Get trending papers in your email inbox once a day!
Get trending papers in your email inbox!
SubscribeMasked Thought: Simply Masking Partial Reasoning Steps Can Improve Mathematical Reasoning Learning of Language Models
In reasoning tasks, even a minor error can cascade into inaccurate results, leading to suboptimal performance of large language models in such domains. Earlier fine-tuning approaches sought to mitigate this by leveraging more precise supervisory signals from human labeling, larger models, or self-sampling, although at a high cost. Conversely, we develop a method that avoids external resources, relying instead on introducing perturbations to the input. Our training approach randomly masks certain tokens within the chain of thought, a technique we found to be particularly effective for reasoning tasks. When applied to fine-tuning with GSM8K, this method achieved a 5% improvement in accuracy over standard supervised fine-tuning with a few codes modified and no additional labeling effort. Furthermore, it is complementary to existing methods. When integrated with related data augmentation methods, it leads to an average improvement of 3% improvement in GSM8K accuracy and 1% improvement in MATH accuracy across five datasets of various quality and size, as well as two base models. We further investigate the mechanisms behind this improvement through case studies and quantitative analysis, suggesting that our approach may provide superior support for the model in capturing long-distance dependencies, especially those related to questions. This enhancement could deepen understanding of premises in questions and prior steps. Our code is available at Github.
Thinking Preference Optimization
Supervised Fine-Tuning (SFT) has been a go-to and effective method for enhancing long chain-of-thought (CoT) reasoning in relatively small LLMs by fine-tuning them with long CoT responses from larger LLMs. To continually improve reasoning abilities, we can either collect new high-quality long CoT reasoning SFT data or repeatedly train on existing SFT datasets. However, acquiring new long CoT SFT data is costly and limited, while repeated training often results in a performance plateau or decline. To further boost the performance with the SFT data, we propose Thinking Preference Optimization (ThinkPO), a simple yet effective post-SFT method that enhances long CoT reasoning without requiring new long CoT responses. Instead, ThinkPO utilizes readily available or easily obtainable short CoT reasoning responses as rejected answers and long CoT responses as chosen answers for the same question. It then applies direct preference optimization to encourage the model to favor longer reasoning outputs. Experiments show that ThinkPO further improves the reasoning performance of SFT-ed models, e.g. it increases math reasoning accuracy of SFT-ed models by 8.6% and output length by 25.9%. Notably, ThinkPO is capable of continually boosting the performance of the publicly distilled SFT model, e.g., increasing the official DeepSeek-R1-Distill-Qwen-7B's performance on MATH500 from 87.4% to 91.2%.
EvoAgentX: An Automated Framework for Evolving Agentic Workflows
Multi-agent systems (MAS) have emerged as a powerful paradigm for orchestrating large language models (LLMs) and specialized tools to collaboratively address complex tasks. However, existing MAS frameworks often require manual workflow configuration and lack native support for dynamic evolution and performance optimization. In addition, many MAS optimization algorithms are not integrated into a unified framework. In this paper, we present EvoAgentX, an open-source platform that automates the generation, execution, and evolutionary optimization of multi-agent workflows. EvoAgentX employs a modular architecture consisting of five core layers: the basic components, agent, workflow, evolving, and evaluation layers. Specifically, within the evolving layer, EvoAgentX integrates three MAS optimization algorithms, TextGrad, AFlow, and MIPRO, to iteratively refine agent prompts, tool configurations, and workflow topologies. We evaluate EvoAgentX on HotPotQA, MBPP, and MATH for multi-hop reasoning, code generation, and mathematical problem solving, respectively, and further assess it on real-world tasks using GAIA. Experimental results show that EvoAgentX consistently achieves significant performance improvements, including a 7.44% increase in HotPotQA F1, a 10.00% improvement in MBPP pass@1, a 10.00% gain in MATH solve accuracy, and an overall accuracy improvement of up to 20.00% on GAIA. The source code is available at: https://github.com/EvoAgentX/EvoAgentX
Boosting LLM Reasoning via Spontaneous Self-Correction
While large language models (LLMs) have demonstrated remarkable success on a broad range of tasks, math reasoning remains a challenging one. One of the approaches for improving math reasoning is self-correction, which designs self-improving loops to let the model correct its own mistakes. However, existing self-correction approaches treat corrections as standalone post-generation refinements, relying on extra prompt and system designs to elicit self-corrections, instead of performing real-time, spontaneous self-corrections in a single pass. To address this, we propose SPOC, a spontaneous self-correction approach that enables LLMs to generate interleaved solutions and verifications in a single inference pass, with generation dynamically terminated based on verification outcomes, thereby effectively scaling inference time compute. SPOC considers a multi-agent perspective by assigning dual roles -- solution proposer and verifier -- to the same model. We adopt a simple yet effective approach to generate synthetic data for fine-tuning, enabling the model to develop capabilities for self-verification and multi-agent collaboration. We further improve its solution proposal and verification accuracy through online reinforcement learning. Experiments on mathematical reasoning benchmarks show that SPOC significantly improves performance. Notably, SPOC boosts the accuracy of Llama-3.1-8B and 70B Instruct models, achieving gains of 8.8% and 11.6% on MATH500, 10.0% and 20.0% on AMC23, and 3.3% and 6.7% on AIME24, respectively.
Measuring Mathematical Problem Solving With the MATH Dataset
Many intellectual endeavors require mathematical problem solving, but this skill remains beyond the capabilities of computers. To measure this ability in machine learning models, we introduce MATH, a new dataset of 12,500 challenging competition mathematics problems. Each problem in MATH has a full step-by-step solution which can be used to teach models to generate answer derivations and explanations. To facilitate future research and increase accuracy on MATH, we also contribute a large auxiliary pretraining dataset which helps teach models the fundamentals of mathematics. Even though we are able to increase accuracy on MATH, our results show that accuracy remains relatively low, even with enormous Transformer models. Moreover, we find that simply increasing budgets and model parameter counts will be impractical for achieving strong mathematical reasoning if scaling trends continue. While scaling Transformers is automatically solving most other text-based tasks, scaling is not currently solving MATH. To have more traction on mathematical problem solving we will likely need new algorithmic advancements from the broader research community.
Math-Shepherd: Verify and Reinforce LLMs Step-by-step without Human Annotations
In this paper, we present an innovative process-oriented math process reward model called Math-Shepherd, which assigns a reward score to each step of math problem solutions. The training of Math-Shepherd is achieved using automatically constructed process-wise supervision data, breaking the bottleneck of heavy reliance on manual annotation in existing work. We explore the effectiveness of Math-Shepherd in two scenarios: 1) Verification: Math-Shepherd is utilized for reranking multiple outputs generated by Large Language Models (LLMs); 2) Reinforcement Learning: Math-Shepherd is employed to reinforce LLMs with step-by-step Proximal Policy Optimization (PPO). With Math-Shepherd, a series of open-source LLMs demonstrates exceptional performance. For instance, the step-by-step PPO with Math-Shepherd significantly improves the accuracy of Mistral-7B (77.9\%to84.1\% on GSM8K and 28.6\%to33.0\% on MATH). The accuracy can be further enhanced to 89.1\% and 43.5\% on GSM8K and MATH with the verification of Math-Shepherd, respectively. We believe that automatic process supervision holds significant potential for the future evolution of LLMs.
Solving Challenging Math Word Problems Using GPT-4 Code Interpreter with Code-based Self-Verification
Recent progress in large language models (LLMs) like GPT-4 and PaLM-2 has brought significant advancements in addressing math reasoning problems. In particular, OpenAI's latest version of GPT-4, known as GPT-4 Code Interpreter, shows remarkable performance on challenging math datasets. In this paper, we explore the effect of code on enhancing LLMs' reasoning capability by introducing different constraints on the Code Usage Frequency of GPT-4 Code Interpreter. We found that its success can be largely attributed to its powerful skills in generating and executing code, evaluating the output of code execution, and rectifying its solution when receiving unreasonable outputs. Based on this insight, we propose a novel and effective prompting method, explicit code-based self-verification~(CSV), to further boost the mathematical reasoning potential of GPT-4 Code Interpreter. This method employs a zero-shot prompt on GPT-4 Code Interpreter to encourage it to use code to self-verify its answers. In instances where the verification state registers as ``False'', the model shall automatically amend its solution, analogous to our approach of rectifying errors during a mathematics examination. Furthermore, we recognize that the states of the verification result indicate the confidence of a solution, which can improve the effectiveness of majority voting. With GPT-4 Code Interpreter and CSV, we achieve an impressive zero-shot accuracy on MATH dataset (53.9\% to 84.3\%).
SBI-RAG: Enhancing Math Word Problem Solving for Students through Schema-Based Instruction and Retrieval-Augmented Generation
Many students struggle with math word problems (MWPs), often finding it difficult to identify key information and select the appropriate mathematical operations.Schema-based instruction (SBI) is an evidence-based strategy that helps students categorize problems based on their structure, improving problem-solving accuracy. Building on this, we propose a Schema-Based Instruction Retrieval-Augmented Generation (SBI-RAG) framework that incorporates a large language model (LLM).Our approach emphasizes step-by-step reasoning by leveraging schemas to guide solution generation. We evaluate its performance on the GSM8K dataset, comparing it with GPT-4 and GPT-3.5 Turbo, and introduce a "reasoning score" metric to assess solution quality. Our findings suggest that SBI-RAG enhances reasoning clarity and problem-solving accuracy, potentially providing educational benefits for students
Augmenting Math Word Problems via Iterative Question Composing
Despite recent progress in improving the mathematical reasoning ability of large language models(LLMs), solving competition-level math problems without the use of external tools remains challenging for open-source LLMs. In this work, we introduce the MMIQC dataset, a mixture of processed web data and synthetic question-response pairs, to equip base models with better mathematical reasoning skills. Mistral-7B-MMIQC, the model obtained by fine-tuning Mistral-7B(arXiv:2310.06825) on MMIQC, achieves 36.0\% accuracy on MATH(arXiv:2103.03874), 5.8\% higher than the previous (model size sim7B) SOTA. Our experiments also show that a large part of the improvement attributes to our novel augmentation method IQC(Iterative Question Composing), where we iteratively ask an LLM to compose new questions from the given seed problems and do rejection sampling from another LLM. MMIQC has now been released on https://huggingface.co/datasets/Vivacem/MMIQC.
MAmmoTH: Building Math Generalist Models through Hybrid Instruction Tuning
We introduce MAmmoTH, a series of open-source large language models (LLMs) specifically tailored for general math problem-solving. The MAmmoTH models are trained on MathInstruct, our meticulously curated instruction tuning dataset. MathInstruct is compiled from 13 math datasets with intermediate rationales, six of which have rationales newly curated by us. It presents a unique hybrid of chain-of-thought (CoT) and program-of-thought (PoT) rationales, and also ensures extensive coverage of diverse fields in math. The hybrid of CoT and PoT not only unleashes the potential of tool use but also allows different thought processes for different math problems. As a result, the MAmmoTH series substantially outperform existing open-source models on nine mathematical reasoning datasets across all scales with an average accuracy gain between 13% and 29%. Remarkably, our MAmmoTH-7B model reaches 35% on MATH (a competition-level dataset), which exceeds the best open-source 7B model (WizardMath) by 25%, and the MAmmoTH-34B model achieves 46% accuracy on MATH, even surpassing GPT-4's CoT result. Our work underscores the importance of diverse problem coverage and the use of hybrid rationales in developing superior math generalist models.
A Graph-Based Synthetic Data Pipeline for Scaling High-Quality Reasoning Instructions
Synthesizing high-quality reasoning data for continual training has been proven to be effective in enhancing the performance of Large Language Models (LLMs). However, previous synthetic approaches struggle to easily scale up data and incur high costs in the pursuit of high quality. In this paper, we propose the Graph-based Synthetic Data Pipeline (GSDP), an economical and scalable framework for high-quality reasoning data synthesis. Inspired by knowledge graphs, we extracted knowledge points from seed data and constructed a knowledge point relationships graph to explore their interconnections. By exploring the implicit relationships among knowledge, our method achieves times255 data expansion. Furthermore, GSDP led by open-source models, achieves synthesis quality comparable to GPT-4-0613 while maintaining times100 lower costs. To tackle the most challenging mathematical reasoning task, we present the GSDP-MATH dataset comprising over 1.91 million pairs of math problems and answers. After fine-tuning on GSDP-MATH, GSDP-7B based on Mistral-7B achieves 37.7% accuracy on MATH and 78.4% on GSM8K, demonstrating the effectiveness of our method. The dataset and models trained in this paper will be available.
Exploring the Limit of Outcome Reward for Learning Mathematical Reasoning
Reasoning abilities, especially those for solving complex math problems, are crucial components of general intelligence. Recent advances by proprietary companies, such as o-series models of OpenAI, have made remarkable progress on reasoning tasks. However, the complete technical details remain unrevealed, and the techniques that are believed certainly to be adopted are only reinforcement learning (RL) and the long chain of thoughts. This paper proposes a new RL framework, termed OREAL, to pursue the performance limit that can be achieved through Outcome REwArd-based reinforcement Learning for mathematical reasoning tasks, where only binary outcome rewards are easily accessible. We theoretically prove that behavior cloning on positive trajectories from best-of-N (BoN) sampling is sufficient to learn the KL-regularized optimal policy in binary feedback environments. This formulation further implies that the rewards of negative samples should be reshaped to ensure the gradient consistency between positive and negative samples. To alleviate the long-existing difficulties brought by sparse rewards in RL, which are even exacerbated by the partial correctness of the long chain of thought for reasoning tasks, we further apply a token-level reward model to sample important tokens in reasoning trajectories for learning. With OREAL, for the first time, a 7B model can obtain 94.0 pass@1 accuracy on MATH-500 through RL, being on par with 32B models. OREAL-32B also surpasses previous 32B models trained by distillation with 95.0 pass@1 accuracy on MATH-500. Our investigation also indicates the importance of initial policy models and training queries for RL. Code, models, and data will be released to benefit future researchhttps://github.com/InternLM/OREAL.
Step-DPO: Step-wise Preference Optimization for Long-chain Reasoning of LLMs
Mathematical reasoning presents a significant challenge for Large Language Models (LLMs) due to the extensive and precise chain of reasoning required for accuracy. Ensuring the correctness of each reasoning step is critical. To address this, we aim to enhance the robustness and factuality of LLMs by learning from human feedback. However, Direct Preference Optimization (DPO) has shown limited benefits for long-chain mathematical reasoning, as models employing DPO struggle to identify detailed errors in incorrect answers. This limitation stems from a lack of fine-grained process supervision. We propose a simple, effective, and data-efficient method called Step-DPO, which treats individual reasoning steps as units for preference optimization rather than evaluating answers holistically. Additionally, we have developed a data construction pipeline for Step-DPO, enabling the creation of a high-quality dataset containing 10K step-wise preference pairs. We also observe that in DPO, self-generated data is more effective than data generated by humans or GPT-4, due to the latter's out-of-distribution nature. Our findings demonstrate that as few as 10K preference data pairs and fewer than 500 Step-DPO training steps can yield a nearly 3% gain in accuracy on MATH for models with over 70B parameters. Notably, Step-DPO, when applied to Qwen2-72B-Instruct, achieves scores of 70.8% and 94.0% on the test sets of MATH and GSM8K, respectively, surpassing a series of closed-source models, including GPT-4-1106, Claude-3-Opus, and Gemini-1.5-Pro. Our code, data, and models are available at https://github.com/dvlab-research/Step-DPO.
Faster and Better LLMs via Latency-Aware Test-Time Scaling
Test-Time Scaling (TTS) has proven effective in improving the performance of Large Language Models (LLMs) during inference. However, existing research has overlooked the efficiency of TTS from a latency-sensitive perspective. Through a latency-aware evaluation of representative TTS methods, we demonstrate that a compute-optimal TTS does not always result in the lowest latency in scenarios where latency is critical. To address this gap and achieve latency-optimal TTS, we propose two key approaches by optimizing the concurrency configurations: (1) branch-wise parallelism, which leverages multiple concurrent inference branches, and (2) sequence-wise parallelism, enabled by speculative decoding. By integrating these two approaches and allocating computational resources properly to each, our latency-optimal TTS enables a 32B model to reach 82.3% accuracy on MATH-500 within 1 minute and a smaller 3B model to achieve 72.4% within 10 seconds. Our work emphasizes the importance of latency-aware TTS and demonstrates its ability to deliver both speed and accuracy in latency-sensitive scenarios.
ToRL: Scaling Tool-Integrated RL
We introduce ToRL (Tool-Integrated Reinforcement Learning), a framework for training large language models (LLMs) to autonomously use computational tools via reinforcement learning. Unlike supervised fine-tuning, ToRL allows models to explore and discover optimal strategies for tool use. Experiments with Qwen2.5-Math models show significant improvements: ToRL-7B reaches 43.3\% accuracy on AIME~24, surpassing reinforcement learning without tool integration by 14\% and the best existing Tool-Integrated Reasoning (TIR) model by 17\%. Further analysis reveals emergent behaviors such as strategic tool invocation, self-regulation of ineffective code, and dynamic adaptation between computational and analytical reasoning, all arising purely through reward-driven learning.
Long Is More Important Than Difficult for Training Reasoning Models
Difficult problems, which often result in long reasoning traces, are widely recognized as key factors for enhancing the performance of reasoning models. However, such high-challenge problems are scarce, limiting the size of available datasets. In this paper, we propose a simple method to decouple the reliance on problem difficulty. First, we empirically demonstrate that reasoning length, rather than problem difficulty, primarily influences the performance of trained models. Second, we identify a scaling law on reasoning length, showing that model performance increases in a log-linear fashion as the reasoning data length grows. Finally, we introduce a straightforward technique to generate reasoning data of arbitrary length, and show that synthesized data is effective for training reasoning models. After fine-tuning the Qwen2.5-32B-Instruct language model on our Long1K dataset, we present our model, Long1K-32B, which achieves remarkable performance with only 1,000 training samples, achieving 95.6\% accuracy on MATH, and 71.1\% on GPQA outperforming DeepSeek-R1-Distill-Qwen-32B. The model, code, and dataset are all open-sourced, available at https://huggingface.co/ZTss/LONG1.
EasyMath: A 0-shot Math Benchmark for SLMs
EasyMath is a compact benchmark for practical math reasoning in small language models. It covers thirteen categories, from basic arithmetic and order of operations to word problems, algebraic expressions, edge cases, and omits specialist topics. We tested 23 models (14M to 4B parameters) using exact, numerical, and symbolic checks on free-form answers in a zero-shot setting. Accuracy rises with size and training, chain-of-thought adds modest gains, and consistency improves at scale.
