not only validates LLMs as judges but also reveals that autoformalization is inherently difficult: even human experts produce semantic errors in up to 38.5% of cases.

  • 9 authors
·
Oct 28 2

LeanDojo: Theorem Proving with Retrieval-Augmented Language Models

Large language models (LLMs) have shown promise in proving formal theorems using proof assistants such as Lean. However, existing methods are difficult to reproduce or build on, due to private code, data, and large compute requirements. This has created substantial barriers to research on machine learning methods for theorem proving. This paper removes these barriers by introducing LeanDojo: an open-source Lean playground consisting of toolkits, data, models, and benchmarks. LeanDojo extracts data from Lean and enables interaction with the proof environment programmatically. It contains fine-grained annotations of premises in proofs, providing valuable data for premise selection: a key bottleneck in theorem proving. Using this data, we develop ReProver (Retrieval-Augmented Prover): the first LLM-based prover that is augmented with retrieval for selecting premises from a vast math library. It is inexpensive and needs only one GPU week of training. Our retriever leverages LeanDojo's program analysis capability to identify accessible premises and hard negative examples, which makes retrieval much more effective. Furthermore, we construct a new benchmark consisting of 96,962 theorems and proofs extracted from Lean's math library. It features challenging data split requiring the prover to generalize to theorems relying on novel premises that are never used in training. We use this benchmark for training and evaluation, and experimental results demonstrate the effectiveness of ReProver over non-retrieval baselines and GPT-4. We thus provide the first set of open-source LLM-based theorem provers without any proprietary datasets and release it under a permissive MIT license to facilitate further research.

  • 9 authors
·
Jun 27, 2023

DCR-Consistency: Divide-Conquer-Reasoning for Consistency Evaluation and Improvement of Large Language Models

Evaluating the quality and variability of text generated by Large Language Models (LLMs) poses a significant, yet unresolved research challenge. Traditional evaluation methods, such as ROUGE and BERTScore, which measure token similarity, often fail to capture the holistic semantic equivalence. This results in a low correlation with human judgments and intuition, which is especially problematic in high-stakes applications like healthcare and finance where reliability, safety, and robust decision-making are highly critical. This work proposes DCR, an automated framework for evaluating and improving the consistency of LLM-generated texts using a divide-conquer-reasoning approach. Unlike existing LLM-based evaluators that operate at the paragraph level, our method employs a divide-and-conquer evaluator (DCE) that breaks down the paragraph-to-paragraph comparison between two generated responses into individual sentence-to-paragraph comparisons, each evaluated based on predefined criteria. To facilitate this approach, we introduce an automatic metric converter (AMC) that translates the output from DCE into an interpretable numeric score. Beyond the consistency evaluation, we further present a reason-assisted improver (RAI) that leverages the analytical reasons with explanations identified by DCE to generate new responses aimed at reducing these inconsistencies. Through comprehensive and systematic empirical analysis, we show that our approach outperforms state-of-the-art methods by a large margin (e.g., +19.3% and +24.3% on the SummEval dataset) in evaluating the consistency of LLM generation across multiple benchmarks in semantic, factual, and summarization consistency tasks. Our approach also substantially reduces nearly 90% of output inconsistencies, showing promise for effective hallucination mitigation.

  • 7 authors
·
Jan 4, 2024 2

Envisioning Beyond the Pixels: Benchmarking Reasoning-Informed Visual Editing

Large Multi-modality Models (LMMs) have made significant progress in visual understanding and generation, but they still face challenges in General Visual Editing, particularly in following complex instructions, preserving appearance consistency, and supporting flexible input formats. To address this gap, we introduce RISEBench, the first benchmark for evaluating Reasoning-Informed viSual Editing (RISE). RISEBench focuses on four key reasoning types: Temporal, Causal, Spatial, and Logical Reasoning. We curate high-quality test cases for each category and propose an evaluation framework that assesses Instruction Reasoning, Appearance Consistency, and Visual Plausibility with both human judges and an LMM-as-a-judge approach. Our experiments reveal that while GPT-4o-Native significantly outperforms other open-source and proprietary models, even this state-of-the-art system struggles with logical reasoning tasks, highlighting an area that remains underexplored. As an initial effort, RISEBench aims to provide foundational insights into reasoning-aware visual editing and to catalyze future research. Though still in its early stages, we are committed to continuously expanding and refining the benchmark to support more comprehensive, reliable, and scalable evaluations of next-generation multimodal systems. Our code and data will be released at https://github.com/PhoenixZ810/RISEBench.

Deep Self-Evolving Reasoning

Long-form chain-of-thought reasoning has become a cornerstone of advanced reasoning in large language models. While recent verification-refinement frameworks have enabled proprietary models to solve Olympiad-level problems, their effectiveness hinges on strong, reliable verification and correction capabilities, which remain fragile in open-weight, smaller-scale models. This work demonstrates that even with weak verification and refinement capabilities on hard tasks, the reasoning limits of such models can be substantially extended through a probabilistic paradigm we call Deep Self-Evolving Reasoning (DSER). We conceptualize iterative reasoning as a Markov chain, where each step represents a stochastic transition in the solution space. The key insight is that convergence to a correct solution is guaranteed as long as the probability of improvement marginally exceeds that of degradation. By running multiple long-horizon, self-evolving processes in parallel, DSER amplifies these small positive tendencies, enabling the model to asymptotically approach correct answers. Empirically, we apply DSER to the DeepSeek-R1-0528-Qwen3-8B model. On the challenging AIME 2024-2025 benchmark, DSER solves 5 out of 9 previously unsolvable problems and boosts overall performance, enabling this compact model to surpass the single-turn accuracy of its 600B-parameter teacher through majority voting. Beyond its immediate utility for test-time scaling, the DSER framework serves to diagnose the fundamental limitations of current open-weight reasoners. By clearly delineating their shortcomings in self-verification, refinement, and stability, our findings establish a clear research agenda for developing next-generation models with powerful, intrinsic self-evolving capabilities.

microsoft Microsoft
·
Oct 20 2

Evolving LLMs' Self-Refinement Capability via Iterative Preference Optimization

While large language models (LLMs) have demonstrated remarkable general performance, enabling smaller models to achieve capabilities comparable to their larger counterparts remains a critical challenge. For humans, iterative refinement of problem analysis and responses is a common strategy to enhance answer quality. However, we observe that existing LLMs exhibit limited ability to refine their outputs for quality improvement. In this paper, we first investigate mechanisms to unlock and progressively enhance self-refinement ability in smaller models within an iterative preference optimization framework, aiming to bridge the performance gap with larger models. To this end, we propose EVOLVE, a novel post-training and inference framework that iteratively integrates preference training with self-refinement-driven data collection. During training, EVOLVE strengthens the model's direct question-answering ability while simultaneously unlocking its self-refinement potential. At inference, the framework leverages this capability to generate progressively refined responses, which are filtered to construct datasets for subsequent rounds of preference training. Experiments demonstrate EVOLVE's exceptional performance: when applied to Llama-3.1-8B base model and under the self-refinement setting, it surpasses state-of-the-art models including Llama-3.1-405B-Instruct and GPT-4o, achieving a 62.3% length-controlled win rate and 63.3% raw win rate on AlpacaEval 2, along with a 50.3% win rate on Arena-Hard. Furthermore, EVOLVE consistently enhances performance on mathematical reasoning tasks like GSM8K and MATH.

  • 10 authors
·
Feb 8

Solving Inequality Proofs with Large Language Models

Inequality proving, crucial across diverse scientific and mathematical fields, tests advanced reasoning skills such as discovering tight bounds and strategic theorem application. This makes it a distinct, demanding frontier for large language models (LLMs), offering insights beyond general mathematical problem-solving. Progress in this area is hampered by existing datasets that are often scarce, synthetic, or rigidly formal. We address this by proposing an informal yet verifiable task formulation, recasting inequality proving into two automatically checkable subtasks: bound estimation and relation prediction. Building on this, we release IneqMath, an expert-curated dataset of Olympiad-level inequalities, including a test set and training corpus enriched with step-wise solutions and theorem annotations. We also develop a novel LLM-as-judge evaluation framework, combining a final-answer judge with four step-wise judges designed to detect common reasoning flaws. A systematic evaluation of 29 leading LLMs on IneqMath reveals a surprising reality: even top models like o1 achieve less than 10% overall accuracy under step-wise scrutiny; this is a drop of up to 65.5% from their accuracy considering only final answer equivalence. This discrepancy exposes fragile deductive chains and a critical gap for current LLMs between merely finding an answer and constructing a rigorous proof. Scaling model size and increasing test-time computation yield limited gains in overall proof correctness. Instead, our findings highlight promising research directions such as theorem-guided reasoning and self-refinement. Code and data are available at https://ineqmath.github.io/.

  • 7 authors
·
Jun 9 2

ReFIne: A Framework for Trustworthy Large Reasoning Models with Reliability, Faithfulness, and Interpretability

Recent advances in long chain-of-thought (CoT) reasoning have largely prioritized answer accuracy and token efficiency, while overlooking aspects critical to trustworthiness. We argue that usable reasoning systems must be trustworthy, characterized by three properties: interpretability, faithfulness, and reliability. To this end, we propose ReFIne, a new training framework that integrates supervised fine-tuning with GRPO to encourage models to: (i) improve interpretability by producing structured, tag-based traces with high-level planning that are easier for humans to follow; (ii) enhance faithfulness by explicitly disclosing the decisive information guiding each solution, with consistent cross-section references; and (iii) promote reliability by providing self-assessments of both the derivation's soundness and the confidence of the final answer. We apply ReFIne to the Qwen3 models at multiple scales (1.7B/4B/8B) and evaluate across mathematical benchmarks of varying difficulty. Our experimental results show that ReFIne models generate clearer and better-structured reasoning traces (interpretability +44.0%), more faithfully expose their underlying decision process (faithfulness +18.8%), and offer informative confidence estimates (reliability +42.4%). These findings highlight an overlooked but important direction: reasoning models should be optimized not only for accuracy, but also for broader dimensions of trustworthiness. Our code is available at: https://github.com/Trustworthy-ML-Lab/Training_Trustworthy_LRM_with_Refine

  • 4 authors
·
Oct 10 2

MAgICoRe: Multi-Agent, Iterative, Coarse-to-Fine Refinement for Reasoning

Large Language Models' (LLM) reasoning can be improved using test-time aggregation strategies, i.e., generating multiple samples and voting among generated samples. While these improve performance, they often reach a saturation point. Refinement offers an alternative by using LLM-generated feedback to improve solution quality. However, refinement introduces 3 key challenges: (1) Excessive refinement: Uniformly refining all instances can over-correct and reduce the overall performance. (2) Inability to localize and address errors: LLMs have a limited ability to self-correct and struggle to identify and correct their own mistakes. (3) Insufficient refinement: Deciding how many iterations of refinement are needed is non-trivial, and stopping too soon could leave errors unaddressed. To tackle these issues, we propose MAgICoRe, which avoids excessive refinement by categorizing problem difficulty as easy or hard, solving easy problems with coarse-grained aggregation and hard ones with fine-grained and iterative multi-agent refinement. To improve error localization, we incorporate external step-wise reward model (RM) scores. Moreover, to ensure effective refinement, we employ a multi-agent loop with three agents: Solver, Reviewer (which generates targeted feedback based on step-wise RM scores), and the Refiner (which incorporates feedback). To ensure sufficient refinement, we re-evaluate updated solutions, iteratively initiating further rounds of refinement. We evaluate MAgICoRe on Llama-3-8B and GPT-3.5 and show its effectiveness across 5 math datasets. Even one iteration of MAgICoRe beats Self-Consistency by 3.4%, Best-of-k by 3.2%, and Self-Refine by 4.0% while using less than half the samples. Unlike iterative refinement with baselines, MAgICoRe continues to improve with more iterations. Finally, our ablations highlight the importance of MAgICoRe's RMs and multi-agent communication.

  • 5 authors
·
Sep 18, 2024

Goedel-Prover-V2: Scaling Formal Theorem Proving with Scaffolded Data Synthesis and Self-Correction

We introduce Goedel-Prover-V2, a series of open-source language models that set a new state-of-the-art in automated theorem proving. Built on the standard expert iteration and reinforcement learning pipeline, our approach incorporates three key innovations: (1) Scaffolded data synthesis: We generate synthetic tasks of increasing difficulty to train the model to master increasingly complex theorems; (2) Verifier-guided self-correction: We enable the model to iteratively revise its proofs by leveraging feedback from the Lean compiler; (3) Model averaging: We merge model checkpoints to mitigate the decrease in model output diversity in later stages of training. Our small model, Goedel-Prover-V2-8B, reaches 84.6% pass@32 on MiniF2F and outperforms DeepSeek-Prover-V2-671B under the same metric, despite being 80X smaller. Our flagship model, Goedel-Prover-V2-32B, achieves 88.1% on MiniF2F at pass@32 in standard mode and 90.4% in self-correction mode, outperforming prior SOTA by a large margin. Additionally, our flagship model solves 86 problems on PutnamBench at pass@184, securing the first place among open-source models on the leaderboard, surpassing DeepSeek-Prover-V2-671B's record of solving 47 problems by pass@1024 with a significantly smaller model size and compute budget. At the time of its release (July-August 2025), Goedel-Prover-V2 achieves the strongest overall performance among all open-source theorem provers. It also ranks among the top-performing models--including closed-source systems with publicly reported performance--under a constrained test-time compute budget. Our models, code, and data are released at https://github.com/Goedel-LM/Goedel-Prover-V2.

ProcessBench: Identifying Process Errors in Mathematical Reasoning

As language models regularly make mistakes when solving math problems, automated identification of errors in the reasoning process becomes increasingly significant for their scalable oversight. In this paper, we introduce ProcessBench for measuring the ability to identify erroneous steps in mathematical reasoning. It consists of 3,400 test cases, primarily focused on competition- and Olympiad-level math problems. Each test case contains a step-by-step solution with error location annotated by human experts. Models are required to identify the earliest step that contains an error, or conclude that all steps are correct. We conduct extensive evaluation on ProcessBench, involving two types of models: process reward models (PRMs) and critic models, where for the latter we prompt general language models to critique each solution step by step. We draw two main observations: (1) Existing PRMs typically fail to generalize to more challenging math problems beyond GSM8K and MATH. They underperform both critic models (i.e., prompted general language models) and our own trained PRM that is straightforwardly fine-tuned on the PRM800K dataset. (2) The best open-source model, QwQ-32B-Preview, has demonstrated the critique capability competitive with the proprietary model GPT-4o, despite that it still lags behind the reasoning-specialized o1-mini. We hope ProcessBench can foster future research in reasoning process assessment, paving the way toward scalable oversight of language models.

  • 9 authors
·
Dec 9, 2024 6

DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-Scale Synthetic Data

Proof assistants like Lean have revolutionized mathematical proof verification, ensuring high accuracy and reliability. Although large language models (LLMs) show promise in mathematical reasoning, their advancement in formal theorem proving is hindered by a lack of training data. To address this issue, we introduce an approach to generate extensive Lean 4 proof data derived from high-school and undergraduate-level mathematical competition problems. This approach involves translating natural language problems into formal statements, filtering out low-quality statements, and generating proofs to create synthetic data. After fine-tuning the DeepSeekMath 7B model on this synthetic dataset, which comprises 8 million formal statements with proofs, our model achieved whole-proof generation accuracies of 46.3% with 64 samples and 52% cumulatively on the Lean 4 miniF2F test, surpassing the baseline GPT-4 at 23.0% with 64 samples and a tree search reinforcement learning method at 41.0%. Additionally, our model successfully proved 5 out of 148 problems in the Lean 4 Formalized International Mathematical Olympiad (FIMO) benchmark, while GPT-4 failed to prove any. These results demonstrate the potential of leveraging large-scale synthetic data to enhance theorem-proving capabilities in LLMs. Both the synthetic dataset and the model will be made available to facilitate further research in this promising field.