Orca-Math: Unlocking the potential of SLMs in Grade School Math
Mathematical word problem-solving has long been recognized as a complex task for small language models (SLMs). A recent study hypothesized that the smallest model size, needed to achieve over 80% accuracy on the GSM8K benchmark, is 34 billion parameters. To reach this level of performance with smaller models, researcher often train SLMs to generate Python code or use tools to help avoid calculation errors. Additionally, they employ ensembling, where outputs of up to 100 model runs are combined to arrive at a more accurate result. Result selection is done using consensus, majority vote or a separate a verifier model used in conjunction with the SLM. Ensembling provides a substantial boost in accuracy but at a significant cost increase with multiple calls to the model (e.g., Phi-GSM uses top-48 to boost the performance from 68.2 to 81.5). In this work, we present Orca-Math, a 7-billion-parameter SLM based on the Mistral-7B, which achieves 86.81% on GSM8k without the need for multiple model calls or the use of verifiers, code execution or any other external tools. Our approach has the following key elements: (1) A high quality synthetic dataset of 200K math problems created using a multi-agent setup where agents collaborate to create the data, (2) An iterative learning techniques that enables the SLM to practice solving problems, receive feedback on its solutions and learn from preference pairs incorporating the SLM solutions and the feedback. When trained with Supervised Fine-Tuning alone, Orca-Math achieves 81.50% on GSM8k pass@1 metric. With iterative preference learning, Orca-Math achieves 86.81% pass@1. Orca-Math surpasses the performance of significantly larger models such as LLAMA-2-70B, WizardMath-70B, Gemini-Pro, ChatGPT-3.5. It also significantly outperforms other smaller models while using much smaller data (hundreds of thousands vs. millions of problems).
U-MATH: A University-Level Benchmark for Evaluating Mathematical Skills in LLMs
The current evaluation of mathematical skills in LLMs is limited, as existing benchmarks are either relatively small, primarily focus on elementary and high-school problems, or lack diversity in topics. Additionally, the inclusion of visual elements in tasks remains largely under-explored. To address these gaps, we introduce U-MATH, a novel benchmark of 1,100 unpublished open-ended university-level problems sourced from teaching materials. It is balanced across six core subjects, with 20% of multimodal problems. Given the open-ended nature of U-MATH problems, we employ an LLM to judge the correctness of generated solutions. To this end, we release mu-MATH, a dataset to evaluate the LLMs' capabilities in judging solutions. The evaluation of general domain, math-specific, and multimodal LLMs highlights the challenges presented by U-MATH. Our findings reveal that LLMs achieve a maximum accuracy of only 63% on text-based tasks, with even lower 45% on visual problems. The solution assessment proves challenging for LLMs, with the best LLM judge having an F1-score of 80% on mu-MATH.
ReCUT: Balancing Reasoning Length and Accuracy in LLMs via Stepwise Trails and Preference Optimization
Recent advances in Chain-of-Thought (CoT) prompting have substantially improved the reasoning capabilities of Large Language Models (LLMs). However, these methods often suffer from overthinking, leading to unnecessarily lengthy or redundant reasoning traces. Existing approaches attempt to mitigate this issue through curating multiple reasoning chains for training LLMs, but their effectiveness is often constrained by the quality of the generated data and prone to overfitting. To address the challenge, we propose Reasoning Compression ThroUgh Stepwise Trials (ReCUT), a novel method aimed at balancing the accuracy and length of reasoning trajectory. Specifically, ReCUT employs a stepwise exploration mechanism and a long-short switched sampling strategy, enabling LLMs to incrementally generate diverse reasoning paths. These paths are evaluated and used to construct preference pairs to train two specialized models (Gemini LLMs)-one optimized for reasoning accuracy, the other for shorter reasoning. A final integrated model is obtained by interpolating the parameters of these two models. Experimental results across multiple math reasoning datasets and backbone models demonstrate that ReCUT significantly reduces reasoning lengths by approximately 30-50%, while maintaining or improving reasoning accuracy compared to various baselines. All codes and data will be released via https://github.com/NEUIR/ReCUT.
Explaining Math Word Problem Solvers
Automated math word problem solvers based on neural networks have successfully managed to obtain 70-80\% accuracy in solving arithmetic word problems. However, it has been shown that these solvers may rely on superficial patterns to obtain their equations. In order to determine what information math word problem solvers use to generate solutions, we remove parts of the input and measure the model's performance on the perturbed dataset. Our results show that the model is not sensitive to the removal of many words from the input and can still manage to find a correct answer when given a nonsense question. This indicates that automatic solvers do not follow the semantic logic of math word problems, and may be overfitting to the presence of specific words.
LogicSolver: Towards Interpretable Math Word Problem Solving with Logical Prompt-enhanced Learning
Recently, deep learning models have made great progress in MWP solving on answer accuracy. However, they are uninterpretable since they mainly rely on shallow heuristics to achieve high performance without understanding and reasoning the grounded math logic. To address this issue and make a step towards interpretable MWP solving, we first construct a high-quality MWP dataset named InterMWP which consists of 11,495 MWPs and annotates interpretable logical formulas based on algebraic knowledge as the grounded linguistic logic of each solution equation. Different from existing MWP datasets, our InterMWP benchmark asks for a solver to not only output the solution expressions but also predict the corresponding logical formulas. We further propose a novel approach with logical prompt and interpretation generation, called LogicSolver. For each MWP, our LogicSolver first retrieves some highly-correlated algebraic knowledge and then passes them to the backbone model as prompts to improve the semantic representations of MWPs. With these improved semantic representations, our LogicSolver generates corresponding solution expressions and interpretable knowledge formulas in accord with the generated solution expressions, simultaneously. Experimental results show that our LogicSolver has stronger logical formula-based interpretability than baselines while achieving higher answer accuracy with the help of logical prompts, simultaneously. The source code and dataset is available at https://github.com/yangzhch6/InterMWP.
Common 7B Language Models Already Possess Strong Math Capabilities
Mathematical capabilities were previously believed to emerge in common language models only at a very large scale or require extensive math-related pre-training. This paper shows that the LLaMA-2 7B model with common pre-training already exhibits strong mathematical abilities, as evidenced by its impressive accuracy of 97.7% and 72.0% on the GSM8K and MATH benchmarks, respectively, when selecting the best response from 256 random generations. The primary issue with the current base model is the difficulty in consistently eliciting its inherent mathematical capabilities. Notably, the accuracy for the first answer drops to 49.5% and 7.9% on the GSM8K and MATH benchmarks, respectively. We find that simply scaling up the SFT data can significantly enhance the reliability of generating correct answers. However, the potential for extensive scaling is constrained by the scarcity of publicly available math questions. To overcome this limitation, we employ synthetic data, which proves to be nearly as effective as real data and shows no clear saturation when scaled up to approximately one million samples. This straightforward approach achieves an accuracy of 82.6% on GSM8K and 40.6% on MATH using LLaMA-2 7B models, surpassing previous models by 14.2% and 20.8%, respectively. We also provide insights into scaling behaviors across different reasoning complexities and error types.
Evaluating Mathematical Reasoning Beyond Accuracy
The leaderboard of Large Language Models (LLMs) in mathematical tasks has been continuously updated. However, the majority of evaluations focus solely on the final results, neglecting the quality of the intermediate steps. This oversight can mask underlying problems, such as logical errors or unnecessary steps in the reasoning process. To measure reasoning beyond final-answer accuracy, we introduce ReasonEval, a new methodology for evaluating the quality of reasoning steps. ReasonEval employs validity and redundancy to characterize the reasoning quality, as well as accompanying LLMs to assess them automatically. Instantiated by base models that possess strong mathematical knowledge and trained with high-quality labeled data, ReasonEval achieves state-of-the-art performance on human-labeled datasets and can accurately detect different types of errors generated by perturbation. When applied to evaluate LLMs specialized in math, we find that an increase in final-answer accuracy does not necessarily guarantee an improvement in the overall quality of the reasoning steps for challenging mathematical problems. Additionally, we observe that ReasonEval can play a significant role in data selection. We release the best-performing model, meta-evaluation script, and all evaluation results at https://github.com/GAIR-NLP/ReasonEval.
A Lean Dataset for International Math Olympiad: Small Steps towards Writing Math Proofs for Hard Problems
Using AI to write formal proofs for mathematical problems is a challenging task that has seen some advancements in recent years. Automated systems such as Lean can verify the correctness of proofs written in formal language, yet writing the proofs in formal language can be challenging for humans and machines. The miniF2F benchmark has 20 IMO problems in its test set, yet formal proofs are available only for 6 of these problems (3 of which are only written by mathematicians). The model with best accuracy can only prove 2 of these 20 IMO problems, from 1950s and 60s, while its training set is a secret. In this work, we write complete, original formal proofs for the remaining IMO problems in Lean along with 3 extra problems from IMO 2022 and 2023. This effort expands the availability of proof currently in the public domain by creating 5,880 lines of Lean proof. The goal of the paper is to pave the way for developing AI models that can automatically write the formal proofs for all the IMO problems in miniF2F and beyond by providing an evaluation benchmark. In this pursuit, we devise a method to decompose the proofs of these problems into their building blocks, constructing a dataset of 1,329 lemmas with more than 40k lines of Lean code. These lemmas are not trivial, yet they are approachable, providing the opportunity to evaluate and diagnose the failures and successes of AI models. We evaluate the ability of the SOTA LLMs on our dataset and analyze their success and failure modes from different perspectives. Our dataset and code is available at: https://github.com/roozbeh-yz/IMO-Steps.
Are NLP Models really able to Solve Simple Math Word Problems?
The problem of designing NLP solvers for math word problems (MWP) has seen sustained research activity and steady gains in the test accuracy. Since existing solvers achieve high performance on the benchmark datasets for elementary level MWPs containing one-unknown arithmetic word problems, such problems are often considered "solved" with the bulk of research attention moving to more complex MWPs. In this paper, we restrict our attention to English MWPs taught in grades four and lower. We provide strong evidence that the existing MWP solvers rely on shallow heuristics to achieve high performance on the benchmark datasets. To this end, we show that MWP solvers that do not have access to the question asked in the MWP can still solve a large fraction of MWPs. Similarly, models that treat MWPs as bag-of-words can also achieve surprisingly high accuracy. Further, we introduce a challenge dataset, SVAMP, created by applying carefully chosen variations over examples sampled from existing datasets. The best accuracy achieved by state-of-the-art models is substantially lower on SVAMP, thus showing that much remains to be done even for the simplest of the MWPs.
Automated Feedback in Math Education: A Comparative Analysis of LLMs for Open-Ended Responses
The effectiveness of feedback in enhancing learning outcomes is well documented within Educational Data Mining (EDM). Various prior research has explored methodologies to enhance the effectiveness of feedback. Recent developments in Large Language Models (LLMs) have extended their utility in enhancing automated feedback systems. This study aims to explore the potential of LLMs in facilitating automated feedback in math education. We examine the effectiveness of LLMs in evaluating student responses by comparing 3 different models: Llama, SBERT-Canberra, and GPT4 model. The evaluation requires the model to provide both a quantitative score and qualitative feedback on the student's responses to open-ended math problems. We employ Mistral, a version of Llama catered to math, and fine-tune this model for evaluating student responses by leveraging a dataset of student responses and teacher-written feedback for middle-school math problems. A similar approach was taken for training the SBERT model as well, while the GPT4 model used a zero-shot learning approach. We evaluate the model's performance in scoring accuracy and the quality of feedback by utilizing judgments from 2 teachers. The teachers utilized a shared rubric in assessing the accuracy and relevance of the generated feedback. We conduct both quantitative and qualitative analyses of the model performance. By offering a detailed comparison of these methods, this study aims to further the ongoing development of automated feedback systems and outlines potential future directions for leveraging generative LLMs to create more personalized learning experiences.
Get an A in Math: Progressive Rectification Prompting
Chain-of-Thought (CoT) prompting methods have enabled large language models (LLMs) to generate reasoning paths and solve math word problems (MWPs). However, they are sensitive to mistakes in the paths, as any mistake can result in an incorrect answer. We propose a novel method named Progressive Rectification Prompting (PRP) to improve average accuracy on eight MWP datasets from 77.3 to 90.5. Given an initial answer from CoT, PRP iterates a verify-then-rectify process to progressively identify incorrect answers and rectify the reasoning paths. With the most likely correct answer, the LLM predicts a masked numerical value in the question; if the prediction does not match the masked value, the answer is likely incorrect. Then the LLM is prompted to re-generate the reasoning path hinted with a set of incorrect answers to prevent itself from repeating previous mistakes. PRP achieves the best performance compared against the CoT methods. Our implementation is made publicly available at https://wzy6642.github.io/prp.github.io/.
Leveraging Large Language Models for Bengali Math Word Problem Solving with Chain of Thought Reasoning
Solving Bengali Math Word Problems (MWPs) remains a major challenge in natural language processing (NLP) due to the language's low-resource status and the multi-step reasoning required. Existing models struggle with complex Bengali MWPs, largely because no human-annotated Bengali dataset has previously addressed this task. This gap has limited progress in Bengali mathematical reasoning. To address this, we created SOMADHAN, a dataset of 8792 complex Bengali MWPs with manually written, step-by-step solutions. We designed this dataset to support reasoning-focused evaluation and model development in a linguistically underrepresented context. Using SOMADHAN, we evaluated a range of large language models (LLMs) - including GPT-4o, GPT-3.5 Turbo, LLaMA series models, Deepseek, and Qwen - through both zero-shot and few-shot prompting with and without Chain of Thought (CoT) reasoning. CoT prompting consistently improved performance over standard prompting, especially in tasks requiring multi-step logic. LLaMA-3.3 70B achieved the highest accuracy of 88% with few-shot CoT prompting. We also applied Low-Rank Adaptation (LoRA) to fine-tune models efficiently, enabling them to adapt to Bengali MWPs with minimal computational cost. Our work fills a critical gap in Bengali NLP by providing a high-quality reasoning dataset and a scalable framework for solving complex MWPs. We aim to advance equitable research in low-resource languages and enhance reasoning capabilities in educational and language technologies.
Error Classification of Large Language Models on Math Word Problems: A Dynamically Adaptive Framework
Large Language Models (LLMs) have demonstrated remarkable capabilities across various domains. Math Word Problems (MWPs) serve as a crucial benchmark for evaluating LLMs' reasoning abilities. While most research primarily focuses on improving accuracy, it often neglects understanding and addressing the underlying patterns of errors. Current error classification methods rely on static and predefined categories, which limit their ability to capture the full spectrum of error patterns in mathematical reasoning. To enable systematic error analysis, we collect error samples from 15 different LLMs of varying sizes across four distinct MWP datasets using multiple sampling strategies. Based on this extensive collection, we introduce MWPES-300K, a comprehensive dataset containing 304,865 error samples that cover diverse error patterns and reasoning paths. To reduce human bias and enable fine-grained analysis of error patterns, we propose a novel framework for automated dynamic error classification in mathematical reasoning. Experimental results demonstrate that dataset characteristics significantly shape error patterns, which evolve from basic to complex manifestations as model capabilities increase. With deeper insights into error patterns, we propose error-aware prompting that incorporates common error patterns as explicit guidance, leading to significant improvements in mathematical reasoning performance.
Scalable and Equitable Math Problem Solving Strategy Prediction in Big Educational Data
Understanding a student's problem-solving strategy can have a significant impact on effective math learning using Intelligent Tutoring Systems (ITSs) and Adaptive Instructional Systems (AISs). For instance, the ITS/AIS can better personalize itself to correct specific misconceptions that are indicated by incorrect strategies, specific problems can be designed to improve strategies and frustration can be minimized by adapting to a student's natural way of thinking rather than trying to fit a standard strategy for all. While it may be possible for human experts to identify strategies manually in classroom settings with sufficient student interaction, it is not possible to scale this up to big data. Therefore, we leverage advances in Machine Learning and AI methods to perform scalable strategy prediction that is also fair to students at all skill levels. Specifically, we develop an embedding called MVec where we learn a representation based on the mastery of students. We then cluster these embeddings with a non-parametric clustering method where we progressively learn clusters such that we group together instances that have approximately symmetrical strategies. The strategy prediction model is trained on instances sampled from these clusters. This ensures that we train the model over diverse strategies and also that strategies from a particular group do not bias the DNN model, thus allowing it to optimize its parameters over all groups. Using real world large-scale student interaction datasets from MATHia, we implement our approach using transformers and Node2Vec for learning the mastery embeddings and LSTMs for predicting strategies. We show that our approach can scale up to achieve high accuracy by training on a small sample of a large dataset and also has predictive equality, i.e., it can predict strategies equally well for learners at diverse skill levels.
Omni-MATH: A Universal Olympiad Level Mathematic Benchmark For Large Language Models
Recent advancements in large language models (LLMs) have led to significant breakthroughs in mathematical reasoning capabilities. However, existing benchmarks like GSM8K or MATH are now being solved with high accuracy (e.g., OpenAI o1 achieves 94.8% on MATH dataset), indicating their inadequacy for truly challenging these models. To bridge this gap, we propose a comprehensive and challenging benchmark specifically designed to assess LLMs' mathematical reasoning at the Olympiad level. Unlike existing Olympiad-related benchmarks, our dataset focuses exclusively on mathematics and comprises a vast collection of 4428 competition-level problems with rigorous human annotation. These problems are meticulously categorized into over 33 sub-domains and span more than 10 distinct difficulty levels, enabling a holistic assessment of model performance in Olympiad-mathematical reasoning. Furthermore, we conducted an in-depth analysis based on this benchmark. Our experimental results show that even the most advanced models, OpenAI o1-mini and OpenAI o1-preview, struggle with highly challenging Olympiad-level problems, with 60.54% and 52.55% accuracy, highlighting significant challenges in Olympiad-level mathematical reasoning.
LogQuant: Log-Distributed 2-Bit Quantization of KV Cache with Superior Accuracy Preservation
We introduce LogQuant, a groundbreaking 2-bit quantization technique for KV Cache in large language model (LLM) inference, delivering substantial memory savings while preserving superior performance. Previous methods either assume that later tokens are more important or attempt to predict important tokens based on earlier attention patterns. Both approaches, however, can result in performance bottlenecks or frequent mispredictions. LogQuant takes a different approach. By applying a log-based filtering mechanism, it selectively compresses the KV Cache across the entire context, achieving better performance with the same or even reduced memory footprint compared to existing methods. In benchmark tests, it enhances throughput by 25% and boosts batch size by 60% without increasing memory consumption. For challenging tasks such as Math and Code Completion, LogQuant improves accuracy by 40% to 200% at the same compression ratio, outperforming comparable techniques.LogQuant integrates effortlessly with popular inference frameworks like Python's transformers library. Implementation can be available in https://github.com/Concyclics/LogQuantKV.