  • 9 authors
·
May 23, 2024 6

Autoformalizer with Tool Feedback

Autoformalization addresses the scarcity of data for Automated Theorem Proving (ATP) by translating mathematical problems from natural language into formal statements. Efforts in recent work shift from directly prompting large language models to training an end-to-end formalizer model from scratch, achieving remarkable advancements. However, existing formalizer still struggles to consistently generate valid statements that meet syntactic validity and semantic consistency. To address this issue, we propose the Autoformalizer with Tool Feedback (ATF), a novel approach that incorporates syntactic and consistency information as tools into the formalization process. By integrating Lean 4 compilers for syntax corrections and employing a multi-LLMs-as-judge approach for consistency validation, the model is able to adaptively refine generated statements according to the tool feedback, enhancing both syntactic validity and semantic consistency. The training of ATF involves a cold-start phase on synthetic tool-calling data, an expert iteration phase to improve formalization capabilities, and Direct Preference Optimization to alleviate ineffective revisions. Experimental results show that ATF markedly outperforms a range of baseline formalizer models, with its superior performance further validated by human evaluations. Subsequent analysis reveals that ATF demonstrates excellent inference scaling properties. Moreover, we open-source Numina-ATF, a dataset containing 750K synthetic formal statements to facilitate advancements in autoformalization and ATP research.

  • 11 authors
·
Oct 8

Solving Formal Math Problems by Decomposition and Iterative Reflection

General-purpose Large Language Models (LLMs) have achieved remarkable success in intelligence, performing comparably to human experts on complex reasoning tasks such as coding and mathematical reasoning. However, generating formal proofs in specialized languages like Lean 4 remains a significant challenge for these models, limiting their application in complex theorem proving and automated verification. Current approaches typically require specializing models through fine-tuning on dedicated formal corpora, incurring high costs for data collection and training. In this work, we introduce Delta Prover, an agent-based framework that orchestrates the interaction between a general-purpose LLM and the Lean 4 proof environment. Delta Prover leverages the reflection and reasoning capabilities of general-purpose LLMs to interactively construct formal proofs in Lean 4, circumventing the need for model specialization. At its core, the agent integrates two novel, interdependent components: an algorithmic framework for reflective decomposition and iterative proof repair, and a custom Domain-Specific Language (DSL) built upon Lean 4 for streamlined subproblem management. Delta Prover achieves a state-of-the-art 95.9\% success rate on the miniF2F-test benchmark, surpassing all existing approaches, including those requiring model specialization. Furthermore, Delta Prover exhibits a significantly stronger test-time scaling law compared to standard Best-of-N proof strategies. Crucially, our findings demonstrate that general-purpose LLMs, when guided by an effective agentic structure, possess substantial untapped theorem-proving capabilities. This presents a computationally efficient alternative to specialized models for robust automated reasoning in formal environments.

  • 17 authors
·
Jul 20

Learning Math Reasoning from Self-Sampled Correct and Partially-Correct Solutions

Pretrained language models have shown superior performance on many natural language processing tasks, yet they still struggle at multi-step formal reasoning tasks like grade school math problems. One key challenge of finetuning them to solve such math reasoning problems is that many existing datasets only contain one reference solution for each problem, despite the fact that there are often alternative solutions resembling different reasoning paths to the final answer. This way, the finetuned models are biased towards the limited reference solutions, which limits their generalization to unseen examples. To mitigate this issue, we propose to let the model perform sampling during training and learn from both self-sampled fully-correct solutions, which yield the correct answer upon execution, and partially-correct solutions, whose intermediate state matches an intermediate state of a known correct solution. We show that our use of self-sampled correct and partially-correct solutions can benefit learning and help guide the sampling process, leading to more efficient exploration of the solution space. Additionally, we explore various training objectives to support learning from multiple solutions per example and find they greatly affect the performance. Experiments on two math reasoning datasets show the effectiveness of our method compared to learning from a single reference solution with MLE, where we improve PASS@100 from 35.5% to 44.5% for GSM8K, and 27.6% to 36.2% PASS@80 for MathQA. Such improvements are also consistent across different model sizes. Our code is available at https://github.com/microsoft/TraceCodegen.

  • 7 authors
·
May 27, 2022

Reinforcement Learning with Verifiable yet Noisy Rewards under Imperfect Verifiers

Reinforcement Learning with Verifiable Rewards (RLVR) trains policies against automated verifiers to avoid costly human labeling. To reduce vulnerability to verifier hacking, many RLVR systems collapse rewards to binary {0,1} during training. This choice carries a cost: it introduces false negatives (rejecting correct answers, FNs) and false positives (accepting incorrect ones, FPs). For instance, a rule-based checker may mark the correct fraction 12{36} as wrong when compared against the canonical 1{3} due to brittle parsing/equivalence rules (FN), while a large language model (LLM) judges can be gamed by superficial cues or even a single adversarial token, yielding inflated correctness for wrong solutions (FP). We formalize verifier unreliability by modeling the verifier as a stochastic reward channel with asymmetric noise rates. From this abstraction, we derive two correction algorithms for verifier errors. The first is a backward correction that de-biases the observed binary reward to recover an unbiased estimator of the clean policy gradient. The second is a forward correction that reweights score-function terms so that the expected update direction aligns with the clean gradient; notably, it requires only the FN rate. We implement both as lightweight hooks in a group relative policy optimization (GRPO)-based RLVR pipeline and evaluate them on math-reasoning models and benchmarks. Across models and datasets, both corrections improve over uncorrected training; the forward variant converges faster and remains stable under heavier noise. Finally, we show a practical appeal mechanism in which a lightweight LLM verifier estimates the FN rate online by rechecking rule-based negatives, obtaining outperformance compared with other state-of-the-art contenders.

  • 6 authors
·
Oct 1

Reviving DSP for Advanced Theorem Proving in the Era of Reasoning Models

Recent advancements, such as DeepSeek-Prover-V2-671B and Kimina-Prover-Preview-72B, demonstrate a prevailing trend in leveraging reinforcement learning (RL)-based large-scale training for automated theorem proving. Surprisingly, we discover that even without any training, careful neuro-symbolic coordination of existing off-the-shelf reasoning models and tactic step provers can achieve comparable performance. This paper introduces DSP+, an improved version of the Draft, Sketch, and Prove framework, featuring a fine-grained and integrated neuro-symbolic enhancement for each phase: (1) In the draft phase, we prompt reasoning models to generate concise natural-language subgoals to benefit the sketch phase, removing thinking tokens and references to human-written proofs; (2) In the sketch phase, subgoals are autoformalized with hypotheses to benefit the proving phase, and sketch lines containing syntactic errors are masked according to predefined rules; (3) In the proving phase, we tightly integrate symbolic search methods like Aesop with step provers to establish proofs for the sketch subgoals. Experimental results show that, without any additional model training or fine-tuning, DSP+ solves 80.7\%, 32.8\%, and 24 out of 644 problems from miniF2F, ProofNet, and PutnamBench, respectively, while requiring fewer budgets compared to state-of-the-arts. DSP+ proves imo\_2019\_p1, an IMO problem in miniF2F that is not solved by any prior work. Additionally, DSP+ generates proof patterns comprehensible by human experts, facilitating the identification of formalization errors; For example, eight wrongly formalized statements in miniF2F are discovered. Our results highlight the potential of classical reasoning patterns besides the RL-based training. All components will be open-sourced.