Solving math word problems with process- and outcome-based feedback
Recent work has shown that asking language models to generate reasoning steps improves performance on many reasoning tasks. When moving beyond prompting, this raises the question of how we should supervise such models: outcome-based approaches which supervise the final result, or process-based approaches which supervise the reasoning process itself? Differences between these approaches might naturally be expected not just in final-answer errors but also in reasoning errors, which can be difficult to detect and are problematic in many real-world domains such as education. We run the first comprehensive comparison between process- and outcome-based approaches trained on a natural language task, GSM8K. We find that pure outcome-based supervision produces similar final-answer error rates with less label supervision. However, for correct reasoning steps we find it necessary to use process-based supervision or supervision from learned reward models that emulate process-based feedback. In total, we improve the previous best results from 16.8% to 12.7% final-answer error and 14.0% to 3.4% reasoning error among final-answer-correct solutions.
MIND: Math Informed syNthetic Dialogues for Pretraining LLMs
The utility of synthetic data to enhance pretraining data quality and hence to improve downstream task accuracy has been widely explored in recent large language models (LLMs). Yet, these approaches fall inadequate in complex, multi-hop and mathematical reasoning tasks as the synthetic data typically fails to add complementary knowledge to the existing raw corpus. In this work, we propose a novel large-scale and diverse Math Informed syNthetic Dialogue (MIND) generation method that improves the mathematical reasoning ability of LLMs. Specifically, using MIND, we generate synthetic conversations based on OpenWebMath (OWM), resulting in a new math corpus, MIND-OWM. Our experiments with different conversational settings reveal that incorporating knowledge gaps between dialog participants is essential for generating high-quality math data. We further identify an effective way to format and integrate synthetic and raw data during pretraining to maximize the gain in mathematical reasoning, emphasizing the need to restructure raw data rather than use it as-is. Compared to pretraining just on raw data, a model pretrained on MIND-OWM shows significant boost in mathematical reasoning (GSM8K: +13.42%, MATH: +2.30%), including superior performance in specialized knowledge (MMLU: +4.55%, MMLU-STEM: +4.28%) and general purpose reasoning tasks (GENERAL REASONING: +2.51%).
MARGE: Improving Math Reasoning for LLMs with Guided Exploration
Large Language Models (LLMs) exhibit strong potential in mathematical reasoning, yet their effectiveness is often limited by a shortage of high-quality queries. This limitation necessitates scaling up computational responses through self-generated data, yet current methods struggle due to spurious correlated data caused by ineffective exploration across all reasoning stages. To address such challenge, we introduce MARGE: Improving Math Reasoning with Guided Exploration, a novel method to address this issue and enhance mathematical reasoning through hit-guided exploration. MARGE systematically explores intermediate reasoning states derived from self-generated solutions, enabling adequate exploration and improved credit assignment throughout the reasoning process. Through extensive experiments across multiple backbone models and benchmarks, we demonstrate that MARGE significantly improves reasoning capabilities without requiring external annotations or training additional value models. Notably, MARGE improves both single-shot accuracy and exploration diversity, mitigating a common trade-off in alignment methods. These results demonstrate MARGE's effectiveness in enhancing mathematical reasoning capabilities and unlocking the potential of scaling self-generated training data. Our code and models are available at https://github.com/georgao35/MARGE{this link}.
UTMath: Math Evaluation with Unit Test via Reasoning-to-Coding Thoughts
The evaluation of mathematical reasoning capabilities is essential for advancing Artificial General Intelligence (AGI). While Large Language Models (LLMs) have shown impressive performance in solving mathematical problems, existing benchmarks such as GSM8K and MATH present limitations, including narrow problem definitions with specific numbers and reliance on predetermined rules that hinder accurate assessments of reasoning and adaptability. This paper introduces the UTMath Benchmark, which robustly evaluates the models through extensive unit tests. It consists of 1,053 problems across 9 mathematical domains, with over 68 test cases per problem. We propose an innovative evaluation framework inspired by unit testing in software development, focusing on both accuracy and reliability of results. Furthermore, we introduce the Reasoning-to-Coding of Thoughts (RCoT) approach, which encourages LLMs to perform explicit reasoning before generating code, leading to generating more advanced solution and improved performance. Furthermore, we are releasing not only the UTMath benchmark but also the UTMath-Train training dataset (more than 70k samples), to support the community in further exploring mathematical reasoning.
Rewriting Pre-Training Data Boosts LLM Performance in Math and Code
The performance of large language models (LLMs) in program synthesis and mathematical reasoning is fundamentally limited by the quality of their pre-training corpora. We introduce two openly licensed datasets, released under the Llama 3.3 Community License, that significantly enhance LLM performance by systematically rewriting public data. SwallowCode (approximately 16.1 billion tokens) refines Python snippets from The-Stack-v2 through a novel four-stage pipeline: syntax validation, pylint-based style filtering, and a two-stage LLM rewriting process that enforces style conformity and transforms snippets into self-contained, algorithmically efficient examples. Unlike prior methods that rely on exclusionary filtering or limited transformations, our transform-and-retain approach upgrades low-quality code, maximizing data utility. SwallowMath (approximately 2.3 billion tokens) enhances Finemath-4+ by removing boilerplate, restoring context, and reformatting solutions into concise, step-by-step explanations. Within a fixed 50 billion token training budget, continual pre-training of Llama-3.1-8B with SwallowCode boosts pass@1 by +17.0 on HumanEval and +17.7 on HumanEval+ compared to Stack-Edu, surpassing the baseline model's code generation capabilities. Similarly, substituting SwallowMath yields +12.4 accuracy on GSM8K and +7.6 on MATH. Ablation studies confirm that each pipeline stage contributes incrementally, with rewriting delivering the largest gains. All datasets, prompts, and checkpoints are publicly available, enabling reproducible research and advancing LLM pre-training for specialized domains.
KnowledgeMath: Knowledge-Intensive Math Word Problem Solving in Finance Domains
We introduce KnowledgeMath, a novel benchmark designed to evaluate LLMs' capabilities in applying financial knowledge to solve complex math word problems. Compared to prior works, this study features three core advancements. First, KnowledgeMath includes 1,259 problems with a hybrid of textual and tabular content and require college-level knowledge in the finance domain for effective resolution. Second, we provide expert-annotated, detailed solution references in Python program format, ensuring a high-quality benchmark for LLM assessment. Finally, we evaluate a wide spectrum of 14 LLMs with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. The current best-performing system (i.e., GPT-4 with Program-of-Thoughts) achieves only 45.4% accuracy, leaving substantial room for improvement. While knowledge-augmented LLMs can improve the performance (e.g., from 23.9% to 32.0% for GPT-3.5), it is still significantly lower the estimated human expert performance of 94%. We believe that KnowledgeMath can facilitate future research on domain-specific knowledge retrieval and augmentation into the math word problem-solving process. We will release the benchmark and code at https://github.com/yale-nlp/KnowledgeMath.
DAG-Math: Graph-Guided Mathematical Reasoning in LLMs
Large Language Models (LLMs) demonstrate strong performance on mathematical problems when prompted with Chain-of-Thought (CoT), yet it remains unclear whether this success stems from search, rote procedures, or rule-consistent reasoning. To address this, we propose modeling CoT as a certain rule-based stochastic process over directed acyclic graphs (DAGs), where nodes represent intermediate derivation states and edges encode rule applications. Within this framework, we introduce logical closeness, a metric that quantifies how well a model's CoT trajectory (i.e., the LLM's final output) adheres to the DAG structure, providing evaluation beyond classical PASS@k metrics. Building on this, we introduce the DAG-MATH CoT format and construct a benchmark that guides LLMs to generate CoT trajectories in this format, thereby enabling the evaluation of their reasoning ability under our framework. Across standard mathematical reasoning datasets, our analysis uncovers statistically significant differences in reasoning fidelity among representative LLM families-even when PASS@k is comparable-highlighting gaps between final-answer accuracy and rule-consistent derivation. Our framework provides a balance between free-form CoT and formal proofs systems, offering actionable diagnostics for LLMs reasoning evaluation. Our benchmark and code are available at: https://github.com/YuanheZ/DAG-MATH-Formatted-CoT.
Let's Reason Formally: Natural-Formal Hybrid Reasoning Enhances LLM's Math Capability
Enhancing the mathematical reasoning capabilities of LLMs has garnered significant attention in both the mathematical and computer science communities. Recent works have made substantial progress in both Natural Language (NL) reasoning and Formal Language (FL) reasoning by leveraging the potential of pure Reinforcement Learning (RL) methods on base models. However, RL approaches struggle to impart new capabilities not presented in the base model, highlighting the need to integrate more knowledge like FL into NL math reasoning effectively. Yet, this integration is challenging due to inherent disparities in problem structure and reasoning format between NL and FL. To address these challenges, we introduce **NL-FL HybridReasoning**, an end-to-end framework designed to incorporate the FL expert into NL math problem-solving. To bridge the NL and FL input format gap, we propose the *NL-FL Problem Alignment* method, which reformulates the Question-Answering (QA) problems in NL as existence theorems in FL. Subsequently, the *Mixed Problem Input* technique we provide enables the FL reasoner to handle both QA and existence problems concurrently. Lastly, we mitigate the NL and FL output format gap in reasoning through an LLM-based *Answer Extraction* mechanism. Comprehensive experiments demonstrate that the **HybridReasoning** framework achieves **89.80%** and **84.34%** accuracy rates on the MATH-500 and the AMC benchmarks, surpassing the NL baseline by 4.60% and 4.82%, respectively. Notably, some problems resolved by our framework remain unsolved by the NL baseline model even under a larger number of trials.
Evaluating GPT-4 at Grading Handwritten Solutions in Math Exams
Recent advances in generative artificial intelligence (AI) have shown promise in accurately grading open-ended student responses. However, few prior works have explored grading handwritten responses due to a lack of data and the challenge of combining visual and textual information. In this work, we leverage state-of-the-art multi-modal AI models, in particular GPT-4o, to automatically grade handwritten responses to college-level math exams. Using real student responses to questions in a probability theory exam, we evaluate GPT-4o's alignment with ground-truth scores from human graders using various prompting techniques. We find that while providing rubrics improves alignment, the model's overall accuracy is still too low for real-world settings, showing there is significant room for growth in this task.
PersonaMath: Enhancing Math Reasoning through Persona-Driven Data Augmentation
While closed-source Large Language Models (LLMs) demonstrate strong mathematical problem-solving abilities, open-source models continue to struggle with such tasks. To bridge this gap, we propose a data augmentation approach and introduce PersonaMathQA, a dataset derived from MATH and GSM8K, on which we train the PersonaMath models. Our approach consists of two stages: the first stage is learning from Persona Diversification, and the second stage is learning from Reflection. In the first stage, we regenerate detailed chain-of-thought (CoT) solutions as instructions using a closed-source LLM and introduce a novel persona-driven data augmentation technique to enhance the dataset's quantity and diversity. In the second stage, we incorporate reflection to fully leverage more challenging and valuable questions. Evaluation of our PersonaMath models on MATH and GSM8K reveals that the PersonaMath-7B model (based on LLaMA-2-7B) achieves an accuracy of 24.2% on MATH and 68.7% on GSM8K, surpassing all baseline methods and achieving state-of-the-art performance. Notably, our dataset contains only 70.3K data points-merely 17.8% of MetaMathQA and 27% of MathInstruct-yet our model outperforms these baselines, demonstrating the high quality and diversity of our dataset, which enables more efficient model training. We open-source the PersonaMathQA dataset, PersonaMath models, and our code for public usage.
Let GPT be a Math Tutor: Teaching Math Word Problem Solvers with Customized Exercise Generation
In this paper, we present a novel approach for distilling math word problem solving capabilities from large language models (LLMs) into smaller, more efficient student models. Our approach is designed to consider the student model's weaknesses and foster a tailored learning experience by generating targeted exercises aligned with educational science principles, such as knowledge tracing and personalized learning. Concretely, we let GPT-3 be a math tutor and run two steps iteratively: 1) assessing the student model's current learning status on a GPT-generated exercise book, and 2) improving the student model by training it with tailored exercise samples generated by GPT-3. Experimental results reveal that our approach outperforms LLMs (e.g., GPT-3 and PaLM) in accuracy across three distinct benchmarks while employing significantly fewer parameters. Furthermore, we provide a comprehensive analysis of the various components within our methodology to substantiate their efficacy.
MathCoder2: Better Math Reasoning from Continued Pretraining on Model-translated Mathematical Code
Code has been shown to be effective in enhancing the mathematical reasoning abilities of large language models due to its precision and accuracy. Previous works involving continued mathematical pretraining often include code that utilizes math-related packages, which are primarily designed for fields such as engineering, machine learning, signal processing, or module testing, rather than being directly focused on mathematical reasoning. In this paper, we introduce a novel method for generating mathematical code accompanied with corresponding reasoning steps for continued pretraining. Our approach begins with the construction of a high-quality mathematical continued pretraining dataset by incorporating math-related web data, code using mathematical packages, math textbooks, and synthetic data. Next, we construct reasoning steps by extracting LaTeX expressions, the conditions needed for the expressions, and the results of the expressions from the previously collected dataset. Based on this extracted information, we generate corresponding code to accurately capture the mathematical reasoning process. Appending the generated code to each reasoning step results in data consisting of paired natural language reasoning steps and their corresponding code. Combining this data with the original dataset results in a 19.2B-token high-performing mathematical pretraining corpus, which we name MathCode-Pile. Training several popular base models with this corpus significantly improves their mathematical abilities, leading to the creation of the MathCoder2 family of models. All of our data processing and training code is open-sourced, ensuring full transparency and easy reproducibility of the entire data collection and training pipeline. The code is released at https://github.com/mathllm/MathCoder2 .
Physics of Language Models: Part 2.2, How to Learn From Mistakes on Grade-School Math Problems
Language models have demonstrated remarkable performance in solving reasoning tasks; however, even the strongest models still occasionally make reasoning mistakes. Recently, there has been active research aimed at improving reasoning accuracy, particularly by using pretrained language models to "self-correct" their mistakes via multi-round prompting. In this paper, we follow this line of work but focus on understanding the usefulness of incorporating "error-correction" data directly into the pretraining stage. This data consists of erroneous solution steps immediately followed by their corrections. Using a synthetic math dataset, we show promising results: this type of pretrain data can help language models achieve higher reasoning accuracy directly (i.e., through simple auto-regression, without multi-round prompting) compared to pretraining on the same amount of error-free data. We also delve into many details, such as (1) how this approach differs from beam search, (2) how such data can be prepared, (3) whether masking is needed on the erroneous tokens, (4) the amount of error required, (5) whether such data can be deferred to the fine-tuning stage, and many others.
Which Data Attributes Stimulate Math and Code Reasoning? An Investigation via Influence Functions
Large language models (LLMs) have demonstrated remarkable reasoning capabilities in math and coding, often bolstered by post-training on the chain-of-thoughts (CoTs) generated by stronger models. However, existing strategies for curating such training data predominantly rely on heuristics, limiting generalizability and failing to capture subtleties underlying in data. To address these limitations, we leverage influence functions to systematically attribute LLMs' reasoning ability on math and coding to individual training examples, sequences, and tokens, enabling deeper insights into effective data characteristics. Our Influence-based Reasoning Attribution (Infra) uncovers nontrivial cross-domain effects across math and coding tasks: high-difficulty math examples improve both math and code reasoning, while low-difficulty code tasks most effectively benefit code reasoning. Based on these findings, we introduce a simple yet effective dataset reweighting strategy by flipping task difficulty, which doubles AIME24 accuracy from 10\% to 20\% and boosts LiveCodeBench accuracy from 33.8\% to 35.3\% for Qwen2.5-7B-Instruct. Moreover, our fine-grained attribution reveals that the sequence-level exploratory behaviors enhance reasoning performance in both math and code, and the token-level influence patterns are distinct for math and code reasoning: the former prefers natural language logic connectors and the latter emphasizes structural syntax.
Arithmetic Without Algorithms: Language Models Solve Math With a Bag of Heuristics
Do large language models (LLMs) solve reasoning tasks by learning robust generalizable algorithms, or do they memorize training data? To investigate this question, we use arithmetic reasoning as a representative task. Using causal analysis, we identify a subset of the model (a circuit) that explains most of the model's behavior for basic arithmetic logic and examine its functionality. By zooming in on the level of individual circuit neurons, we discover a sparse set of important neurons that implement simple heuristics. Each heuristic identifies a numerical input pattern and outputs corresponding answers. We hypothesize that the combination of these heuristic neurons is the mechanism used to produce correct arithmetic answers. To test this, we categorize each neuron into several heuristic types-such as neurons that activate when an operand falls within a certain range-and find that the unordered combination of these heuristic types is the mechanism that explains most of the model's accuracy on arithmetic prompts. Finally, we demonstrate that this mechanism appears as the main source of arithmetic accuracy early in training. Overall, our experimental results across several LLMs show that LLMs perform arithmetic using neither robust algorithms nor memorization; rather, they rely on a "bag of heuristics".
Enumerate-Conjecture-Prove: Formally Solving Answer-Construction Problems in Math Competitions
Mathematical reasoning lies at the heart of artificial intelligence, underpinning applications in education, program verification, and research-level mathematical discovery. Mathematical competitions, in particular, present two challenging problem types: theorem proving, which requires rigorous proofs of stated conclusions, and answer construction, which involves hypothesizing and formally verifying mathematical objects. Large Language Models (LLMs) effectively generate creative candidate answers but struggle with formal verification, while symbolic provers ensure rigor but cannot efficiently handle creative conjecture generation. We introduce the Enumerate-Conjecture-Prove (ECP) framework, a modular neuro-symbolic method integrating LLM-based enumeration and pattern-driven conjecturing with formal theorem proving. We present ConstructiveBench, a dataset of 3,431 answer-construction problems in various math competitions with verified Lean formalizations. On the ConstructiveBench dataset, ECP improves the accuracy of answer construction from a Chain-of-Thought (CoT) baseline of 14.54% to 45.06% with the gpt-4.1-mini model. Moreover, combined with ECP's constructed answers, the state-of-the-art DeepSeek-Prover-V2-7B model generates correct proofs for 858 of the 3,431 constructive problems in Lean, achieving 25.01% accuracy compared to 9.86% for symbolic-only baselines. Our code and dataset are publicly available at https://github.com/JackSun200312/ECP.
Can Vision-Language Models Evaluate Handwritten Math?
Recent advancements in Vision-Language Models (VLMs) have opened new possibilities in automatic grading of handwritten student responses, particularly in mathematics. However, a comprehensive study to test the ability of VLMs to evaluate and reason over handwritten content remains absent. To address this gap, we introduce FERMAT, a benchmark designed to assess the ability of VLMs to detect, localize and correct errors in handwritten mathematical content. FERMAT spans four key error dimensions - computational, conceptual, notational, and presentation - and comprises over 2,200 handwritten math solutions derived from 609 manually curated problems from grades 7-12 with intentionally introduced perturbations. Using FERMAT we benchmark nine VLMs across three tasks: error detection, localization, and correction. Our results reveal significant shortcomings in current VLMs in reasoning over handwritten text, with Gemini-1.5-Pro achieving the highest error correction rate (77%). We also observed that some models struggle with processing handwritten content, as their accuracy improves when handwritten inputs are replaced with printed text or images. These findings highlight the limitations of current VLMs and reveal new avenues for improvement. We release FERMAT and all the associated resources in the open-source to drive further research.
Can LLMs Master Math? Investigating Large Language Models on Math Stack Exchange
Large Language Models (LLMs) have demonstrated exceptional capabilities in various natural language tasks, often achieving performances that surpass those of humans. Despite these advancements, the domain of mathematics presents a distinctive challenge, primarily due to its specialized structure and the precision it demands. In this study, we adopted a two-step approach for investigating the proficiency of LLMs in answering mathematical questions. First, we employ the most effective LLMs, as identified by their performance on math question-answer benchmarks, to generate answers to 78 questions from the Math Stack Exchange (MSE). Second, a case analysis is conducted on the LLM that showed the highest performance, focusing on the quality and accuracy of its answers through manual evaluation. We found that GPT-4 performs best (nDCG of 0.48 and P@10 of 0.37) amongst existing LLMs fine-tuned for answering mathematics questions and outperforms the current best approach on ArqMATH3 Task1, considering P@10. Our Case analysis indicates that while the GPT-4 can generate relevant responses in certain instances, it does not consistently answer all questions accurately. This paper explores the current limitations of LLMs in navigating complex mathematical problem-solving. Through case analysis, we shed light on the gaps in LLM capabilities within mathematics, thereby setting the stage for future research and advancements in AI-driven mathematical reasoning. We make our code and findings publicly available for research: https://github.com/gipplab/LLM-Investig-MathStackExchange
MATHWELL: Generating Educational Math Word Problems at Scale
Math word problems are critical K-8 educational tools, but writing them is time-consuming and requires domain expertise. We suggest that language models can support K-8 math education by automatically generating problems at scale. To be educational, generated problems must be 1) solvable, 2) accurate, and 3) appropriate. Existing datasets are unlabeled for these criteria, making them ill-suited for training problem generators. We introduce MATHWELL, a Llama-2 (70B) model iteratively finetuned to generate K-8 math word problems using data from expert annotation. Using MATHWELL, we generate the largest English word problem dataset to date, containing 20,490 problems. 3,484 are scored by domain experts who find MATHWELL has a 40% higher share of problems that have executable solutions and meet all criteria than alternatives, with 74% of its problems with executable solutions being solvable, accurate, and appropriate.
From Good to Great: Improving Math Reasoning with Tool-Augmented Interleaf Prompting
This paper investigates the performance of Large Language Models (LLMs) and Tool-augmented LLMs in tackling complex mathematical reasoning tasks. We introduce IMP-TIP: Improving Math Reasoning with Tool-augmented Interleaf Prompting, a framework that combines the strengths of both LLMs and Tool-augmented LLMs. IMP-TIP follows the ``From Good to Great" concept, collecting multiple potential solutions from both LLMs and their Tool-Augmented counterparts for the same math problem, and then selecting or re-generating the most accurate answer after cross-checking these solutions via tool-augmented interleaf prompting. The framework incorporates two key aspects: self-prompt and tool-augmented interleaf prompting (TIP). The former allows LLMs to autonomously refine and improve an initial prompt related to tool usage, while the latter enables LLMs to derive the final answer by dynamically analyzing the problem, cross-checking potential solutions, and revising previous reasoning hints in an interleaved manner. Experimental analysis shows that IMP-TIP achieves enhanced mathematical capabilities and outperforms traditional LLMs and tool-augmented LLMs in accuracy and reasoning diversity on math reasoning tasks. For instance, IMP-TIP can improve Tool-augmented ChatGPT on GSM8K-Hard from 56.0% to 65.2%.
Learning to Reason Deductively: Math Word Problem Solving as Complex Relation Extraction
Solving math word problems requires deductive reasoning over the quantities in the text. Various recent research efforts mostly relied on sequence-to-sequence or sequence-to-tree models to generate mathematical expressions without explicitly performing relational reasoning between quantities in the given context. While empirically effective, such approaches typically do not provide explanations for the generated expressions. In this work, we view the task as a complex relation extraction problem, proposing a novel approach that presents explainable deductive reasoning steps to iteratively construct target expressions, where each step involves a primitive operation over two quantities defining their relation. Through extensive experiments on four benchmark datasets, we show that the proposed model significantly outperforms existing strong baselines. We further demonstrate that the deductive procedure not only presents more explainable steps but also enables us to make more accurate predictions on questions that require more complex reasoning.
Improving Large Language Model Fine-tuning for Solving Math Problems
Despite their success in many natural language tasks, solving math problems remains a significant challenge for large language models (LLMs). A large gap exists between LLMs' pass-at-one and pass-at-N performance in solving math problems, suggesting LLMs might be close to finding correct solutions, motivating our exploration of fine-tuning methods to unlock LLMs' performance. Using the challenging MATH dataset, we investigate three fine-tuning strategies: (1) solution fine-tuning, where we fine-tune to generate a detailed solution for a given math problem; (2) solution-cluster re-ranking, where the LLM is fine-tuned as a solution verifier/evaluator to choose among generated candidate solution clusters; (3) multi-task sequential fine-tuning, which integrates both solution generation and evaluation tasks together efficiently to enhance the LLM performance. With these methods, we present a thorough empirical study on a series of PaLM 2 models and find: (1) The quality and style of the step-by-step solutions used for fine-tuning can make a significant impact on the model performance; (2) While solution re-ranking and majority voting are both effective for improving the model performance when used separately, they can also be used together for an even greater performance boost; (3) Multi-task fine-tuning that sequentially separates the solution generation and evaluation tasks can offer improved performance compared with the solution fine-tuning baseline. Guided by these insights, we design a fine-tuning recipe that yields approximately 58.8% accuracy on the MATH dataset with fine-tuned PaLM 2-L models, an 11.2% accuracy improvement over the few-shot performance of pre-trained PaLM 2-L model with majority voting.
AdaptMI: Adaptive Skill-based In-context Math Instruction for Small Language Models
In-context learning (ICL) allows a language model to improve its problem-solving capability when provided with suitable information in context. Since the choice of in-context information can be determined based on the problem itself, in-context learning is analogous to human learning from teachers in a classroom. Recent works (Didolkar et al., 2024a; 2024b) show that ICL performance can be improved by leveraging a frontier large language model's (LLM) ability to predict required skills to solve a problem, popularly referred to as an LLM's metacognition, and using the recommended skills to construct necessary in-context examples. While this skill-based strategy boosts ICL performance in larger models, its gains on small language models (SLMs) have been minimal, highlighting a performance gap in ICL capabilities. We investigate this gap and show that skill-based prompting can hurt SLM performance on easy questions by introducing unnecessary information, akin to cognitive overload. To address this, we introduce AdaptMI, an adaptive approach to selecting skill-based in-context Math Instructions for SLMs. Inspired by cognitive load theory from human pedagogy, our method only introduces skill-based examples when the model performs poorly. We further propose AdaptMI+, which adds examples targeted to the specific skills missing from the model's responses. On 5-shot evaluations across popular math benchmarks and five SLMs (1B--7B; Qwen, Llama), AdaptMI+ improves accuracy by up to 6% over naive skill-based strategies.
All for One: LLMs Solve Mental Math at the Last Token With Information Transferred From Other Tokens
Large language models (LLMs) demonstrate proficiency across numerous computational tasks, yet their inner workings remain unclear. In theory, the combination of causal self-attention and multilayer perceptron layers allows every token to access and compute information based on all preceding tokens. In practice, to what extent are such operations present? In this paper, on mental math tasks (i.e., direct math calculation via next-token prediction without explicit reasoning), we investigate this question in three steps: inhibiting input-specific token computations in the initial layers, restricting the routes of information transfer across token positions in the next few layers, and forcing all computation to happen at the last token in the remaining layers. With two proposed techniques, Context-Aware Mean Ablation (CAMA) and Attention-Based Peeking (ABP), we identify an All-for-One subgraph (AF1) with high accuracy on a wide variety of mental math tasks, where meaningful computation occurs very late (in terms of layer depth) and only at the last token, which receives information of other tokens in few specific middle layers. Experiments on a variety of models and arithmetic expressions show that this subgraph is sufficient and necessary for high model performance, transfers across different models, and works on a variety of input styles. Ablations on different CAMA and ABP alternatives reveal their unique advantages over other methods, which may be of independent interest.
Less is More Tokens: Efficient Math Reasoning via Difficulty-Aware Chain-of-Thought Distillation
Chain-of-thought reasoning, while powerful, can produce unnecessarily verbose output for simpler problems. We present a framework for difficulty-aware reasoning that teaches models to dynamically adjust reasoning depth based on problem complexity. Remarkably, we show that models can be endowed with such dynamic inference pathways without any architectural modifications; we simply post-train on data that is carefully curated to include chain-of-thought traces that are proportional in length to problem difficulty. Our analysis reveals that post-training via supervised fine-tuning (SFT) primarily captures patterns like reasoning length and format, while direct preference optimization (DPO) preserves reasoning accuracy, with their combination reducing length and maintaining or improving performance. Both quantitative metrics and qualitative assessments confirm that models can learn to "think proportionally", reasoning minimally on simple problems while maintaining depth for complex ones.
Good Learners Think Their Thinking: Generative PRM Makes Large Reasoning Model More Efficient Math Learner
Large reasoning models (LRMs) have recently shown promise in solving complex math problems when optimized with Reinforcement Learning (RL). But conventional approaches rely on outcome-only rewards that provide sparse feedback, resulting in inefficient optimization process. In this work, we investigate the function of process reward models (PRMs) to accelerate the RL training for LRMs. We propose a novel intrinsic signal-driven generative process evaluation mechanism operating at the thought level to address major bottlenecks in RL-based training. Specifically, instead of requiring PRMs to know how to solve problems, our method uses intrinsic signals in solutions to judge stepwise correctness and aggregate contiguous correct/incorrect steps into coherent 'thought' units. This structured, thought-level rewards enable more reliable credit assignment by reducing ambiguity in step segmentation and alleviating reward hacking. We further introduce a capability-adaptive reward mechanism that dynamically balances exploration and exploitation based on the LRM's current proficiency, guiding learning without stifling creative trial-and-error. These innovations are integrated into a new off-policy RL algorithm, TP-GRPO, which extends grouped proximal optimization with process-based rewards and improves training efficiency. Experiments on 1.5B and 7B parameter LRMs demonstrate that our method achieves higher problem-solving accuracy with significantly fewer training samples than outcome-only reward baselines. The results validate that well-structured process rewards can substantially accelerate LRM optimization in math reasoning tasks. Code is available at https://github.com/cs-holder/tp_grpo.
HARP: A challenging human-annotated math reasoning benchmark
Math reasoning is becoming an ever increasing area of focus as we scale large language models. However, even the previously-toughest evals like MATH are now close to saturated by frontier models (90.0% for o1-mini and 86.5% for Gemini 1.5 Pro). We introduce HARP, Human Annotated Reasoning Problems (for Math), consisting of 5,409 problems from the US national math competitions (A(J)HSME, AMC, AIME, USA(J)MO). Of these, 4,780 have answers that are automatically check-able (with libraries such as SymPy). These problems range six difficulty levels, with frontier models performing relatively poorly on the hardest bracket of 197 problems (average accuracy 41.1% for o1-mini, and 9.6% for Gemini 1.5 Pro). Our dataset also features multiple choices (for 4,110 problems) and an average of two human-written, ground-truth solutions per problem, offering new avenues of research that we explore briefly. We report evaluations for many frontier models and share some interesting analyses, such as demonstrating that frontier models across families intrinsically scale their inference-time compute for more difficult problems. Finally, we open source all code used for dataset construction (including scraping) and all code for evaluation (including answer checking) to enable future research at: https://github.com/aadityasingh/HARP.
CMATH: Can Your Language Model Pass Chinese Elementary School Math Test?
We present the Chinese Elementary School Math Word Problems (CMATH) dataset, comprising 1.7k elementary school-level math word problems with detailed annotations, source from actual Chinese workbooks and exams. This dataset aims to provide a benchmark tool for assessing the following question: to what grade level of elementary school math do the abilities of popular large language models (LLMs) correspond? We evaluate a variety of popular LLMs, including both commercial and open-source options, and discover that only GPT-4 achieves success (accuracy geq 60\%) across all six elementary school grades, while other models falter at different grade levels. Furthermore, we assess the robustness of several top-performing LLMs by augmenting the original problems in the CMATH dataset with distracting information. Our findings reveal that GPT-4 is able to maintains robustness, while other model fail. We anticipate that our study will expose limitations in LLMs' arithmetic and reasoning capabilities, and promote their ongoing development and advancement.
A Neural Network Solves, Explains, and Generates University Math Problems by Program Synthesis and Few-Shot Learning at Human Level
We demonstrate that a neural network pre-trained on text and fine-tuned on code solves mathematics course problems, explains solutions, and generates new questions at a human level. We automatically synthesize programs using few-shot learning and OpenAI's Codex transformer and execute them to solve course problems at 81% automatic accuracy. We curate a new dataset of questions from MIT's largest mathematics courses (Single Variable and Multivariable Calculus, Differential Equations, Introduction to Probability and Statistics, Linear Algebra, and Mathematics for Computer Science) and Columbia University's Computational Linear Algebra. We solve questions from a MATH dataset (on Prealgebra, Algebra, Counting and Probability, Intermediate Algebra, Number Theory, and Precalculus), the latest benchmark of advanced mathematics problems designed to assess mathematical reasoning. We randomly sample questions and generate solutions with multiple modalities, including numbers, equations, and plots. The latest GPT-3 language model pre-trained on text automatically solves only 18.8% of these university questions using zero-shot learning and 30.8% using few-shot learning and the most recent chain of thought prompting. In contrast, program synthesis with few-shot learning using Codex fine-tuned on code generates programs that automatically solve 81% of these questions. Our approach improves the previous state-of-the-art automatic solution accuracy on the benchmark topics from 8.8% to 81.1%. We perform a survey to evaluate the quality and difficulty of generated questions. This work is the first to automatically solve university-level mathematics course questions at a human level and the first work to explain and generate university-level mathematics course questions at scale, a milestone for higher education.
Challenging the Boundaries of Reasoning: An Olympiad-Level Math Benchmark for Large Language Models
In recent years, the rapid development of large reasoning models has resulted in the saturation of existing benchmarks for evaluating mathematical reasoning, highlighting the urgent need for more challenging and rigorous evaluation frameworks. To address this gap, we introduce OlymMATH, a novel Olympiad-level mathematical benchmark, designed to rigorously test the complex reasoning capabilities of LLMs. OlymMATH features 200 meticulously curated problems, each manually verified and available in parallel English and Chinese versions. The problems are systematically organized into two distinct difficulty tiers: (1) AIME-level problems (easy) that establish a baseline for mathematical reasoning assessment, and (2) significantly more challenging problems (hard) designed to push the boundaries of current state-of-the-art models. In our benchmark, these problems span four core mathematical fields, each including a verifiable numerical solution to enable objective, rule-based evaluation. Empirical results underscore the significant challenge presented by OlymMATH, with state-of-the-art models including DeepSeek-R1 and OpenAI's o3-mini demonstrating notably limited accuracy on the hard subset. Furthermore, the benchmark facilitates comprehensive bilingual assessment of mathematical reasoning abilities-a critical dimension that remains largely unaddressed in mainstream mathematical reasoning benchmarks. We release the OlymMATH benchmark at the STILL project: https://github.com/RUCAIBox/Slow_Thinking_with_LLMs.
GSM8K-V: Can Vision Language Models Solve Grade School Math Word Problems in Visual Contexts
Vision language models (VLMs) achieve unified modeling of images and text, enabling them to accomplish complex real-world tasks through perception, planning, and reasoning. Among these tasks, reasoning is particularly representative, with mathematical reasoning serving as a prominent example. It highlights the high-level capability of VLMs to comprehend mathematical information in images and to perform sophisticated reasoning. Recently, numerous visual mathematical reasoning benchmarks have been proposed, but they are often restricted to geometry, lack coverage of math word problems, and rarely assess reasoning across multiple images. To address these gaps, we introduce GSM8K-V, a purely visual multi-image mathematical reasoning benchmark. GSM8K-V is built by systematically mapping each sample from the widely used text-based GSM8K into visual form. Through a carefully designed automated image-generation pipeline combined with meticulous human annotation, we curate 1,319 high-quality samples. We evaluate a wide range of open-source and closed-source models on GSM8K-V. Results show that although existing VLMs have nearly saturated performance on text-based GSM8K, there remains substantial room for improvement on GSM8K-V. For example, the best-performing model, Gemini-2.5-Pro, achieves 95.22% accuracy on GSM8K but only 46.93% on GSM8K-V. We conduct a comprehensive analysis of GSM8K-V, examining the limitations of current models as well as potential directions for improvement. GSM8K-V offers a new perspective on visual mathematical reasoning and establishes a benchmark to guide the development of more robust and generalizable VLMs.
Aryabhata: An exam-focused language model for JEE Math
We present Aryabhata 1.0, a compact 7B parameter math reasoning model optimized for the Indian academic exam, the Joint Entrance Examination (JEE). Despite rapid progress in large language models (LLMs), current models often remain unsuitable for educational use. Aryabhata 1.0 is built by merging strong open-weight reasoning models, followed by supervised fine-tuning (SFT) with curriculum learning on verified chain-of-thought (CoT) traces curated through best-of-n rejection sampling. To further boost performance, we apply reinforcement learning with verifiable rewards (RLVR) using A2C objective with group-relative advantage estimation alongwith novel exploration strategies such as Adaptive Group Resizing and Temperature Scaling. Evaluated on both in-distribution (JEE Main 2025) and out-of-distribution (MATH, GSM8K) benchmarks, Aryabhata outperforms existing models in accuracy and efficiency, while offering pedagogically useful step-by-step reasoning. We release Aryabhata as a foundation model to advance exam-centric, open-source small language models. This marks our first open release for community feedback (https://huggingface.co/PhysicsWallahAI/Aryabhata-1.0{Aryabhata 1.0 on Hugging Face}); PW is actively training future models to further improve learning outcomes for students.