  • 7 authors
·
Jun 13

Scaling up Multi-Turn Off-Policy RL and Multi-Agent Tree Search for LLM Step-Provers

The integration of Large Language Models (LLMs) into automated theorem proving has shown immense promise, yet is fundamentally constrained by challenges in scaling up both training-time reinforcement learning (RL) and inference-time compute. This paper introduces BFS-Prover-V2, a system designed to address this dual scaling problem. We present two primary innovations. The first is a novel multi-turn off-policy RL framework for continually improving the performance of LLM step-prover at training time. This framework, inspired by the principles of AlphaZero, utilizes a multi-stage expert iteration pipeline featuring adaptive tactic-level data filtering and periodic retraining to surmount the performance plateaus that typically curtail long-term RL in LLM-based agents. The second innovation is a planner-enhanced multi-agent search architecture that scales reasoning capabilities at inference time. This architecture employs a general reasoning model as a high-level planner to iteratively decompose complex theorems into a sequence of simpler subgoals. This hierarchical approach substantially reduces the search space, enabling a team of parallel prover agents to collaborate efficiently by leveraging a shared proof cache. We demonstrate that this dual approach to scaling yields state-of-the-art results on established formal mathematics benchmarks. BFS-Prover-V2 achieves 95.08\% and 41.4\% on the MiniF2F and ProofNet test sets respectively. While demonstrated in the domain of formal mathematics, the RL and inference techniques presented in this work are of broader interest and may be applied to other domains requiring long-horizon multi-turn reasoning and complex search.

EconProver: Towards More Economical Test-Time Scaling for Automated Theorem Proving

Large Language Models (LLMs) have recently advanced the field of Automated Theorem Proving (ATP), attaining substantial performance gains through widely adopted test-time scaling strategies, notably reflective Chain-of-Thought (CoT) reasoning and increased sampling passes. However, they both introduce significant computational overhead for inference. Moreover, existing cost analyses typically regulate only the number of sampling passes, while neglecting the substantial disparities in sampling costs introduced by different scaling strategies. In this paper, we systematically compare the efficiency of different test-time scaling strategies for ATP models and demonstrate the inefficiency of the current state-of-the-art (SOTA) open-source approaches. We then investigate approaches to significantly reduce token usage and sample passes while maintaining the original performance. Specifically, we propose two complementary methods that can be integrated into a unified EconRL pipeline for amplified benefits: (1) a dynamic Chain-of-Thought (CoT) switching mechanism designed to mitigate unnecessary token consumption, and (2) Diverse parallel-scaled reinforcement learning (RL) with trainable prefixes to enhance pass rates under constrained sampling passes. Experiments on miniF2F and ProofNet demonstrate that our EconProver achieves comparable performance to baseline methods with only 12% of the computational cost. This work provides actionable insights for deploying lightweight ATP models without sacrificing performance.

  • 8 authors
·
Sep 15 2

Improving LLM Reasoning through Scaling Inference Computation with Collaborative Verification

Despite significant advancements in the general capability of large language models (LLMs), they continue to struggle with consistent and accurate reasoning, especially in complex tasks such as mathematical and code reasoning. One key limitation is that LLMs are trained primarily on correct solutions, reducing their ability to detect and learn from errors, which hampers their ability to reliably verify and rank outputs. To address this, we scale up the inference-time computation by generating multiple reasoning paths and employing verifiers to assess and rank the generated outputs by correctness. To facilitate this, we introduce a comprehensive dataset consisting of correct and incorrect solutions for math and code tasks, generated by multiple LLMs. This diverse set of solutions enables verifiers to more effectively distinguish and rank correct answers from erroneous outputs. The training methods for building verifiers were selected based on an extensive comparison of existing approaches. Moreover, to leverage the unique strengths of different reasoning strategies, we propose a novel collaborative method integrating Chain-of-Thought (CoT) and Program-of-Thought (PoT) solutions for verification. CoT provides a clear, step-by-step reasoning process that enhances interpretability, while PoT, being executable, offers a precise and error-sensitive validation mechanism. By taking both of their strengths, our approach significantly improves the accuracy and reliability of reasoning verification. Our verifiers, Math-Rev and Code-Rev, demonstrate substantial performance gains to existing LLMs, achieving state-of-the-art results on benchmarks such as GSM8k and MATH and even outperforming GPT-4o with Qwen-72B-Instruct as the reasoner.

  • 6 authors
·
Oct 5, 2024

Advancing Process Verification for Large Language Models via Tree-Based Preference Learning

Large Language Models (LLMs) have demonstrated remarkable potential in handling complex reasoning tasks by generating step-by-step rationales.Some methods have proven effective in boosting accuracy by introducing extra verifiers to assess these paths. However, existing verifiers, typically trained on binary-labeled reasoning paths, fail to fully utilize the relative merits of intermediate steps, thereby limiting the effectiveness of the feedback provided. To overcome this limitation, we propose Tree-based Preference Learning Verifier (Tree-PLV), a novel approach that constructs reasoning trees via a best-first search algorithm and collects step-level paired data for preference training. Compared to traditional binary classification, step-level preferences more finely capture the nuances between reasoning steps, allowing for a more precise evaluation of the complete reasoning path. We empirically evaluate Tree-PLV across a range of arithmetic and commonsense reasoning tasks, where it significantly outperforms existing benchmarks. For instance, Tree-PLV achieved substantial performance gains over the Mistral-7B self-consistency baseline on GSM8K (67.55% to 82.79%), MATH (17.00% to 26.80%), CSQA (68.14% to 72.97%), and StrategyQA (82.86% to 83.25%).Additionally, our study explores the appropriate granularity for applying preference learning, revealing that step-level guidance provides feedback that better aligns with the evaluation of the reasoning process.

  • 5 authors
·
Jun 29, 2024

ReFT: Reasoning with Reinforced Fine-Tuning

One way to enhance the reasoning capability of Large Language Models (LLMs) is to conduct Supervised Fine-Tuning (SFT) using Chain-of-Thought (CoT) annotations. This approach does not show sufficiently strong generalization ability, however, because the training only relies on the given CoT data. In math problem-solving, for example, there is usually only one annotated reasoning path for each question in the training data. Intuitively, it would be better for the algorithm to learn from multiple annotated reasoning paths given a question. To address this issue, we propose a simple yet effective approach called Reinforced Fine-Tuning (ReFT) to enhance the generalizability of learning LLMs for reasoning, with math problem-solving as an example. ReFT first warmups the model with SFT, and then employs on-line reinforcement learning, specifically the PPO algorithm in this paper, to further fine-tune the model, where an abundance of reasoning paths are automatically sampled given the question and the rewards are naturally derived from the ground-truth answers. Extensive experiments on GSM8K, MathQA, and SVAMP datasets show that ReFT significantly outperforms SFT, and the performance can be potentially further boosted by combining inference-time strategies such as majority voting and re-ranking. Note that ReFT obtains the improvement by learning from the same training questions as SFT, without relying on extra or augmented training questions. This indicates a superior generalization ability for ReFT.

  • 6 authors
·
Jan 16, 2024 2

Towards Solving More Challenging IMO Problems via Decoupled Reasoning and Proving

Automated Theorem Proving (ATP) in formal languages is a foundational challenge for AI. While Large Language Models (LLMs) have driven remarkable progress, a significant gap remains between their powerful informal reasoning capabilities and their weak formal proving performance. Recent studies show that the informal accuracy exceeds 80% while formal success remains below 8% on benchmarks like PutnamBench. We argue this gap persists because current state-of-the-art provers, by tightly coupling reasoning and proving, are trained with paradigms that inadvertently punish deep reasoning in favor of shallow, tactic-based strategies. To bridge this fundamental gap, we propose a novel framework that decouples high-level reasoning from low-level proof generation. Our approach utilizes two distinct, specialized models: a powerful, general-purpose Reasoner to generate diverse, strategic subgoal lemmas, and an efficient Prover to rigorously verify them. This modular design liberates the model's full reasoning potential and bypasses the pitfalls of end-to-end training. We evaluate our method on a challenging set of post-2000 IMO problems, a problem set on which no prior open-source prover has reported success. Our decoupled framework successfully solves 5 of these problems, demonstrating a significant step towards automated reasoning on exceptionally difficult mathematical challenges. To foster future research, we release our full dataset of generated and verified lemmas for a wide range of IMO problems, available at https://tencent-imo.github.io/ .