A Practical Two-Stage Recipe for Mathematical LLMs: Maximizing Accuracy with SFT and Efficiency with Reinforcement Learning
Enhancing the mathematical reasoning of Large Language Models (LLMs) is a pivotal challenge in advancing AI capabilities. While Supervised Fine-Tuning (SFT) and Reinforcement Learning (RL) are the dominant training paradigms, a systematic methodology for combining them to maximize both accuracy and efficiency remains largely unexplored. This paper introduces a practical and effective training recipe that strategically integrates extended SFT with RL from online inference (GRPO). We posit that these methods play complementary, not competing, roles: a prolonged SFT phase first pushes the model's accuracy to its limits, after which a GRPO phase dramatically improves token efficiency while preserving this peak performance. Our experiments reveal that extending SFT for as many as 10 epochs is crucial for performance breakthroughs, and that the primary role of GRPO in this framework is to optimize solution length. The efficacy of our recipe is rigorously validated through top-tier performance on challenging benchmarks, including a high rank among over 2,200 teams in the strictly leak-free AI Mathematical Olympiad (AIMO). This work provides the community with a battle-tested blueprint for developing state-of-the-art mathematical reasoners that are both exceptionally accurate and practically efficient. To ensure full reproducibility and empower future research, we will open-source our entire framework, including all code, model checkpoints, and training configurations at https://github.com/analokmaus/kaggle-aimo2-fast-math-r1.
To CoT or not to CoT? Chain-of-thought helps mainly on math and symbolic reasoning
Chain-of-thought (CoT) via prompting is the de facto method for eliciting reasoning capabilities from large language models (LLMs). But for what kinds of tasks is this extra ``thinking'' really helpful? To analyze this, we conducted a quantitative meta-analysis covering over 100 papers using CoT and ran our own evaluations of 20 datasets across 14 models. Our results show that CoT gives strong performance benefits primarily on tasks involving math or logic, with much smaller gains on other types of tasks. On MMLU, directly generating the answer without CoT leads to almost identical accuracy as CoT unless the question or model's response contains an equals sign, indicating symbolic operations and reasoning. Following this finding, we analyze the behavior of CoT on these problems by separating planning and execution and comparing against tool-augmented LLMs. Much of CoT's gain comes from improving symbolic execution, but it underperforms relative to using a symbolic solver. Our results indicate that CoT can be applied selectively, maintaining performance while saving inference costs. Furthermore, they suggest a need to move beyond prompt-based CoT to new paradigms that better leverage intermediate computation across the whole range of LLM applications.
Physics of Language Models: Part 2.1, Grade-School Math and the Hidden Reasoning Process
Recent advances in language models have demonstrated their capability to solve mathematical reasoning problems, achieving near-perfect accuracy on grade-school level math benchmarks like GSM8K. In this paper, we formally study how language models solve these problems. We design a series of controlled experiments to address several fundamental questions: (1) Can language models truly develop reasoning skills, or do they simply memorize templates? (2) What is the model's hidden (mental) reasoning process? (3) Do models solve math questions using skills similar to or different from humans? (4) Do models trained on GSM8K-like datasets develop reasoning skills beyond those necessary for solving GSM8K problems? (5) What mental process causes models to make reasoning mistakes? (6) How large or deep must a model be to effectively solve GSM8K-level math questions? Our study uncovers many hidden mechanisms by which language models solve mathematical questions, providing insights that extend beyond current understandings of LLMs.
SKYLENAGE Technical Report: Mathematical Reasoning and Contest-Innovation Benchmarks for Multi-Level Math Evaluation
Large language models (LLMs) now perform strongly on many public math suites, yet frontier separation within mathematics increasingly suffers from ceiling effects. We present two complementary benchmarks: SKYLENAGE-ReasoningMATH, a 100-item, structure-aware diagnostic set with per-item metadata on length, numeric density, and symbolic complexity; and SKYLENAGE-MATH, a 150-item contest-style suite spanning four stages from high school to doctoral under a seven-subject taxonomy. We evaluate fifteen contemporary LLM variants under a single setup and analyze subject x model and grade x model performance. On the contest suite, the strongest model reaches 44% while the runner-up reaches 37%; accuracy declines from high school to doctoral, and top systems exhibit a doctoral-to-high-school retention near 79%. On the reasoning set, the best model attains 81% overall, and hardest-slice results reveal clear robustness gaps between leaders and the mid-tier. In summary, we release SKYLENAGE-ReasoningMATH and report aggregate results for SKYLENAGE-MATH; together, SKYLENAGE provides a hard, reasoning-centered and broadly covering math benchmark with calibrated difficulty and rich metadata, serving as a reference benchmark for future evaluations of mathematical reasoning.
Let's Verify Math Questions Step by Step
Large Language Models (LLMs) have recently achieved remarkable progress in mathematical reasoning. To enable such capabilities, many existing works distill strong reasoning models into long chains of thought or design algorithms to construct high-quality math QA data for training. However, these efforts primarily focus on generating correct reasoning paths and answers, while largely overlooking the validity of the questions themselves. In this work, we propose Math Question Verification (MathQ-Verify), a novel five-stage pipeline designed to rigorously filter ill-posed or under-specified math problems. MathQ-Verify first performs format-level validation to remove redundant instructions and ensure that each question is syntactically well-formed. It then formalizes each question, decomposes it into atomic conditions, and verifies them against mathematical definitions. Next, it detects logical contradictions among these conditions, followed by a goal-oriented completeness check to ensure the question provides sufficient information for solving. To evaluate this task, we use existing benchmarks along with an additional dataset we construct, containing 2,147 math questions with diverse error types, each manually double-validated. Experiments show that MathQ-Verify achieves state-of-the-art performance across multiple benchmarks, improving the F1 score by up to 25 percentage points over the direct verification baseline. It further attains approximately 90% precision and 63% recall through a lightweight model voting scheme. MathQ-Verify offers a scalable and accurate solution for curating reliable mathematical datasets, reducing label noise and avoiding unnecessary computation on invalid questions. Our code and data are available at https://github.com/scuuy/MathQ-Verify.
BaRDa: A Belief and Reasoning Dataset that Separates Factual Accuracy and Reasoning Ability
While there are numerous benchmarks comparing the performance of modern language models (LMs), end-task evaluations often conflate notions of *factual accuracy* ("truth") and *reasoning ability* ("rationality", or "honesty" in the sense of correctly reporting implications of beliefs). Our goal is a dataset that clearly distinguishes these two notions. Our approach is to leverage and extend a collection of human-annotated *entailment trees*, engineered to express both good and bad chains of reasoning, and using a mixture of true and false facts, in particular including counterfactual examples, to avoid belief bias (also known as the "content effect"). The resulting dataset, called BaRDa, contains 3000 entailments (1787 valid, 1213 invalid), using 6681 true and 2319 false statements. Testing on four GPT-series models, GPT3(curie)/GPT3(davinici)/3.5/4, we find factual accuracy (truth) scores of 74.1/80.6/82.6/87.1 and reasoning accuracy scores of 63.1/78.0/71.8/79.2. This shows the clear progression of models towards improved factual accuracy and entailment reasoning, and the dataset provides a new benchmark that more cleanly separates and quantifies these two notions.
Detecting Errors in a Numerical Response via any Regression Model
Noise plagues many numerical datasets, where the recorded values in the data may fail to match the true underlying values due to reasons including: erroneous sensors, data entry/processing mistakes, or imperfect human estimates. We consider general regression settings with covariates and a potentially corrupted response whose observed values may contain errors. By accounting for various uncertainties, we introduced veracity scores that distinguish between genuine errors and natural data fluctuations, conditioned on the available covariate information in the dataset. We propose a simple yet efficient filtering procedure for eliminating potential errors, and establish theoretical guarantees for our method. We also contribute a new error detection benchmark involving 5 regression datasets with real-world numerical errors (for which the true values are also known). In this benchmark and additional simulation studies, our method identifies incorrect values with better precision/recall than other approaches.
Metacognitive Capabilities of LLMs: An Exploration in Mathematical Problem Solving
Metacognitive knowledge refers to humans' intuitive knowledge of their own thinking and reasoning processes. Today's best LLMs clearly possess some reasoning processes. The paper gives evidence that they also have metacognitive knowledge, including ability to name skills and procedures to apply given a task. We explore this primarily in context of math reasoning, developing a prompt-guided interaction procedure to get a powerful LLM to assign sensible skill labels to math questions, followed by having it perform semantic clustering to obtain coarser families of skill labels. These coarse skill labels look interpretable to humans. To validate that these skill labels are meaningful and relevant to the LLM's reasoning processes we perform the following experiments. (a) We ask GPT-4 to assign skill labels to training questions in math datasets GSM8K and MATH. (b) When using an LLM to solve the test questions, we present it with the full list of skill labels and ask it to identify the skill needed. Then it is presented with randomly selected exemplar solved questions associated with that skill label. This improves accuracy on GSM8k and MATH for several strong LLMs, including code-assisted models. The methodology presented is domain-agnostic, even though this article applies it to math problems.
STELAR-VISION: Self-Topology-Aware Efficient Learning for Aligned Reasoning in Vision
Vision-language models (VLMs) have made significant strides in reasoning, yet they often struggle with complex multimodal tasks and tend to generate overly verbose outputs. A key limitation is their reliance on chain-of-thought (CoT) reasoning, despite many tasks benefiting from alternative topologies like trees or graphs. To address this, we introduce STELAR-Vision, a training framework for topology-aware reasoning. At its core is TopoAug, a synthetic data pipeline that enriches training with diverse topological structures. Using supervised fine-tuning and reinforcement learning, we post-train Qwen2VL models with both accuracy and efficiency in mind. Additionally, we propose Frugal Learning, which reduces output length with minimal accuracy loss. On MATH-V and VLM-S2H, STELAR-Vision improves accuracy by 9.7% over its base model and surpasses the larger Qwen2VL-72B-Instruct by 7.3%. On five out-of-distribution benchmarks, it outperforms Phi-4-Multimodal-Instruct by up to 28.4% and LLaMA-3.2-11B-Vision-Instruct by up to 13.2%, demonstrating strong generalization. Compared to Chain-Only training, our approach achieves 4.3% higher overall accuracy on in-distribution datasets and consistently outperforms across all OOD benchmarks. We have released datasets, and code will be available.
RLEP: Reinforcement Learning with Experience Replay for LLM Reasoning
Reinforcement learning (RL) for large language models is an energy-intensive endeavor: training can be unstable, and the policy may gradually drift away from its pretrained weights. We present RLEP\, -- \,Reinforcement Learning with Experience rePlay\, -- \,a two-phase framework that first collects verified trajectories and then replays them during subsequent training. At every update step, the policy is optimized on mini-batches that blend newly generated rollouts with these replayed successes. By replaying high-quality examples, RLEP steers the model away from fruitless exploration, focuses learning on promising reasoning paths, and delivers both faster convergence and stronger final performance. On the Qwen2.5-Math-7B base model, RLEP reaches baseline peak accuracy with substantially fewer updates and ultimately surpasses it, improving accuracy on AIME-2024 from 38.2% to 39.9%, on AIME-2025 from 19.8% to 22.3%, and on AMC-2023 from 77.0% to 82.2%. Our code, datasets, and checkpoints are publicly available at https://github.com/Kwai-Klear/RLEP to facilitate reproducibility and further research.
MATHSENSEI: A Tool-Augmented Large Language Model for Mathematical Reasoning
Tool-augmented Large Language Models (TALM) are known to enhance the skillset of large language models (LLM), thereby, leading to their improved reasoning abilities across many tasks. While, TALMs have been successfully employed in different question-answering benchmarks, their efficacy on complex mathematical reasoning benchmarks, and the potential complimentary benefits offered by tools for knowledge retrieval and mathematical equation solving, are open research questions. In this work, we present MATHSENSEI, a tool-augmented large language model for mathematical reasoning. Augmented with tools for knowledge retrieval (Bing Web Search), program execution (Python), and symbolic equation solving (Wolfram-Alpha), we study the complimentary benefits of these tools through evaluations on mathematical reasoning datasets. We perform exhaustive ablations on MATH,a popular dataset for evaluating mathematical reasoning on diverse mathematical disciplines. We also conduct experiments involving well-known tool planners to study the impact of tool sequencing on the model performance. MATHSENSEI achieves 13.5% better accuracy over gpt-3.5-turbo with chain-of-thought on the MATH dataset. We further observe that TALMs are not as effective for simpler math word problems (in GSM-8k), and the benefit increases as the complexity and required knowledge increases (progressively over AQuA, MMLU-Math, and higher level complex questions in MATH). The code and data are available at https://github.com/Debrup-61/MathSensei.
ESSA: Evolutionary Strategies for Scalable Alignment
Alignment of Large Language Models (LLMs) typically relies on Reinforcement Learning from Human Feedback (RLHF) with gradient-based optimizers such as Proximal Policy Optimization (PPO) or Group Relative Policy Optimization (GRPO). While effective, these methods require complex distributed training, large memory budgets, and careful hyperparameter tuning, all of which become increasingly difficult at billion-parameter scale. We present ESSA, Evolutionary Strategies for Scalable Alignment, a gradient-free framework that aligns LLMs using only forward inference and black-box optimization. ESSA focuses optimization on Low-Rank Adapters (LoRA) and further compresses their parameter space by optimizing only the singular values from an SVD decomposition of each adapter matrix. This dimensionality reduction makes evolutionary search practical even for very large models and allows efficient operation in quantized INT4 and INT8 inference mode. Across these benchmarks ESSA improves the test accuracy of Qwen2.5-Math-7B by 12.6% on GSM8K and 14.8% on PRM800K, and raises the accuracy of LLaMA3.1-8B on IFEval by 22.5%, all compared with GRPO. In large-scale settings ESSA shows stronger scaling than gradient-based methods: on Qwen2.5-32B for PRM800K it reaches near-optimal accuracy twice as fast on 16 GPUs and six times as fast on 128 GPUs compared with GRPO. These results position evolutionary strategies as a compelling, hardware-friendly alternative to gradient-based LLM alignment, combining competitive quality with substantially reduced wall-clock time and engineering overhead.
Instructing Large Language Models to Identify and Ignore Irrelevant Conditions
Math word problem (MWP) solving requires generating a reasoning path based on a given problem description that often contains irrelevant conditions. Existing chain-of-thought (CoT) prompting methods elicited multi-step reasoning abilities of large language models (LLMs) to solve MWPs. However, they were seriously confused by the irrelevant conditions, resulting in low accuracy. In this paper, we propose a novel approach named I^3C that instructs LLMs to identify and ignore irrelevant conditions. It identifies a set of irrelevant condition candidates that have a weak semantic relevance with the question. Then it prompts LLMs to verify the irrelevant conditions. Lastly it instructs the LLMs with the verification on relevant and irrelevant conditions to avoid confusion and improve reasoning paths. Moreover, we propose to select (problem, reasoning paths) pairs as demonstrations to enhance I^3C with few-shot reasoning. We develop I^3C-Select that selects the most confusing problems based on the semantic relevance measurement. We conduct extensive experiments on eight MWP datasets. I^3C can be combined with any CoT prompting methods to improve the performance of solving MWPs. Notably, with GPT-3.5-Turbo and I^3C-Select, we achieve an accuracy of 96.0 and 94.1 on GSM-IC2-1K and GSM-ICM-1K, respectively, significantly outperforming the state-of-the-art few-shot prompting method Complex-CoT by +11.7 and +11.1. Our implementation is made publicly available at https://wzy6642.github.io/I3C.github.io/.
SSR: Speculative Parallel Scaling Reasoning in Test-time
Large language models (LLMs) have achieved impressive results on multi-step mathematical reasoning, yet at the cost of high computational overhead. This challenge is particularly acute for test-time scaling methods such as parallel decoding, which increase answer diversity but scale poorly in efficiency. To address this efficiency-accuracy trade-off, we propose SSR (Speculative Parallel Scaling Reasoning), a training-free framework that leverages a key insight: by introducing speculative decoding at the step level, we can accelerate reasoning without sacrificing correctness. SSR integrates two components: a Selective Parallel Module (SPM) that identifies a small set of promising reasoning strategies via model-internal scoring, and Step-level Speculative Decoding (SSD), which enables efficient draft-target collaboration for fine-grained reasoning acceleration. Experiments on three mathematical benchmarks-AIME 2024, MATH-500, and LiveMathBench - demonstrate that SSR achieves strong gains over baselines. For instance, on LiveMathBench, SSR improves pass@1 accuracy by 13.84% while reducing computation to 80.5% of the baseline FLOPs. On MATH-500, SSR reduces compute to only 30% with no loss in accuracy.
Confidence Is All You Need: Few-Shot RL Fine-Tuning of Language Models
Large language models (LLMs) excel at reasoning, yet post-training remains critical for aligning their behavior with task goals. Existing reinforcement learning (RL) methods often depend on costly human annotations or external reward models. We propose Reinforcement Learning via Self-Confidence (RLSC), which uses the model's own confidence as reward signals-eliminating the need for labels, preference models, or reward engineering. Applied to Qwen2.5-Math-7B with only 16 samples per question and 10 or 20 training steps, RLSC improves accuracy by +13.4% on AIME2024, +21.2% on MATH500, +21.7% on Minerva Math, +20.8% on Olympiadbench, and +9.7% on AMC23. RLSC provides a simple, scalable post-training method for inference models, requiring only a small number of samples and unlabelled supervision.
ReTool: Reinforcement Learning for Strategic Tool Use in LLMs
While reasoning models (e.g., DeepSeek R1) trained with reinforcement learning (RL), excel in textual reasoning, they struggle in scenarios requiring structured problem-solving, such as geometric reasoning, concise computation, or complex equation solving-areas where computational tools like code interpreters (CI) demonstrate distinct advantages. To bridge this gap, we propose ReTool, which enhances long-form reasoning with tool-integrated learning, including two key features: (1) dynamic interleaving of real-time code execution within natural language reasoning processes, and (2) an automated RL paradigm that allows policy rollouts with multi-turn real-time code execution and teaches the model in learning when and how to invoke tools based on outcome feedback. ReTool employs a systematic training framework, beginning with synthetic cold-start data generation to produce code-augmented long-form reasoning traces for fine-tuning base models. Subsequent RL training leverages task outcomes as rewards to iteratively refine the model's tool use strategy, enabling autonomous discovery of optimal tool invocation patterns without human priors. Experiments on the challenging MATH Olympiad benchmark AIME demonstrate ReTool's superiority: Our 32B model achieves 67% accuracy with 400 training steps, outperforming text-based RL baseline (40% accuracy, 1080 steps) in efficiency and performance. Remarkably, ReTool-32B attains 72.5% accuracy in extended settings, surpassing OpenAI's o1-preview by 27.9%. Further analysis reveals emergent behaviors such as code self-correction, signaling an ''aha moment'' in which the model autonomously masters adaptive tool use. These findings highlight the promise of outcome-driven tool integration for advancing complex mathematical reasoning and offer new insights into hybrid neuro-symbolic systems.