GReaTer: Gradients over Reasoning Makes Smaller Language Models Strong Prompt Optimizers

The effectiveness of large language models (LLMs) is closely tied to the design of prompts, making prompt optimization essential for enhancing their performance across a wide range of tasks. Many existing approaches to automating prompt engineering rely exclusively on textual feedback, refining prompts based solely on inference errors identified by large, computationally expensive LLMs. Unfortunately, smaller models struggle to generate high-quality feedback, resulting in complete dependence on large LLM judgment. Moreover, these methods fail to leverage more direct and finer-grained information, such as gradients, due to operating purely in text space. To this end, we introduce GReaTer, a novel prompt optimization technique that directly incorporates gradient information over task-specific reasoning. By utilizing task loss gradients, GReaTer enables self-optimization of prompts for open-source, lightweight language models without the need for costly closed-source LLMs. This allows high-performance prompt optimization without dependence on massive LLMs, closing the gap between smaller models and the sophisticated reasoning often needed for prompt refinement. Extensive evaluations across diverse reasoning tasks including BBH, GSM8k, and FOLIO demonstrate that GReaTer consistently outperforms previous state-of-the-art prompt optimization methods, even those reliant on powerful LLMs. Additionally, GReaTer-optimized prompts frequently exhibit better transferability and, in some cases, boost task performance to levels comparable to or surpassing those achieved by larger language models, highlighting the effectiveness of prompt optimization guided by gradients over reasoning. Code of GReaTer is available at https://github.com/psunlpgroup/GreaTer.

  • 6 authors
·
Dec 12, 2024 3

Self-Critique and Refinement for Faithful Natural Language Explanations

With the rapid development of large language models (LLMs), natural language explanations (NLEs) have become increasingly important for understanding model predictions. However, these explanations often fail to faithfully represent the model's actual reasoning process. While existing work has demonstrated that LLMs can self-critique and refine their initial outputs for various tasks, this capability remains unexplored for improving explanation faithfulness. To address this gap, we introduce Self-critique and Refinement for Natural Language Explanations (SR-NLE), a framework that enables models to improve the faithfulness of their own explanations -- specifically, post-hoc NLEs -- through an iterative critique and refinement process without external supervision. Our framework leverages different feedback mechanisms to guide the refinement process, including natural language self-feedback and, notably, a novel feedback approach based on feature attribution that highlights important input words. Our experiments across three datasets and four state-of-the-art LLMs demonstrate that SR-NLE significantly reduces unfaithfulness rates, with our best method achieving an average unfaithfulness rate of 36.02%, compared to 54.81% for baseline -- an absolute reduction of 18.79%. These findings reveal that the investigated LLMs can indeed refine their explanations to better reflect their actual reasoning process, requiring only appropriate guidance through feedback without additional training or fine-tuning.

  • 2 authors
·
May 28

LLM-based Rewriting of Inappropriate Argumentation using Reinforcement Learning from Machine Feedback

Ensuring that online discussions are civil and productive is a major challenge for social media platforms. Such platforms usually rely both on users and on automated detection tools to flag inappropriate arguments of other users, which moderators then review. However, this kind of post-hoc moderation is expensive and time-consuming, and moderators are often overwhelmed by the amount and severity of flagged content. Instead, a promising alternative is to prevent negative behavior during content creation. This paper studies how inappropriate language in arguments can be computationally mitigated. We propose a reinforcement learning-based rewriting approach that balances content preservation and appropriateness based on existing classifiers, prompting an instruction-finetuned large language model (LLM) as our initial policy. Unlike related style transfer tasks, rewriting inappropriate arguments allows deleting and adding content permanently. It is therefore tackled on document level rather than sentence level. We evaluate different weighting schemes for the reward function in both absolute and relative human assessment studies. Systematic experiments on non-parallel data provide evidence that our approach can mitigate the inappropriateness of arguments while largely preserving their content. It significantly outperforms competitive baselines, including few-shot learning, prompting, and humans.

  • 4 authors
·
Jun 5, 2024

Evaluation of Contrastive Learning with Various Code Representations for Code Clone Detection

Code clones are pairs of code snippets that implement similar functionality. Clone detection is a fundamental branch of automatic source code comprehension, having many applications in refactoring recommendation, plagiarism detection, and code summarization. A particularly interesting case of clone detection is the detection of semantic clones, i.e., code snippets that have the same functionality but significantly differ in implementation. A promising approach to detecting semantic clones is contrastive learning (CL), a machine learning paradigm popular in computer vision but not yet commonly adopted for code processing. Our work aims to evaluate the most popular CL algorithms combined with three source code representations on two tasks. The first task is code clone detection, which we evaluate on the POJ-104 dataset containing implementations of 104 algorithms. The second task is plagiarism detection. To evaluate the models on this task, we introduce CodeTransformator, a tool for transforming source code. We use it to create a dataset that mimics plagiarised code based on competitive programming solutions. We trained nine models for both tasks and compared them with six existing approaches, including traditional tools and modern pre-trained neural models. The results of our evaluation show that proposed models perform diversely in each task, however the performance of the graph-based models is generally above the others. Among CL algorithms, SimCLR and SwAV lead to better results, while Moco is the most robust approach. Our code and trained models are available at https://doi.org/10.5281/zenodo.6360627, https://doi.org/10.5281/zenodo.5596345.

  • 4 authors
·
Jun 17, 2022

SuperCorrect: Supervising and Correcting Language Models with Error-Driven Insights

Large language models (LLMs) like GPT-4, PaLM, and LLaMA have shown significant improvements in various reasoning tasks. However, smaller models such as Llama-3-8B and DeepSeekMath-Base still struggle with complex mathematical reasoning because they fail to effectively identify and correct reasoning errors. Recent reflection-based methods aim to address these issues by enabling self-reflection and self-correction, but they still face challenges in independently detecting errors in their reasoning steps. To overcome these limitations, we propose SuperCorrect, a novel two-stage framework that uses a large teacher model to supervise and correct both the reasoning and reflection processes of a smaller student model. In the first stage, we extract hierarchical high-level and detailed thought templates from the teacher model to guide the student model in eliciting more fine-grained reasoning thoughts. In the second stage, we introduce cross-model collaborative direct preference optimization (DPO) to enhance the self-correction abilities of the student model by following the teacher's correction traces during training. This cross-model DPO approach teaches the student model to effectively locate and resolve erroneous thoughts with error-driven insights from the teacher model, breaking the bottleneck of its thoughts and acquiring new skills and knowledge to tackle challenging problems. Extensive experiments consistently demonstrate our superiority over previous methods. Notably, our SuperCorrect-7B model significantly surpasses powerful DeepSeekMath-7B by 7.8%/5.3% and Qwen2.5-Math-7B by 15.1%/6.3% on MATH/GSM8K benchmarks, achieving new SOTA performance among all 7B models. Code: https://github.com/YangLing0818/SuperCorrect-llm

  • 7 authors
·
Oct 11, 2024 3

MathFimer: Enhancing Mathematical Reasoning by Expanding Reasoning Steps through Fill-in-the-Middle Task

Mathematical reasoning represents a critical frontier in advancing large language models (LLMs). While step-by-step approaches have emerged as the dominant paradigm for mathematical problem-solving in LLMs, the quality of reasoning steps in training data fundamentally constrains the performance of the models. Recent studies has demonstrated that more detailed intermediate steps can enhance model performance, yet existing methods for step expansion either require more powerful external models or incur substantial computational costs. In this paper, we introduce MathFimer, a novel framework for mathematical reasoning step expansion inspired by the "Fill-in-the-middle" task from code completion. By decomposing solution chains into prefix-suffix pairs and training models to reconstruct missing intermediate steps, we develop a specialized model, MathFimer-7B, on our carefully curated NuminaMath-FIM dataset. We then apply these models to enhance existing mathematical reasoning datasets by inserting detailed intermediate steps into their solution chains, creating MathFimer-expanded versions. Through comprehensive experiments on multiple mathematical reasoning datasets, including MathInstruct, MetaMathQA and etc., we demonstrate that models trained on MathFimer-expanded data consistently outperform their counterparts trained on original data across various benchmarks such as GSM8K and MATH. Our approach offers a practical, scalable solution for enhancing mathematical reasoning capabilities in LLMs without relying on powerful external models or expensive inference procedures.

  • 8 authors
·
Feb 17

Rewarding the Unlikely: Lifting GRPO Beyond Distribution Sharpening

Reinforcement learning is emerging as a primary driver for improving language model reasoning capabilities. A fundamental question is whether current reinforcement learning algorithms -- such as Group Relative Policy Optimization (GRPO), the de facto standard algorithm used to improve language model reasoning -- merely sharpen the base model's distribution around problems it can already solve. We investigate this question in the context of formal theorem proving, which has access to a perfect verifier. We identify a degenerate rank bias in GRPO in which highly probable trajectories are reinforced and rare ones are neglected. This results in distribution sharpening: the model can solve some problems with fewer samples, but underperforms simply sampling more solutions from the original model. To overcome GRPO's rank bias we introduce unlikeliness reward, a simple method for explicitly up-weighting rare but correct solutions. We show that unlikeliness reward mitigates rank bias and improves pass@N across a large range of N in both synthetic and real theorem proving settings. We also uncover an unexpected link between rank bias and a seemingly mundane hyperparameter -- the number of updates per batch -- that leads to a second, complementary mitigation. We combine our insights into a revised GRPO training recipe for formal theorem proving, yielding an open pipeline that achieves competitive performance to DeepSeek-Prover-V1.5-RL on the miniF2F-test benchmark. We release our implementation at https://github.com/AndreHe02/rewarding-unlikely-release

  • 3 authors
·
Jun 2

Rewarding Progress: Scaling Automated Process Verifiers for LLM Reasoning

A promising approach for improving reasoning in large language models is to use process reward models (PRMs). PRMs provide feedback at each step of a multi-step reasoning trace, potentially improving credit assignment over outcome reward models (ORMs) that only provide feedback at the final step. However, collecting dense, per-step human labels is not scalable, and training PRMs from automatically-labeled data has thus far led to limited gains. To improve a base policy by running search against a PRM or using it as dense rewards for reinforcement learning (RL), we ask: "How should we design process rewards?". Our key insight is that, to be effective, the process reward for a step should measure progress: a change in the likelihood of producing a correct response in the future, before and after taking the step, corresponding to the notion of step-level advantages in RL. Crucially, this progress should be measured under a prover policy distinct from the base policy. We theoretically characterize the set of good provers and our results show that optimizing process rewards from such provers improves exploration during test-time search and online RL. In fact, our characterization shows that weak prover policies can substantially improve a stronger base policy, which we also observe empirically. We validate our claims by training process advantage verifiers (PAVs) to predict progress under such provers, and show that compared to ORMs, test-time search against PAVs is >8% more accurate, and 1.5-5times more compute-efficient. Online RL with dense rewards from PAVs enables one of the first results with 5-6times gain in sample efficiency, and >6% gain in accuracy, over ORMs.

  • 9 authors
·
Oct 10, 2024

Foundational Automatic Evaluators: Scaling Multi-Task Generative Evaluator Training for Reasoning-Centric Domains

Finetuning specialized generative evaluators has emerged as a popular paradigm to meet the increasing demand for scalable evaluation during both training and test-time. However, recent work has largely focused on applying new methodology, such as reinforcement learning (RL), to training evaluators, shying away from large-scale, data-driven development. In this work, we focus on data scaling, curating a set of 2.5M samples spanning five unique evaluation tasks (pairwise, step-level, reference-free and reference-based verification, and single rating) and multiple domains focused on reasoning evaluation. With our data, we train Foundational Automatic Reasoning Evaluators (FARE), a family of 8B and 20B (with 3.6B active) parameter evaluators, with a simple iterative rejection-sampling supervised finetuning (SFT) approach. FARE-8B challenges larger specialized RL-trained evaluators and FARE-20B sets the new standard for open-source evaluators, surpassing specialized 70B+ evaluators. Beyond static benchmarks, we evaluate FARE in real-world tasks: As inference-time rerankers, FARE-20B achieves near-oracle performance on MATH. As verifiers in RL training, FARE improves the downstream RL-trained model performance by up to 14.1% vs. string-matching verifiers. When initialized from FARE, a continually-finetuned FARE-Code outperforms gpt-oss-20B by 65% on evaluating test-case quality.

Salesforce Salesforce
·
Oct 20 2

Test-Time Scaling of Reasoning Models for Machine Translation

Test-time scaling (TTS) has enhanced the performance of Reasoning Models (RMs) on various tasks such as math and coding, yet its efficacy in machine translation (MT) remains underexplored. This paper investigates whether increased inference-time computation improves translation quality. We evaluate 12 RMs across a diverse suite of MT benchmarks spanning multiple domains, examining three scenarios: direct translation, forced-reasoning extrapolation, and post-editing. Our findings show that for general-purpose RMs, TTS provides limited and inconsistent benefits for direct translation, with performance quickly plateauing. However, the effectiveness of TTS is unlocked by domain-specific fine-tuning, which aligns a model's reasoning process with task requirements, leading to consistent improvements up to an optimal, self-determined reasoning depth. We also find that forcing a model to reason beyond its natural stopping point consistently degrades translation quality. In contrast, TTS proves highly effective in a post-editing context, reliably turning self-correction into a beneficial process. These results indicate that the value of inference-time computation in MT lies not in enhancing single-pass translation with general models, but in targeted applications like multi-step, self-correction workflows and in conjunction with task-specialized models.

FVEL: Interactive Formal Verification Environment with Large Language Models via Theorem Proving

Formal verification (FV) has witnessed growing significance with current emerging program synthesis by the evolving large language models (LLMs). However, current formal verification mainly resorts to symbolic verifiers or hand-craft rules, resulting in limitations for extensive and flexible verification. On the other hand, formal languages for automated theorem proving, such as Isabelle, as another line of rigorous verification, are maintained with comprehensive rules and theorems. In this paper, we propose FVEL, an interactive Formal Verification Environment with LLMs. Specifically, FVEL transforms a given code to be verified into Isabelle, and then conducts verification via neural automated theorem proving with an LLM. The joined paradigm leverages the rigorous yet abundant formulated and organized rules in Isabelle and is also convenient for introducing and adjusting cutting-edge LLMs. To achieve this goal, we extract a large-scale FVELER3. The FVELER dataset includes code dependencies and verification processes that are formulated in Isabelle, containing 758 theories, 29,125 lemmas, and 200,646 proof steps in total with in-depth dependencies. We benchmark FVELER in the FVEL environment by first fine-tuning LLMs with FVELER and then evaluating them on Code2Inv and SV-COMP. The results show that FVEL with FVELER fine-tuned Llama3- 8B solves 17.39% (69 -> 81) more problems, and Mistral-7B 12% (75 -> 84) more problems in SV-COMP. And the proportion of proof errors is reduced. Project page: https://fveler.github.io/.