No Prompt Left Behind: Exploiting Zero-Variance Prompts in LLM Reinforcement Learning via Entropy-Guided Advantage Shaping
Reinforcement Learning with Verifiable Rewards (RLVR) is a powerful framework for improving the reasoning abilities of Large Language Models (LLMs). However, current methods such as GRPO rely only on problems where the model responses to the same input differ in correctness, while ignoring those where all responses receive the same reward - so-called zero-variance prompts. In this work, we argue that such prompts are not useless but can, in fact, provide meaningful feedback for policy optimization. To this end, we introduce RL with Zero-Variance Prompts (RL-ZVP), a novel algorithm that extract learning signals from zero-variance prompts. RL-ZVP directly rewards correctness and penalizes errors even without contrasting responses, modulating feedback with token-level characteristics to preserve informative, nuanced signals. Across six math reasoning benchmarks, RL-ZVP achieves significant improvements of up to 8.61 points in accuracy and 7.77 points in pass rate over GRPO, while consistently outperforming other baselines that filter out zero-variance prompts. These results highlight the untapped potential of learning from zero-variance prompts in RLVR.
TinyGSM: achieving >80% on GSM8k with small language models
Small-scale models offer various computational advantages, and yet to which extent size is critical for problem-solving abilities remains an open question. Specifically for solving grade school math, the smallest model size so far required to break the 80\% barrier on the GSM8K benchmark remains to be 34B. Our work studies how high-quality datasets may be the key for small language models to acquire mathematical reasoning. We introduce TinyGSM, a synthetic dataset of 12.3M grade school math problems paired with Python solutions, generated fully by GPT-3.5. After finetuning on TinyGSM, we find that a duo of a 1.3B generation model and a 1.3B verifier model can achieve 81.5\% accuracy, outperforming existing models that are orders of magnitude larger. This also rivals the performance of the GPT-3.5 ``teacher'' model (77.4\%), from which our model's training data is generated. Our approach is simple and has two key components: 1) the high-quality dataset TinyGSM, 2) the use of a verifier, which selects the final outputs from multiple candidate generations.
Dr.LLM: Dynamic Layer Routing in LLMs
Large Language Models (LLMs) process every token through all layers of a transformer stack, causing wasted computation on simple queries and insufficient flexibility for harder ones that need deeper reasoning. Adaptive-depth methods can improve efficiency, but prior approaches rely on costly inference-time search, architectural changes, or large-scale retraining, and in practice often degrade accuracy despite efficiency gains. We introduce Dr.LLM, Dynamic routing of Layers for LLMs, a retrofittable framework that equips pretrained models with lightweight per-layer routers deciding to skip, execute, or repeat a block. Routers are trained with explicit supervision: using Monte Carlo Tree Search (MCTS), we derive high-quality layer configurations that preserve or improve accuracy under a compute budget. Our design, windowed pooling for stable routing, focal loss with class balancing, and bottleneck MLP routers, ensures robustness under class imbalance and long sequences. On ARC (logic) and DART (math), Dr.LLM improves accuracy by up to +3.4%p while saving 5 layers per example on average. Routers generalize to out-of-domain tasks (MMLU, GSM8k, AIME, TruthfulQA, SQuADv2, GPQA, PIQA, AGIEval) with only 0.85% accuracy drop while retaining efficiency, and outperform prior routing methods by up to +7.7%p. Overall, Dr.LLM shows that explicitly supervised routers retrofit frozen LLMs for budget-aware, accuracy-driven inference without altering base weights.
Non-myopic Generation of Language Model for Reasoning and Planning
Large Language Models have demonstrated remarkable abilities in reasoning and planning by breaking down complex problems into sequential steps. Despite their success in various domains like mathematical problem-solving and coding, LLMs face challenges in ensuring reliable and optimal planning due to their inherent myopic nature of autoregressive decoding. This paper revisits LLM reasoning from an optimal-control perspective, proposing a novel method, Predictive-Decoding, that leverages Model Predictive Control to enhance planning accuracy. By re-weighting LLM distributions based on foresight trajectories, Predictive-Decoding aims to mitigate early errors and promote non-myopic planning. Our experiments show significant improvements in a wide range of tasks for math, coding, and agents. Furthermore, Predictive-Decoding demonstrates computational efficiency, outperforming search baselines with reduced computational resources. This study provides insights into optimizing LLM planning capabilities.
CarBoN: Calibrated Best-of-N Sampling Improves Test-time Reasoning
Allocating more computation during inference time (test-time scaling) improves language model performance, especially for reasoning tasks. However, popular methods like Best-of-N sampling often show diminishing returns as N increases. To address this inefficiency, we introduce a general test-time calibration framework that adaptively modifies the model toward high-reward reasoning paths, with theoretical guarantees of improving the lower bound of expected reward under finite sampling, all without large language model (LLM) retraining. Within this framework, we propose CarBoN (Calibrated Best-of-N), a two-phase method that first explores the solution space and then learns a calibration of the logits via an input-specific temperature T and additive shift vector delta, guiding generation toward more reliable reasoning. Experiments on MATH-500 and AIME-2024 show that CarBoN improves efficiency, with up to 4times fewer rollouts to reach the same accuracy, while often achieving higher accuracy under fixed budgets. We also analyze the complementary roles of T and delta in balancing output diversity and correctness, and demonstrate that the framework also generalizes to step-level sampling strategies such as beam search. For more information, please refer to our project page at huggingface.co/spaces/TrustSafeAI/Test-Time-Calibration.
SORSA: Singular Values and Orthonormal Regularized Singular Vectors Adaptation of Large Language Models
The rapid advancement in large language models (LLMs) comes with a significant increase in their parameter size, presenting challenges for adaptation and fine-tuning. Parameter-efficient fine-tuning (PEFT) methods are widely used to adapt LLMs for downstream tasks efficiently. In this paper, we propose Singular Values and Orthonormal Regularized Singular Vectors Adaptation, or SORSA, a novel PEFT method. We introduce a method to analyze the variation of the parameters by performing singular value decomposition (SVD) and discuss and analyze SORSA's superiority in minimizing the alteration in the SVD aspect. Each SORSA adapter consists of two main parts: trainable principal singular weights W_p = U_p Sigma_p V^top_p, and frozen residual weights W_r = U_r Sigma_r V^top_r. These parts are initialized by performing SVD on pre-trained weights. Moreover, we implement and analyze an orthonormal regularizer, which could effectively transfer the scaling information into Sigma_p and ultimately allows the training process to be more efficient. SORSA adapters could be merged during inference, thus eliminating any inference latency. After all, SORSA shows a faster convergence than PiSSA and LoRA in our experiments. On the MATH benchmark, Llama 2 7B adapted using SORSA achieved 10.36% accuracy, outperforming LoRA (5.50%), Full FT (7.22%), and PiSSA (7.44%). On the GSM-8K benchmark, SORSA achieved 56.03% accuracy, surpassing LoRA (42.30%), Full FT (49.05%), and PiSSA (53.07%). We conclude that SORSA offers a new perspective on parameter-efficient fine-tuning, demonstrating remarkable performance. The code is available at https://github.com/Gunale0926/SORSA.
Parallel-R1: Towards Parallel Thinking via Reinforcement Learning
Parallel thinking has emerged as a novel approach for enhancing the reasoning capabilities of large language models (LLMs) by exploring multiple reasoning paths concurrently. However, activating such capabilities through training remains challenging, as existing methods predominantly rely on supervised fine-tuning (SFT) over synthetic data, which encourages teacher-forced imitation rather than exploration and generalization. Different from them, we propose Parallel-R1, the first reinforcement learning (RL) framework that enables parallel thinking behaviors for complex real-world reasoning tasks. Our framework employs a progressive curriculum that explicitly addresses the cold-start problem in training parallel thinking with RL. We first use SFT on prompt-generated trajectories from easier tasks to instill the parallel thinking ability, then transition to RL to explore and generalize this skill on harder problems. Experiments on various math benchmarks, including MATH, AMC23, and AIME, show that Parallel-R1 successfully instills parallel thinking, leading to 8.4% accuracy improvements over the sequential thinking model trained directly on challenging tasks with RL. Further analysis reveals a clear shift in the model's thinking behavior: at an early stage, it uses parallel thinking as an exploration strategy, while in a later stage, it uses the same capability for multi-perspective verification. Most significantly, we validate parallel thinking as a mid-training exploration scaffold, where this temporary exploratory phase unlocks a higher performance ceiling after RL, yielding a 42.9% improvement over the baseline on AIME25. Our model, data, and code will be open-source at https://github.com/zhengkid/Parallel-R1.
Yuan 2.0-M32: Mixture of Experts with Attention Router
Yuan 2.0-M32, with a similar base architecture as Yuan-2.0 2B, uses a mixture-of-experts architecture with 32 experts of which 2 experts are active. A new router network, Attention Router, is proposed and adopted for a more efficient selection of experts, which boosts the accuracy of 3.8% compared to the model with classical router network. Yuan 2.0-M32 is trained with 2000B tokens from scratch, and the training computation consumption is only 9.25% of a dense model at the same parameter scale. Yuan 2.0-M32 demonstrates competitive capability on coding, math, and various domains of expertise, with only 3.7B active parameters of 40B in total, and 7.4 GFlops forward computation per token, both of which are only 1/19 of Llama3-70B. Yuan 2.0-M32 surpass Llama3-70B on MATH and ARC-Challenge benchmark, with accuracy of 55.89 and 95.8 respectively. The models and source codes of Yuan 2.0-M32 are released at Github.
ScaleDiff: Scaling Difficult Problems for Advanced Mathematical Reasoning
Large Reasoning Models (LRMs) have shown impressive capabilities in complex problem-solving, often benefiting from training on difficult mathematical problems that stimulate intricate reasoning. Recent efforts have explored automated synthesis of mathematical problems by prompting proprietary models or large-scale open-source models from seed data or inherent mathematical concepts. However, scaling up these methods remains challenging due to their high computational/API cost, complexity of prompting, and limited difficulty level of the generated problems. To overcome these limitations, we propose ScaleDiff, a simple yet effective pipeline designed to scale the creation of difficult problems. We efficiently identify difficult problems from existing datasets with only a single forward pass using an adaptive thinking model, which can perceive problem difficulty and automatically switch between "Thinking" and "NoThinking" modes. We then train a specialized difficult problem generator (DiffGen-8B) on this filtered difficult data, which can produce new difficult problems in large scale, eliminating the need for complex, per-instance prompting and its associated high API costs. Fine-tuning Qwen2.5-Math-7B-Instruct on the ScaleDiff-Math dataset yields a substantial performance increase of 11.3% compared to the original dataset and achieves a 65.9% average accuracy on AIME'24, AIME'25, HMMT-Feb'25, BRUMO'25, and MATH500, outperforming recent strong LRMs like OpenThinker3. Notably, this performance is achieved using the cost-efficient Qwen3-8B model as a teacher, demonstrating that our pipeline can effectively transfer advanced reasoning capabilities without relying on larger, more expensive teacher models. Furthermore, we observe a clear scaling phenomenon in model performance on difficult benchmarks as the quantity of difficult problems increases. Code: https://github.com/QizhiPei/ScaleDiff.
Learning a Continue-Thinking Token for Enhanced Test-Time Scaling
Test-time scaling has emerged as an effective approach for improving language model performance by utilizing additional compute at inference time. Recent studies have shown that overriding end-of-thinking tokens (e.g., replacing "</think>" with "Wait") can extend reasoning steps and improve accuracy. In this work, we explore whether a dedicated continue-thinking token can be learned to trigger extended reasoning. We augment a distilled version of DeepSeek-R1 with a single learned "<|continue-thinking|>" token, training only its embedding via reinforcement learning while keeping the model weights frozen. Our experiments show that this learned token achieves improved accuracy on standard math benchmarks compared to both the baseline model and a test-time scaling approach that uses a fixed token (e.g., "Wait") for budget forcing. In particular, we observe that in cases where the fixed-token approach enhances the base model's accuracy, our method achieves a markedly greater improvement. For example, on the GSM8K benchmark, the fixed-token approach yields a 1.3% absolute improvement in accuracy, whereas our learned-token method achieves a 4.2% improvement over the base model that does not use budget forcing.
ChatBench: From Static Benchmarks to Human-AI Evaluation
With the rapid adoption of LLM-based chatbots, there is a pressing need to evaluate what humans and LLMs can achieve together. However, standard benchmarks, such as MMLU, measure LLM capabilities in isolation (i.e., "AI-alone"). Here, we design and conduct a user study to convert MMLU questions into user-AI conversations, by seeding the user with the question and having them carry out a conversation with the LLM to answer their question. We release ChatBench, a new dataset with AI-alone, user-alone, and user-AI data for 396 questions and two LLMs, including 144K answers and 7,336 user-AI conversations. We find that AI-alone accuracy fails to predict user-AI accuracy, with significant differences across multiple subjects (math, physics, and moral reasoning), and we analyze the user-AI conversations to provide insight into how they diverge from AI-alone benchmarks. Finally, we show that fine-tuning a user simulator on a subset of ChatBench improves its ability to estimate user-AI accuracies, increasing correlation on held-out questions by more than 20 points, creating possibilities for scaling interactive evaluation.
Mars-PO: Multi-Agent Reasoning System Preference Optimization
Mathematical reasoning is a fundamental capability for large language models (LLMs), yet achieving high performance in this domain remains a significant challenge. The auto-regressive generation process often makes LLMs susceptible to errors, hallucinations, and inconsistencies, particularly during multi-step reasoning. In this paper, we propose Mars-PO, a novel framework to improve the mathematical reasoning capabilities of LLMs through a multi-agent system. It combines high-quality outputs from multiple agents into a hybrid positive sample set and pairs them with agent-specific negative samples to construct robust preference pairs for training. By aligning agents with shared positive samples while addressing individual weaknesses, Mars-PO achieves substantial performance improvements on mathematical reasoning benchmarks. For example, it increases the accuracy on the MATH benchmark of the state-of-the-art instruction-tuned LLM, Llama3.1-8B-Instruct, from 50.38% to 57.82%. Experimental results further demonstrate that our method consistently outperforms other baselines, such as supervised fine-tuning, vanilla DPO, and its enhanced versions, highlighting the effectiveness of our approach.
Boosting Process-Correct CoT Reasoning by Modeling Solvability of Multiple-Choice QA
Reasoning quality in large language models depends not only on producing correct answers but also on generating valid intermediate steps. We study this through multiple-choice question answering (MCQA), which provides a controlled setting with fixed answer options. Our analysis shows that when questions are effectively unsolvable for a model, spurious chains of thought (CoTs) are more likely to appear, leading to false positives. By estimating the solvability of each question, we uncover an intermediate regime where learning is most effective. Building on this insight, we adapt outcome-supervised reward models and reinforcement learning with group-relative advantage to incorporate solvability into their objectives. Across experiments on math and multimodal datasets, these modifications consistently yield higher rates of process-correct reasoning and, in reinforcement learning, improved answer accuracy as well. Our results highlight solvability as a key factor for reducing hallucinations and increasing reliability in CoT reasoning.
SABER: Switchable and Balanced Training for Efficient LLM Reasoning
Large language models (LLMs) empowered by chain-of-thought reasoning have achieved impressive accuracy on complex tasks but suffer from excessive inference costs and latency when applied uniformly to all problems. We propose SABER (Switchable and Balanced Training for Efficient LLM Reasoning), a reinforcement learning framework that endows LLMs with user-controllable, token-budgeted reasoning. SABER first profiles each training example's base-model thinking token usage and assigns it to one of the predefined budget tiers. During fine-tuning, the model is guided by system prompts and length-aware rewards to respect its assigned budget. In parallel, we incorporate no-think examples to ensure the model remains reliable even when explicit reasoning is turned off. SABER further supports four discrete inference modes - NoThink, FastThink, CoreThink, and DeepThink, enabling flexible trade-offs between latency and reasoning depth. Extensive evaluations on math reasoning (MATH, GSM8K), code generation (MBPP), and logical reasoning (LiveBench-Reasoning) demonstrate that SABER achieves high accuracy under tight budgets, graceful degradation, and effective cross-scale and cross-domain generalization. In particular, SABER-FastThink cuts reasoning length by 65.4% and yields a 3.6% accuracy gain compared with the base model on the MATH benchmark.
Predictive Auditing of Hidden Tokens in LLM APIs via Reasoning Length Estimation
Commercial LLM services often conceal internal reasoning traces while still charging users for every generated token, including those from hidden intermediate steps, raising concerns of token inflation and potential overbilling. This gap underscores the urgent need for reliable token auditing, yet achieving it is far from straightforward: cryptographic verification (e.g., hash-based signature) offers little assurance when providers control the entire execution pipeline, while user-side prediction struggles with the inherent variance of reasoning LLMs, where token usage fluctuates across domains and prompt styles. To bridge this gap, we present PALACE (Predictive Auditing of LLM APIs via Reasoning Token Count Estimation), a user-side framework that estimates hidden reasoning token counts from prompt-answer pairs without access to internal traces. PALACE introduces a GRPO-augmented adaptation module with a lightweight domain router, enabling dynamic calibration across diverse reasoning tasks and mitigating variance in token usage patterns. Experiments on math, coding, medical, and general reasoning benchmarks show that PALACE achieves low relative error and strong prediction accuracy, supporting both fine-grained cost auditing and inflation detection. Taken together, PALACE represents an important first step toward standardized predictive auditing, offering a practical path to greater transparency, accountability, and user trust.
Herald: A Natural Language Annotated Lean 4 Dataset
Verifiable formal languages like Lean have profoundly impacted mathematical reasoning, particularly through the use of large language models (LLMs) for automated reasoning. A significant challenge in training LLMs for these formal languages is the lack of parallel datasets that align natural language with formal language proofs. To address this challenge, this paper introduces a novel framework for translating the Mathlib4 corpus (a unified library of mathematics in formal language Lean 4) into natural language. Building upon this, we employ a dual augmentation strategy that combines tactic-based and informal-based approaches, leveraging the Lean-jixia system, a Lean 4 analyzer. We present the results of this pipeline on Mathlib4 as Herald (Hierarchy and Retrieval-based Translated Lean Dataset). We also propose the Herald Translator, which is fine-tuned on Herald. Herald translator achieves a 93.2% accuracy (Pass@128) on formalizing statements in the miniF2F-test and a 22.5% accuracy on our internal graduate-level textbook dataset, outperforming InternLM2-Math-Plus-7B (74.0% and 7.5%) and TheoremLlama (50.1% and 4.0%). Furthermore, we propose a section-level translation framework for real-world applications. As a direct application of Herald translator, we have successfully translated a template section in the Stack project, marking a notable progress in the automatic formalization of graduate-level mathematical literature. Our model, along with the datasets, will be open-sourced to the public soon.