  • 8 authors
·
Jun 20, 2024

Klear-Reasoner: Advancing Reasoning Capability via Gradient-Preserving Clipping Policy Optimization

We present Klear-Reasoner, a model with long reasoning capabilities that demonstrates careful deliberation during problem solving, achieving outstanding performance across multiple benchmarks. Although there are already many excellent works related to inference models in the current community, there are still many problems with reproducing high-performance inference models due to incomplete disclosure of training details. This report provides an in-depth analysis of the reasoning model, covering the entire post-training workflow from data preparation and long Chain-of-Thought supervised fine-tuning (long CoT SFT) to reinforcement learning (RL), along with detailed ablation studies for each experimental component. For SFT data, our experiments show that a small number of high-quality data sources are more effective than a large number of diverse data sources, and that difficult samples can achieve better results without accuracy filtering. In addition, we investigate two key issues with current clipping mechanisms in RL: Clipping suppresses critical exploration signals and ignores suboptimal trajectories. To address these challenges, we propose Gradient-Preserving clipping Policy Optimization (GPPO) that gently backpropagates gradients from clipped tokens. GPPO not only enhances the model's exploration capacity but also improves its efficiency in learning from negative samples. Klear-Reasoner exhibits exceptional reasoning abilities in mathematics and programming, scoring 90.5\% on AIME 2024, 83.2\% on AIME 2025, 66.0\% on LiveCodeBench V5 and 58.1\% on LiveCodeBench V6.

  • 8 authors
·
Aug 11 4

ReasonRank: Empowering Passage Ranking with Strong Reasoning Ability

Large Language Model (LLM) based listwise ranking has shown superior performance in many passage ranking tasks. With the development of Large Reasoning Models, many studies have demonstrated that step-by-step reasoning during test-time helps improve listwise ranking performance. However, due to the scarcity of reasoning-intensive training data, existing rerankers perform poorly in many complex ranking scenarios and the ranking ability of reasoning-intensive rerankers remains largely underdeveloped. In this paper, we first propose an automated reasoning-intensive training data synthesis framework, which sources training queries and passages from diverse domains and applies DeepSeek-R1 to generate high-quality training labels. A self-consistency data filtering mechanism is designed to ensure the data quality. To empower the listwise reranker with strong reasoning ability, we further propose a two-stage post-training approach, which includes a cold-start supervised fine-tuning (SFT) stage for reasoning pattern learning and a reinforcement learning (RL) stage for further ranking ability enhancement. During the RL stage, based on the nature of listwise ranking, we design a multi-view ranking reward, which is more effective than a ranking metric-based reward. Extensive experiments demonstrate that our trained reasoning-intensive reranker ReasonRank outperforms existing baselines significantly and also achieves much lower latency than pointwise reranker Rank1. Through further experiments, our ReasonRank has achieved state-of-the-art (SOTA) performance 40.6 on the BRIGHT leaderboard\footnote{https://brightbenchmark.github.io/.} Our codes are available at https://github.com/8421BCD/ReasonRank.

  • 7 authors
·
Aug 9 4

One Example Shown, Many Concepts Known! Counterexample-Driven Conceptual Reasoning in Mathematical LLMs

Leveraging mathematical Large Language Models (LLMs) for proof generation is a fundamental topic in LLMs research. We argue that the ability of current LLMs to prove statements largely depends on whether they have encountered the relevant proof process during training. This reliance limits their deeper understanding of mathematical theorems and related concepts. Inspired by the pedagogical method of "proof by counterexamples" commonly used in human mathematics education, our work aims to enhance LLMs' ability to conduct mathematical reasoning and proof through counterexamples. Specifically, we manually create a high-quality, university-level mathematical benchmark, CounterMATH, which requires LLMs to prove mathematical statements by providing counterexamples, thereby assessing their grasp of mathematical concepts. Additionally, we develop a data engineering framework to automatically obtain training data for further model improvement. Extensive experiments and detailed analyses demonstrate that CounterMATH is challenging, indicating that LLMs, such as OpenAI o1, have insufficient counterexample-driven proof capabilities. Moreover, our exploration into model training reveals that strengthening LLMs' counterexample-driven conceptual reasoning abilities is crucial for improving their overall mathematical capabilities. We believe that our work offers new perspectives on the community of mathematical LLMs.

Critique-Coder: Enhancing Coder Models by Critique Reinforcement Learning

Reinforcement Learning (RL) has emerged as a popular training paradigm, particularly when paired with reasoning models. While effective, it primarily focuses on generating responses and lacks mechanisms to explicitly foster critique or reflection. Several recent studies, like Critique-Fine-Tuning (CFT) and Critique-Guided-Distillation (CGD) have shown the benefits of explicitly teaching LLMs how to critique. Motivated by them, we propose Critique Reinforcement Learning (CRL), where the model is tasked with generating a critique for a given (question, solution) pair. The reward is determined solely by whether the final judgment label c in {True, False} of the generated critique aligns with the ground-truth judgment c^*. Building on this point, we introduce Critique-Coder, which is trained on a hybrid of RL and CRL by substituting 20\% of the standard RL data with CRL data. We fine-tune multiple models (Critique-Coder) and evaluate them on different benchmarks to show their advantages over RL-only models. We show that Critique-Coder consistently outperforms RL-only baselines on all the evaluated benchmarks. Notably, our Critique-Coder-8B can reach over 60\% on LiveCodeBench (v5), outperforming other reasoning models like DeepCoder-14B and GPT-o1. Beyond code generation, Critique-Coder also demonstrates enhanced general reasoning abilities, as evidenced by its better performance on logic reasoning tasks from the BBEH dataset. This indicates that the application of CRL on coding datasets enhances general reasoning and critique abilities, which are transferable across a broad range of tasks. Hence, we believe that CRL works as a great complement to standard RL for LLM reasoning.

TIGER-Lab TIGER-Lab
·
Sep 26 2

Reverse Thinking Makes LLMs Stronger Reasoners

Reverse thinking plays a crucial role in human reasoning. Humans can reason not only from a problem to a solution but also in reverse, i.e., start from the solution and reason towards the problem. This often enhances overall reasoning performance as it enables consistency checks between their forward and backward thinking. To enable Large Language Models (LLMs) to perform reverse thinking, we introduce Reverse-Enhanced Thinking (RevThink), a framework composed of data augmentation and learning objectives. In RevThink, we augment the dataset by collecting structured forward-backward reasoning from a teacher model, consisting of: (1) the original question, (2) forward reasoning, (3) backward question, and (4) backward reasoning. We then employ three objectives to train a smaller student model in a multi-task learning fashion: (a) generate forward reasoning from a question, (b) generate a backward question from a question, and (c) generate backward reasoning from the backward question. Experiments across 12 datasets covering commonsense, math, and logical reasoning show an average 13.53% improvement over the student model's zero-shot performance and a 6.84% improvement over the strongest knowledge distillation baselines. Moreover, our method demonstrates sample efficiency -- using only 10% of the correct forward reasoning from the training data, it outperforms a standard fine-tuning method trained on 10x more forward reasoning. RevThink also exhibits strong generalization to out-of-distribution held-out datasets.

  • 11 authors
·
Nov 29, 2024 2

Self-Improvement in Language Models: The Sharpening Mechanism

Recent work in language modeling has raised the possibility of self-improvement, where a language models evaluates and refines its own generations to achieve higher performance without external feedback. It is impossible for this self-improvement to create information that is not already in the model, so why should we expect that this will lead to improved capabilities? We offer a new perspective on the capabilities of self-improvement through a lens we refer to as sharpening. Motivated by the observation that language models are often better at verifying response quality than they are at generating correct responses, we formalize self-improvement as using the model itself as a verifier during post-training in order to ``sharpen'' the model to one placing large mass on high-quality sequences, thereby amortizing the expensive inference-time computation of generating good sequences. We begin by introducing a new statistical framework for sharpening in which the learner aims to sharpen a pre-trained base policy via sample access, and establish fundamental limits. Then we analyze two natural families of self-improvement algorithms based on SFT and RLHF. We find that (i) the SFT-based approach is minimax optimal whenever the initial model has sufficient coverage, but (ii) the RLHF-based approach can improve over SFT-based self-improvement by leveraging online exploration, bypassing the need for coverage. Finally, we empirically validate the sharpening mechanism via inference-time and amortization experiments. We view these findings as a starting point toward a foundational understanding that can guide the design and evaluation of self-improvement algorithms.

  • 8 authors
·
Dec 2, 2024

ReARTeR: Retrieval-Augmented Reasoning with Trustworthy Process Rewarding

Retrieval-Augmented Generation (RAG) systems for Large Language Models (LLMs) hold promise in knowledge-intensive tasks but face limitations in complex multi-step reasoning. While recent methods have integrated RAG with chain-of-thought reasoning or test-time search using Process Reward Models (PRMs), these approaches encounter challenges such as a lack of explanations, bias in PRM training data, early-step bias in PRM scores, and insufficient post-training optimization of reasoning potential. To address these issues, we propose Retrieval-Augmented Reasoning through Trustworthy Process Rewarding (ReARTeR), a framework that enhances RAG systems' reasoning capabilities through post-training and test-time scaling. At test time, ReARTeR introduces Trustworthy Process Rewarding via a Process Reward Model for accurate scalar scoring and a Process Explanation Model (PEM) for generating natural language explanations, enabling step refinement. During post-training, it utilizes Monte Carlo Tree Search guided by Trustworthy Process Rewarding to collect high-quality step-level preference data, optimized through Iterative Preference Optimization. ReARTeR addresses three core challenges: (1) misalignment between PRM and PEM, tackled through off-policy preference learning; (2) bias in PRM training data, mitigated by balanced annotation methods and stronger annotations for challenging examples; and (3) early-step bias in PRM, resolved through a temporal-difference-based look-ahead search strategy. Experimental results on multi-step reasoning benchmarks demonstrate significant improvements, underscoring ReARTeR's potential to advance the reasoning capabilities of RAG systems.

  • 9 authors
·
Jan 14

Satori-SWE: Evolutionary Test-Time Scaling for Sample-Efficient Software Engineering

Language models (LMs) perform well on standardized coding benchmarks but struggle with real-world software engineering tasks such as resolving GitHub issues in SWE-Bench, especially when model parameters are less than 100B. While smaller models are preferable in practice due to their lower computational cost, improving their performance remains challenging. Existing approaches primarily rely on supervised fine-tuning (SFT) with high-quality data, which is expensive to curate at scale. An alternative is test-time scaling: generating multiple outputs, scoring them using a verifier, and selecting the best one. Although effective, this strategy often requires excessive sampling and costly scoring, limiting its practical application. We propose Evolutionary Test-Time Scaling (EvoScale), a sample-efficient method that treats generation as an evolutionary process. By iteratively refining outputs via selection and mutation, EvoScale shifts the output distribution toward higher-scoring regions, reducing the number of samples needed to find correct solutions. To reduce the overhead from repeatedly sampling and selection, we train the model to self-evolve using reinforcement learning (RL). Rather than relying on external verifiers at inference time, the model learns to self-improve the scores of its own generations across iterations. Evaluated on SWE-Bench-Verified, EvoScale enables our 32B model, Satori-SWE-32B, to match or exceed the performance of models with over 100B parameters while using a few samples. Code, data, and models will be fully open-sourced.

  • 11 authors
·
May 29 2

THOR: Tool-Integrated Hierarchical Optimization via RL for Mathematical Reasoning

Large Language Models (LLMs) have made remarkable progress in mathematical reasoning, but still continue to struggle with high-precision tasks like numerical computation and formal symbolic manipulation. Integrating external tools has emerged as a promising approach to bridge this gap. Despite recent advances, existing methods struggle with three key challenges: constructing tool-integrated reasoning data, performing fine-grained optimization, and enhancing inference. To overcome these limitations, we propose THOR (Tool-Integrated Hierarchical Optimization via RL). First, we introduce TIRGen, a multi-agent actor-critic-based pipeline for constructing high-quality datasets of tool-integrated reasoning paths, aligning with the policy and generalizing well across diverse models. Second, to perform fine-grained hierarchical optimization, we introduce an RL strategy that jointly optimizes for both trajectory-level problem solving and step-level code generation. This is motivated by our key insight that the success of an intermediate tool call is a strong predictor of the final answer's correctness. Finally, THOR incorporates a self-correction mechanism that leverages immediate tool feedback to dynamically revise erroneous reasoning paths during inference. Our approach demonstrates strong generalization across diverse models, performing effectively in both reasoning and non-reasoning models. It further achieves state-of-the-art performance for models of a similar scale on multiple mathematical benchmarks, while also delivering consistent improvements on code benchmarks. Our code will be publicly available at https://github.com/JingMog/THOR.

  • 9 authors
·
Sep 17 2

Beyond Memorization: Reasoning-Driven Synthesis as a Mitigation Strategy Against Benchmark Contamination

Capability evaluation of large language models (LLMs) is increasingly shadowed by rising concerns of data contamination that cast doubts on whether static benchmarks measure genuine reasoning or mere memorization. We present an empirical study using an infinitely scalable framework to synthesize research-level QA directly from arXiv papers, harnessing the natural temporal structure of research publications where performance decay after knowledge cutoffs may indicate potential contamination. We evaluated 4 frontier model represented by 2 models of different knowledge cutoff dates per family on 1,643 multi-step reasoning questions synthesized from 20,277 arXiv papers stratified over 26 months, covering at least 6 months before and after all cutoff dates. Our results consistently showed a lack of significant performance decay near knowledge cutoff dates for models of various sizes, developers, and release dates. We further performed a comparative analysis with previous longitudinal studies that reported significant post-cutoff performance decay using directly retrieved questions based on public data. we hypothesize that the multi-step reasoning required by our synthesis pipeline offered additional complexity that goes deeper than shallow memorization, which effectively serves a mitigation strategy against benchmark contamination. We fully open source our code and dataset to aid reproducibility and advocate for a paradigm shift that prioritize reasoning-driven synthesis to construct benchmarks over simply collecting newly released questions periodically.

  • 9 authors
·
Aug 26

Posterior-GRPO: Rewarding Reasoning Processes in Code Generation

Reinforcement learning (RL) has significantly advanced code generation for large language models (LLMs). However, current paradigms rely on outcome-based rewards from test cases, neglecting the quality of the intermediate reasoning process. While supervising the reasoning process directly is a promising direction, it is highly susceptible to reward hacking, where the policy model learns to exploit the reasoning reward signal without improving final outcomes. To address this, we introduce a unified framework that can effectively incorporate the quality of the reasoning process during RL. First, to enable reasoning evaluation, we develop LCB-RB, a benchmark comprising preference pairs of superior and inferior reasoning processes. Second, to accurately score reasoning quality, we introduce an Optimized-Degraded based (OD-based) method for reward model training. This method generates high-quality preference pairs by systematically optimizing and degrading initial reasoning paths along curated dimensions of reasoning quality, such as factual accuracy, logical rigor, and coherence. A 7B parameter reward model with this method achieves state-of-the-art (SOTA) performance on LCB-RB and generalizes well to other benchmarks. Finally, we introduce Posterior-GRPO (P-GRPO), a novel RL method that conditions process-based rewards on task success. By selectively applying rewards to the reasoning processes of only successful outcomes, P-GRPO effectively mitigates reward hacking and aligns the model's internal reasoning with final code correctness. A 7B parameter model with P-GRPO achieves superior performance across diverse code generation tasks, outperforming outcome-only baselines by 4.5%, achieving comparable performance to GPT-4-Turbo. We further demonstrate the generalizability of our approach by extending it to mathematical tasks. Our models, dataset, and code are publicly available.

  • 4 authors
·
Aug 7