TroVE: Inducing Verifiable and Efficient Toolboxes for Solving Programmatic Tasks
Language models (LMs) can solve tasks such as answering questions about tables or images by writing programs. However, using primitive functions often leads to verbose and error-prone programs, and higher-level functions require expert design. To enable better solutions without human labor, we ask code LMs to curate reusable high-level functions, and use them to write solutions. We present TROVE, a training-free method of inducing a verifiable and efficient toolbox of functions, by generating via using, growing, and periodically trimming the toolbox. On 11 datasets from math, table question answering, and image reasoning tasks, TROVE consistently yields simpler solutions with higher accuracy than baselines using CODELLAMA and previous methods using GPT, while using 79-98% smaller toolboxes. TROVE further enables 31% faster and 13% more accurate human verification than baselines. With the same pipeline, it creates diverse functions for varied tasks and datasets, providing insights into their individual characteristics.
The Illusion of Thinking: Understanding the Strengths and Limitations of Reasoning Models via the Lens of Problem Complexity
Recent generations of language models have introduced Large Reasoning Models (LRMs) that generate detailed thinking processes before providing answers. While these models demonstrate improved performance on reasoning benchmarks, their fundamental capabilities, scaling properties, and limitations remain insufficiently understood. Current evaluations primarily focus on established math and coding benchmarks, emphasizing final answer accuracy. However, this evaluation paradigm often suffers from contamination and does not provide insights into the reasoning traces. In this work, we systematically investigate these gaps with the help of controllable puzzle environments that allow precise manipulation of complexity while maintaining consistent logical structures. This setup enables the analysis of not only final answers but also the internal reasoning traces, offering insights into how LRMs think. Through extensive experiments, we show that LRMs face a complete accuracy collapse beyond certain complexities. Moreover, they exhibit a counterintuitive scaling limit: their reasoning effort increases with problem complexity up to a point, then declines despite having remaining token budget. By comparing LRMs with their standard LLM counterparts under same inference compute, we identify three performance regimes: (1) low-complexity tasks where standard models outperform LRMs, (2) medium-complexity tasks where LRMs demonstrates advantage, and (3) high-complexity tasks where both models face complete collapse. We found that LRMs have limitations in exact computation: they fail to use explicit algorithms and reason inconsistently across scales. We also investigate the reasoning traces in more depth, studying the patterns of explored solutions and analyzing the models' computational behavior, shedding light on their strengths, limitations, and raising questions about their reasoning capabilities.
ReasonFlux: Hierarchical LLM Reasoning via Scaling Thought Templates
We present that hierarchical LLM reasoning via scaling thought templates can effectively optimize the reasoning search space and outperform the mathematical reasoning capabilities of powerful LLMs like OpenAI o1-preview and DeepSeek V3. We train our ReasonFlux-32B model with only 8 GPUs and introduces three innovations: (i) a structured and generic thought template library, containing around 500 high-level thought templates capable of generalizing to similar or relevant reasoning problems; (ii) performing hierarchical reinforcement learning on a sequence of thought templates instead of long CoTs, optimizing a base LLM to plan out an optimal template trajectory for gradually handling complex problems; (iii) a brand new inference scaling system that enables hierarchical LLM reasoning by adaptively scaling thought templates at inference time. With a template trajectory containing sequential thought templates, our ReasonFlux-32B significantly advances math reasoning capabilities to state-of-the-art levels. Notably, on the MATH benchmark, it achieves an accuracy of 91.2% and surpasses o1-preview by 6.7%. On the USA Math Olympiad (AIME) benchmark, ReasonFlux-32B solves an average of 56.7% of problems, surpassing o1-preview and DeepSeek-V3 by 27% and 45%, respectively. Code: https://github.com/Gen-Verse/ReasonFlux
Large Language Models and Mathematical Reasoning Failures
This paper investigates the mathematical reasoning capabilities of large language models (LLMs) using 50 newly constructed high-school-level word problems. Unlike prior studies that focus solely on answer correctness, we rigorously analyze both final answers and solution steps to identify reasoning failures. Evaluating eight state-of-the-art models - including Mixtral, Llama, Gemini, GPT-4o, and OpenAI's o1 variants - we find that while newer models (e.g., o3-mini, deepseek-r1) achieve higher accuracy, all models exhibit errors in spatial reasoning, strategic planning, and arithmetic, sometimes producing correct answers through flawed logic. Common failure modes include unwarranted assumptions, over-reliance on numerical patterns, and difficulty translating physical intuition into mathematical steps. Manual analysis reveals that models struggle with problems requiring multi-step deduction or real-world knowledge, despite possessing broad mathematical knowledge. Our results underscore the importance of evaluating reasoning processes, not just answers, and caution against overestimating LLMs' problem-solving proficiency. The study highlights persistent gaps in LLMs' generalization abilities, emphasizing the need for targeted improvements in structured reasoning and constraint handling.
ToRA: A Tool-Integrated Reasoning Agent for Mathematical Problem Solving
Large language models have made significant progress in various language tasks, yet they still struggle with complex mathematics. In this paper, we propose ToRA a series of Tool-integrated Reasoning Agents designed to solve challenging mathematical problems by seamlessly integrating natural language reasoning with the utilization of external tools (e.g., computation libraries and symbolic solvers), thereby amalgamating the analytical prowess of language and the computational efficiency of tools. To train ToRA, we curate interactive tool-use trajectories on mathematical datasets, apply imitation learning on the annotations, and propose output space shaping to further refine models' reasoning behavior. As a result, ToRA models significantly outperform open-source models on 10 mathematical reasoning datasets across all scales with 13%-19% absolute improvements on average. Notably, ToRA-7B reaches 44.6% on the competition-level dataset MATH, surpassing the best open-source model WizardMath-70B by 22% absolute. ToRA-34B is also the first open-source model that achieves an accuracy exceeding 50% on MATH, which significantly outperforms GPT-4's CoT result, and is competitive with GPT-4 solving problems with programs. Additionally, we conduct a comprehensive analysis of the benefits and remaining challenges of tool interaction for mathematical reasoning, providing valuable insights for future research.
System-2 Mathematical Reasoning via Enriched Instruction Tuning
Solving complex mathematical problems via system-2 reasoning is a natural human skill, yet it remains a significant challenge for current large language models (LLMs). We identify the scarcity of deliberate multi-step reasoning data as a primary limiting factor. To this end, we introduce Enriched Instruction Tuning (EIT), a method that enriches existing human-annotated mathematical datasets by synergizing human and AI feedback to create fine-grained reasoning trajectories. These datasets are then used to fine-tune open-source LLMs, enhancing their mathematical reasoning abilities without reliance on any symbolic verification program. Concretely, EIT is composed of two critical steps: Enriching with Reasoning Plan (ERP) and Enriching with Reasoning Step (ERS). The former generates a high-level plan that breaks down complex instructions into a sequence of simpler objectives, while ERS fills in reasoning contexts often overlooked by human annotators, creating a smoother reasoning trajectory for LLM fine-tuning. Unlike existing CoT prompting methods that generate reasoning chains only depending on LLM's internal knowledge, our method leverages human-annotated initial answers as ``meta-knowledge'' to help LLMs generate more detailed and precise reasoning processes, leading to a more trustworthy LLM expert for complex mathematical problems. In experiments, EIT achieves an accuracy of 84.1% on GSM8K and 32.5% on MATH, surpassing state-of-the-art fine-tuning and prompting methods, and even matching the performance of tool-augmented methods.
Think Right: Learning to Mitigate Under-Over Thinking via Adaptive, Attentive Compression
Recent thinking models solve complex reasoning tasks by scaling test-time compute, but this scaling must be allocated in line with task difficulty. On one hand, short reasoning (underthinking) leads to errors on harder problems that require extended reasoning steps; but, excessively long reasoning (overthinking) can be token-inefficient, generating unnecessary steps even after reaching a correct intermediate solution. We refer to this as under-adaptivity, where the model fails to modulate its response length appropriately given problems of varying difficulty. To address under-adaptivity and strike a balance between under- and overthinking, we propose TRAAC (Think Right with Adaptive, Attentive Compression), an online post-training RL method that leverages the model's self-attention over a long reasoning trajectory to identify important steps and prune redundant ones. TRAAC also estimates difficulty and incorporates it into training rewards, thereby learning to allocate reasoning budget commensurate with example difficulty. Our approach improves accuracy, reduces reasoning steps, and enables adaptive thinking compared to base models and other RL baselines. Across a variety of tasks (AIME, AMC, GPQA-D, BBEH), TRAAC (Qwen3-4B) achieves an average absolute accuracy gain of 8.4% with a relative reduction in reasoning length of 36.8% compared to the base model, and a 7.9% accuracy gain paired with a 29.4% length drop compared to the best RL baseline. TRAAC also shows strong generalization: although our models are trained on math datasets, they show accuracy and efficiency gains on out-of-distribution non-math datasets like GPQA-D, BBEH, and OptimalThinkingBench. Our analysis further verifies that TRAAC provides fine-grained adjustments to thinking budget based on difficulty and that a combination of task-difficulty calibration and attention-based compression yields gains across diverse tasks.
Squeeze the Soaked Sponge: Efficient Off-policy Reinforcement Finetuning for Large Language Model
Reinforcement Learning (RL) has demonstrated its potential to improve the reasoning ability of Large Language Models (LLMs). One major limitation of most existing Reinforcement Finetuning (RFT) methods is that they are on-policy RL in nature, i.e., data generated during the past learning process is not fully utilized. This inevitably comes at a significant cost of compute and time, posing a stringent bottleneck on continuing economic and efficient scaling. To this end, we launch the renaissance of off-policy RL and propose Reincarnating Mix-policy Proximal Policy Gradient (ReMix), a general approach to enable on-policy RFT methods like PPO and GRPO to leverage off-policy data. ReMix consists of three major components: (1) Mix-policy proximal policy gradient with an increased Update-To-Data (UTD) ratio for efficient training; (2) KL-Convex policy constraint to balance the trade-off between stability and flexibility; (3) Policy reincarnation to achieve a seamless transition from efficient early-stage learning to steady asymptotic improvement. In our experiments, we train a series of ReMix models upon PPO, GRPO and 1.5B, 7B base models. ReMix shows an average Pass@1 accuracy of 52.10% (for 1.5B model) with 0.079M response rollouts, 350 training steps and achieves 63.27%/64.39% (for 7B model) with 0.007M/0.011M response rollouts, 50/75 training steps, on five math reasoning benchmarks (i.e., AIME'24, AMC'23, Minerva, OlympiadBench, and MATH500). Compared with 15 recent advanced models, ReMix shows SOTA-level performance with an over 30x to 450x reduction in training cost in terms of rollout data volume. In addition, we reveal insightful findings via multifaceted analysis, including the implicit preference for shorter responses due to the Whipping Effect of off-policy discrepancy, the collapse mode of self-reflection behavior under the presence of severe off-policyness, etc.
Multimodal Mathematical Reasoning with Diverse Solving Perspective
Recent progress in large-scale reinforcement learning (RL) has notably enhanced the reasoning capabilities of large language models (LLMs), especially in mathematical domains. However, current multimodal LLMs (MLLMs) for mathematical reasoning often rely on one-to-one image-text pairs and single-solution supervision, overlooking the diversity of valid reasoning perspectives and internal reflections. In this work, we introduce MathV-DP, a novel dataset that captures multiple diverse solution trajectories for each image-question pair, fostering richer reasoning supervision. We further propose Qwen-VL-DP, a model built upon Qwen-VL, fine-tuned with supervised learning and enhanced via group relative policy optimization (GRPO), a rule-based RL approach that integrates correctness discrimination and diversity-aware reward functions. Our method emphasizes learning from varied reasoning perspectives and distinguishing between correct yet distinct solutions. Extensive experiments on the MathVista's minitest and Math-V benchmarks demonstrate that Qwen-VL-DP significantly outperforms prior base MLLMs in both accuracy and generative diversity, highlighting the importance of incorporating diverse perspectives and reflective reasoning in multimodal mathematical reasoning.
MAS-ZERO: Designing Multi-Agent Systems with Zero Supervision
Multi-agent systems (MAS) leveraging the impressive capabilities of Large Language Models (LLMs) hold significant potential for tackling complex tasks. However, most current MAS depend on manually designed agent roles and communication protocols. These manual designs often fail to align with the underlying LLMs' strengths and struggle to adapt to novel tasks. Recent automatic MAS approaches attempt to mitigate these limitations but typically necessitate a validation set for tuning and yield static MAS designs lacking adaptability during inference. We introduce MAS-ZERO, the first self-evolved, inference-time framework for automatic MAS design. MAS-ZERO employs meta-level design to iteratively generate, evaluate, and refine MAS configurations tailored to each problem instance, without requiring a validation set. Critically, it enables dynamic agent composition and problem decomposition through meta-feedback on solvability and completeness. Experiments across math, graduate-level QA, and software engineering benchmarks, using both closed-source and open-source LLM backbones of varying sizes, demonstrate that MAS-ZERO outperforms both manual and automatic MAS baselines, achieving a 7.44% average accuracy improvement over the next strongest baseline while maintaining cost-efficiency. These findings underscore the promise of meta-level self-evolved design for creating effective and adaptive MAS.
How Do Humans Write Code? Large Models Do It the Same Way Too
Program-of-Thought (PoT) replaces natural language-based Chain-of-Thought (CoT) as the most popular method in Large Language Models (LLMs) mathematical reasoning tasks by utilizing external tool calls to circumvent computational errors. However, our evaluation of the GPT-4 and Llama series reveals that using PoT introduces more reasoning errors, such as incorrect formulas or flawed logic, compared to CoT. To address this issue, we propose Human-Think Language (HTL), which leverages a suite of strategies that help integrate PoT and CoT, encompassing: (1) a new generation paradigm that uses full CoT reasoning to control code generation. (2) Focus Attention, that directs model attention to the CoT reasoning during PoT to generate more logical code. (3) reinforcement learning that utilizes the accuracy of both CoT and PoT responses as rewards to prevent repetitive reasoning steps in LLMs when solving difficult math problems. Our method achieves an average improvement of 6.5% on the Llama-Base model and 4.3% on the Mistral-Base model across 8 mathematical calculation datasets. It also shows significant effectiveness on five out-of-domain datasets by controlling the model's information flow, exhibiting strong transferability. Additionally, HTL shows the most significant improvement in non-mathematical natural language inference task, contributing to a unified reasoning task framework
OTC: Optimal Tool Calls via Reinforcement Learning
Tool-integrated reasoning (TIR) augments large language models (LLMs) with the ability to invoke external tools, such as search engines and code interpreters, to solve tasks beyond the capabilities of language-only reasoning. While reinforcement learning (RL) has shown promise in improving TIR by optimizing final answer correctness, existing approaches often overlook the efficiency and cost associated with tool usage. This can lead to suboptimal behavior, including excessive tool calls that increase computational and financial overhead, or insufficient tool use that compromises answer quality. In this work, we propose Optimal Tool Call-controlled Policy Optimization (OTC-PO), a simple yet effective RL-based framework that encourages models to produce accurate answers with minimal tool calls. Our method introduces a tool-integrated reward that jointly considers correctness and tool efficiency, promoting high tool productivity. We instantiate this framework within both Proximal Policy Optimization (PPO) and Group Relative Preference Optimization (GRPO), resulting in OTC-PPO and OTC-GRPO. Experiments with Qwen-2.5 and Qwen-Math across multiple QA benchmarks show that our approach reduces tool calls by up to 73.1\% and improves tool productivity by up to 229.4\%, while maintaining comparable answer accuracy. To the best of our knowledge, this is the first RL-based framework that explicitly optimizes tool-use efficiency in TIR.
Measuring Reasoning Utility in LLMs via Conditional Entropy Reduction
Recent advancements in large language models (LLMs) often rely on generating intermediate reasoning steps to enhance accuracy. However, little work has examined how reasoning utility contributes to the final answer's correctness. Due to the stochastic nature of autoregressive generation, generating more context does not guarantee increased confidence in the answer. If we could predict, during generation, whether a reasoning step will be useful, we could stop early or prune ineffective steps, avoiding distractions in the final decision. We present an oracle study on MATH dataset, using Qwen2.5-32B and GPT-4o to generate reasoning chains, and then employing a separate model (Qwen3-8B) to quantify the utility of these chains for final accuracy. Specifically, we measure the model's uncertainty on the answer span Y at each reasoning step using conditional entropy (expected negative log-likelihood over the vocabulary) with context expanding step by step. Our results show a clear pattern: conditional entropy that decreases over steps is strongly associated with correct answers, whereas flat or increasing entropy often results in wrong answers. We also corroborate that incorrect reasoning paths tend to be longer than correct ones, suggesting that longer reasoning does not necessarily yield better outcomes. These findings serve as a foundation to inspire future work on designing efficient reasoning pipelines that detect and avoid unproductive reasoning early.
CURE: Critical-Token-Guided Re-Concatenation for Entropy-Collapse Prevention
Recent advances in Reinforcement Learning with Verified Reward (RLVR) have driven the emergence of more sophisticated cognitive behaviors in large language models (LLMs), thereby enhancing their reasoning capabilities. However, in prior RLVR pipelines, the repeated use of static initial-state sampling drawn exactly from the dataset distribution during each sampling phase produced overly deterministic, low diversity model behavior, which manifested as rapid entropy collapse and hindered sustained performance gains during prolonged training. To address this issue, we introduce CURE (Critical-token-gUided Re concatenation for Entropy-collapse prevention), a two-stage framework that balances exploration and exploitation. Specifically, in the first stage, to deliberately steer the model toward novel yet coherent contexts, we re-generate at high-entropy critical tokens and jointly optimize the original and the branched trajectories. The further comparison with vanilla DAPO shows that the regeneration process achieves a better performance on math reasoning tasks while sustaining a high-level entropy degree for exploration. In the second stage, we continue training with static initial-state sampling by DAPO, intentionally placing the model in a familiar state to gradually strengthen exploitation. Extensive experiments on Qwen-2.5-Math-7B show that, compared to other RLVR methods, CURE achieves a 5% performance gain across six math benchmarks, establishing state-of-the-art performance in both entropy and accuracy. A series of experiments further validate the effectiveness of our approach. Code is available at https://github.com/bytedance/CURE.
QeRL: Beyond Efficiency -- Quantization-enhanced Reinforcement Learning for LLMs
We propose QeRL, a Quantization-enhanced Reinforcement Learning framework for large language models (LLMs). While RL is essential for LLMs' reasoning capabilities, it is resource-intensive, requiring substantial GPU memory and long rollout durations. QeRL addresses these issues by combining NVFP4 quantization with Low-Rank Adaptation (LoRA), accelerating rollout phase of RL while reducing memory overhead. Beyond efficiency, our findings show that quantization noise increases policy entropy, enhancing exploration, and enabling the discovery of better strategies during RL. To further optimize exploration, QeRL introduces an Adaptive Quantization Noise (AQN) mechanism, which dynamically adjusts noise during training. Experiments demonstrate that QeRL delivers over 1.5 times speedup in the rollout phase. Moreover, this is the first framework to enable RL training of a 32B LLM on a single H100 80GB GPU, while delivering overall speedups for RL training. It also achieves faster reward growth and higher final accuracy than 16-bit LoRA and QLoRA, while matching the performance of full-parameter fine-tuning on mathematical benchmarks such as GSM8K (90.8%) and MATH 500 (77.4%) in the 7B model. These results establish QeRL as an efficient and effective framework for RL training in LLMs.
AdaptThink: Reasoning Models Can Learn When to Think
Recently, large reasoning models have achieved impressive performance on various tasks by employing human-like deep thinking. However, the lengthy thinking process substantially increases inference overhead, making efficiency a critical bottleneck. In this work, we first demonstrate that NoThinking, which prompts the reasoning model to skip thinking and directly generate the final solution, is a better choice for relatively simple tasks in terms of both performance and efficiency. Motivated by this, we propose AdaptThink, a novel RL algorithm to teach reasoning models to choose the optimal thinking mode adaptively based on problem difficulty. Specifically, AdaptThink features two core components: (1) a constrained optimization objective that encourages the model to choose NoThinking while maintaining the overall performance; (2) an importance sampling strategy that balances Thinking and NoThinking samples during on-policy training, thereby enabling cold start and allowing the model to explore and exploit both thinking modes throughout the training process. Our experiments indicate that AdaptThink significantly reduces the inference costs while further enhancing performance. Notably, on three math datasets, AdaptThink reduces the average response length of DeepSeek-R1-Distill-Qwen-1.5B by 53% and improves its accuracy by 2.4%, highlighting the promise of adaptive thinking-mode selection for optimizing the balance between reasoning quality and efficiency. Our codes and models are available at https://github.com/THU-KEG/AdaptThink.
Heimdall: test-time scaling on the generative verification
An AI system can create and maintain knowledge only to the extent that it can verify that knowledge itself. Recent work on long Chain-of-Thought reasoning has demonstrated great potential of LLMs on solving competitive problems, but their verification ability remains to be weak and not sufficiently investigated. In this paper, we propose Heimdall, the long CoT verification LLM that can accurately judge the correctness of solutions. With pure reinforcement learning, we boost the verification accuracy from 62.5% to 94.5% on competitive math problems. By scaling with repeated sampling, the accuracy further increases to 97.5%. Through human evaluation, Heimdall demonstrates impressive generalization capabilities, successfully detecting most issues in challenging math proofs, the type of which is not included during training. Furthermore, we propose Pessimistic Verification to extend the functionality of Heimdall to scaling up the problem solving. It calls Heimdall to judge the solutions from a solver model and based on the pessimistic principle, selects the most likely correct solution with the least uncertainty. Taking DeepSeek-R1-Distill-Qwen-32B as the solver model, Pessimistic Verification improves the solution accuracy on AIME2025 from 54.2% to 70.0% with 16x compute budget and to 83.3% with more compute budget. With the stronger solver Gemini 2.5 Pro, the score reaches 93.0%. Finally, we prototype an automatic knowledge discovery system, a ternary system where one poses questions, another provides solutions, and the third verifies the solutions. Using the data synthesis work NuminaMath for the first two components, Heimdall effectively identifies problematic records within the dataset and reveals that nearly half of the data is flawed, which interestingly aligns with the recent ablation studies from NuminaMath.
Step-KTO: Optimizing Mathematical Reasoning through Stepwise Binary Feedback
Large language models (LLMs) have recently demonstrated remarkable success in mathematical reasoning. Despite progress in methods like chain-of-thought prompting and self-consistency sampling, these advances often focus on final correctness without ensuring that the underlying reasoning process is coherent and reliable. This paper introduces Step-KTO, a training framework that combines process-level and outcome-level binary feedback to guide LLMs toward more trustworthy reasoning trajectories. By providing binary evaluations for both the intermediate reasoning steps and the final answer, Step-KTO encourages the model to adhere to logical progressions rather than relying on superficial shortcuts. Our experiments on challenging mathematical benchmarks show that Step-KTO significantly improves both final answer accuracy and the quality of intermediate reasoning steps. For example, on the MATH-500 dataset, Step-KTO achieves a notable improvement in Pass@1 accuracy over strong baselines. These results highlight the promise of integrating stepwise process feedback into LLM training, paving the way toward more interpretable and dependable reasoning capabilities.
DynaMath: A Dynamic Visual Benchmark for Evaluating Mathematical Reasoning Robustness of Vision Language Models
The rapid advancements in Vision-Language Models (VLMs) have shown great potential in tackling mathematical reasoning tasks that involve visual context. Unlike humans who can reliably apply solution steps to similar problems with minor modifications, we found that SOTA VLMs like GPT-4o can consistently fail in these scenarios, revealing limitations in their mathematical reasoning capabilities. In this paper, we investigate the mathematical reasoning robustness in VLMs and evaluate how well these models perform under different variants of the same question, such as changes in visual numerical values or function graphs. While several vision-based math benchmarks have been developed to assess VLMs' problem-solving capabilities, these benchmarks contain only static sets of problems and cannot easily evaluate mathematical reasoning robustness. To fill this gap, we introduce DynaMath, a dynamic visual math benchmark designed for in-depth assessment of VLMs. DynaMath includes 501 high-quality, multi-topic seed questions, each represented as a Python program. Those programs are carefully designed and annotated to enable the automatic generation of a much larger set of concrete questions, including many different types of visual and textual variations. DynaMath allows us to evaluate the generalization ability of VLMs, by assessing their performance under varying input conditions of a seed question. We evaluated 14 SOTA VLMs with 5,010 generated concrete questions. Our results show that the worst-case model accuracy, defined as the percentage of correctly answered seed questions in all 10 variants, is significantly lower than the average-case accuracy. Our analysis emphasizes the need to study the robustness of VLMs' reasoning abilities, and DynaMath provides valuable insights to guide the development of more reliable models for mathematical reasoning.
A Probabilistic Inference Approach to Inference-Time Scaling of LLMs using Particle-Based Monte Carlo Methods
Large language models (LLMs) have achieved significant performance gains via scaling up model sizes and/or data. However, recent evidence suggests diminishing returns from such approaches, motivating scaling the computation spent at inference time. Existing inference-time scaling methods, usually with reward models, cast the task as a search problem, which tends to be vulnerable to reward hacking as a consequence of approximation errors in reward models. In this paper, we instead cast inference-time scaling as a probabilistic inference task and leverage sampling-based techniques to explore the typical set of the state distribution of a state-space model with an approximate likelihood, rather than optimize for its mode directly. We propose a novel inference-time scaling approach by adapting particle-based Monte Carlo methods to this task. Our empirical evaluation demonstrates that our methods have a 4-16x better scaling rate over our deterministic search counterparts on various challenging mathematical reasoning tasks. Using our approach, we show that Qwen2.5-Math-1.5B-Instruct can surpass GPT-4o accuracy in only 4 rollouts, while Qwen2.5-Math-7B-Instruct scales to o1 level accuracy in only 32 rollouts. Our work not only presents an effective method to inference-time scaling, but also connects the rich literature in probabilistic inference with inference-time scaling of LLMs to develop more robust algorithms in future work. Code and further information is available at https://probabilistic-inference-scaling.github.io.
Steering LLM Thinking with Budget Guidance
Recent deep-thinking large language models often reason extensively to improve performance, but such lengthy reasoning is not always desirable, as it incurs excessive inference costs with disproportionate performance gains. Controlling reasoning length without sacrificing performance is therefore important, but remains challenging, especially under tight thinking budgets. We propose budget guidance, a simple yet effective method for steering the reasoning process of LLMs toward a target budget without requiring any LLM fine-tuning. Our approach introduces a lightweight predictor that models a Gamma distribution over the remaining thinking length during next-token generation. This signal is then used to guide generation in a soft, token-level manner, ensuring that the overall reasoning trace adheres to the specified thinking budget. Budget guidance enables natural control of the thinking length, along with significant token efficiency improvements over baseline methods on challenging math benchmarks. For instance, it achieves up to a 26% accuracy gain on the MATH-500 benchmark under tight budgets compared to baseline methods, while maintaining competitive accuracy with only 63% of the thinking tokens used by the full-thinking model. Budget guidance also generalizes to broader task domains and exhibits emergent capabilities, such as estimating question difficulty. The source code is available at: https://github.com/UMass-Embodied-AGI/BudgetGuidance.
Right Question is Already Half the Answer: Fully Unsupervised LLM Reasoning Incentivization
While large language models (LLMs) have demonstrated exceptional capabilities in challenging tasks such as mathematical reasoning, existing methods to enhance reasoning ability predominantly rely on supervised fine-tuning (SFT) followed by reinforcement learning (RL) on reasoning-specific data after pre-training. However, these approaches critically depend on external supervisions--such as human labelled reasoning traces, verified golden answers, or pre-trained reward models--which limits scalability and practical applicability. In this work, we propose Entropy Minimized Policy Optimization (EMPO), which makes an early attempt at fully unsupervised LLM reasoning incentivization. EMPO does not require any supervised information for incentivizing reasoning capabilities (i.e., neither verifiable reasoning traces, problems with golden answers, nor additional pre-trained reward models). By continuously minimizing the predictive entropy of LLMs on unlabeled user queries in a latent semantic space, EMPO enables purely self-supervised evolution of reasoning capabilities with strong flexibility and practicality. Our experiments demonstrate competitive performance of EMPO on both mathematical reasoning and free-form commonsense reasoning tasks. Specifically, without any supervised signals, EMPO boosts the accuracy of Qwen2.5-Math-7B Base from 30.7\% to 48.1\% on mathematical benchmarks and improves truthfulness accuracy of Qwen2.5-7B Instruct from 87.16\% to 97.25\% on TruthfulQA.
Cumulative Reasoning with Large Language Models
While language models are powerful and versatile, they often fail to address highly complex problems. This is because solving complex problems requires deliberate thinking, which has been only minimally guided during training. In this paper, we propose a new method called Cumulative Reasoning (CR), which employs language models in a cumulative and iterative manner to emulate human thought processes. By decomposing tasks into smaller components, CR streamlines the problem-solving process, rendering it both more manageable and effective. For logical inference tasks, CR consistently outperforms existing methods with an improvement up to 9.3%, and achieves the astonishing accuracy of 98.04% on the curated FOLIO wiki dataset. In the context of the Game of 24, CR achieves an accuracy of 98%, which signifies a substantial enhancement of 24% over the previous state-of-the-art method. Finally, on the MATH dataset, we establish new state-of-the-art results with 58.0% overall accuracy, surpassing the previous best approach by a margin of 4.2%, and achieving 43% relative improvement on the hardest level 5 problems (22.4% to 32.1%). Code is available at https://github.com/iiis-ai/cumulative-reasoning.
Dynamic Cheatsheet: Test-Time Learning with Adaptive Memory
Despite their impressive performance on complex tasks, current language models (LMs) typically operate in a vacuum: Each input query is processed separately, without retaining insights from previous attempts. Here, we present Dynamic Cheatsheet (DC), a lightweight framework that endows a black-box LM with a persistent, evolving memory. Rather than repeatedly re-discovering or re-committing the same solutions and mistakes, DC enables models to store and reuse accumulated strategies, code snippets, and general problem-solving insights at inference time. This test-time learning enhances performance substantially across a range of tasks without needing explicit ground-truth labels or human feedback. Leveraging DC, Claude 3.5 Sonnet's accuracy more than doubled on AIME math exams once it began retaining algebraic insights across questions. Similarly, GPT-4o's success rate on Game of 24 increased from 10% to 99% after the model discovered and reused a Python-based solution. In tasks prone to arithmetic mistakes, such as balancing equations, DC enabled GPT-4o and Claude to reach near-perfect accuracy by recalling previously validated code, whereas their baselines stagnated around 50%. Beyond arithmetic challenges, DC yields notable accuracy gains on knowledge-demanding tasks. Claude achieved a 9% improvement in GPQA-Diamond and an 8% boost on MMLU-Pro problems. Crucially, DC's memory is self-curated, focusing on concise, transferable snippets rather than entire transcript. Unlike finetuning or static retrieval methods, DC adapts LMs' problem-solving skills on the fly, without modifying their underlying parameters. Overall, our findings present DC as a promising approach for augmenting LMs with persistent memory, bridging the divide between isolated inference events and the cumulative, experience-driven learning characteristic of human cognition.
MathGenie: Generating Synthetic Data with Question Back-translation for Enhancing Mathematical Reasoning of LLMs
Large language models (LLMs) have exhibited great potential in mathematical reasoning. However, there remains a performance gap in this area between existing open-source models and closed-source models such as GPT-4. In this paper, we introduce MathGenie, a novel method for generating diverse and reliable math problems from a small-scale problem-solution dataset (denoted as seed data). We augment the ground-truth solutions of our seed data and train a back-translation model to translate the augmented solutions back into new questions. Subsequently, we generate code-integrated solutions for the new questions. To ensure the correctness of the code-integrated solutions, we employ rationale-based strategy for solution verification. Various pretrained models, ranging from 7B to 70B, are trained on the newly curated data to test the effectiveness of the proposed augmentation technique, resulting in a family of models known as MathGenieLM. These models consistently outperform previous open-source models across five representative mathematical reasoning datasets, achieving state-of-the-art performance. In particular, MathGenieLM-InternLM2 achieves an accuracy of 87.7% on GSM8K and 55.7% on MATH, securing the best overall score among open-source language models.
Key-Point-Driven Data Synthesis with its Enhancement on Mathematical Reasoning
Large language models (LLMs) have shown great potential in complex reasoning tasks, yet their performance is often hampered by the scarcity of high-quality, reasoning-focused training datasets. Addressing this challenge, we propose Key-Point-Driven Data Synthesis (KPDDS), a novel data synthesis framework that synthesizes question-answer pairs by leveraging key points and exemplar pairs from authentic data sources. KPDDS ensures the generation of novel questions with rigorous quality control and substantial scalability. As a result, we present KPMath, the most extensive synthetic dataset tailored for mathematical reasoning to date, comprising over one million question-answer pairs. Utilizing KPMath and augmenting it with additional reasoning-intensive corpora, we create the comprehensive KPMath-Plus dataset. Fine-tuning the Mistral-7B model on KPMath-Plus yields a zero-shot PASS@1 accuracy of 39.3% on the MATH test set, a performance that not only outpaces other finetuned 7B models but also exceeds that of certain 34B models. Our ablation studies further confirm the substantial enhancement in mathematical reasoning across various subtopics, marking a significant stride in LLMs' reasoning capabilities.
Discriminator-Guided Multi-step Reasoning with Language Models
In the context of multi-step reasoning, language models (LMs) probabilities are often miscalibrated -- solutions with high probabilities are not always correct. Therefore, greedy decoding, which is the standard decoding method for reasoning tasks, often yields incorrect solutions. In addition, methods such as self-consistency and verifiers rely on sampling from the LM distribution and do not tackle the underlying issue. To address this, we introduce Guiding Multi-step ReAsoning with a CorrectnEss Discriminator (GRACE), a stepwise decoding approach that nudges the model towards producing correct reasoning steps. GRACE employs a discriminator model, which is trained to differentiate correct steps from invalid ones, to adjust decoding preferences based on the correctness of each reasoning step. Importantly, GRACE does not require fine-tuning or re-training the LMs. When compared with conventional decoding strategies over four popular math reasoning benchmarks, GRACE exhibits significant improvements in both final answer accuracy and step correctness, outperforming both greedy decoding and self-consistency.Our code can be found at \url{https://github.com/mukhal/grace.}
TreeRPO: Tree Relative Policy Optimization
Large Language Models (LLMs) have shown remarkable reasoning capabilities through Reinforcement Learning with Verifiable Rewards (RLVR) methods. However, a key limitation of existing approaches is that rewards defined at the full trajectory level provide insufficient guidance for optimizing the intermediate steps of a reasoning process. To address this, we introduce \name, a novel method that estimates the mathematical expectations of rewards at various reasoning steps using tree sampling. Unlike prior methods that rely on a separate step reward model, \name directly estimates these rewards through this sampling process. Building on the group-relative reward training mechanism of GRPO, \name innovatively computes rewards based on step-level groups generated during tree sampling. This advancement allows \name to produce fine-grained and dense reward signals, significantly enhancing the learning process and overall performance of LLMs. Experimental results demonstrate that our \name algorithm substantially improves the average Pass@1 accuracy of Qwen-2.5-Math on test benchmarks, increasing it from 19.0\% to 35.5\%. Furthermore, \name significantly outperforms GRPO by 2.9\% in performance while simultaneously reducing the average response length by 18.1\%, showcasing its effectiveness and efficiency. Our code will be available at https://github.com/yangzhch6/TreeRPO{https://github.com/yangzhch6/TreeRPO}.
Stable Reinforcement Learning for Efficient Reasoning
The success of Deepseek-R1 has drawn the LLM community's attention to reinforcement learning (RL) methods like GRPO. However, such rule-based 0/1 outcome reward methods lack the capability to regulate the intermediate reasoning processes during chain-of-thought (CoT) generation, leading to severe overthinking phenomena. In response, recent studies have designed reward functions to reinforce models' behaviors in producing shorter yet correct completions. Nevertheless, we observe that these length-penalty reward functions exacerbate RL training instability: as the completion length decreases, model accuracy abruptly collapses, often occurring early in training. To address this issue, we propose a simple yet effective solution GRPO-lambda, an efficient and stabilized variant of GRPO, which dynamically adjusts the reward strategy by monitoring the correctness ratio among completions within each query-sampled group. A low correctness ratio indicates the need to avoid length penalty that compromises CoT quality, triggering a switch to length-agnostic 0/1 rewards that prioritize reasoning capability. A high ratio maintains length penalties to boost efficiency. Experimental results show that our approach avoids training instability caused by length penalty while maintaining the optimal accuracy-efficiency trade-off. On the GSM8K, GPQA, MATH-500, AMC 2023, and AIME 2024 benchmarks, it improves average accuracy by 1.48% while reducing CoT sequence length by 47.3%.
UGPhysics: A Comprehensive Benchmark for Undergraduate Physics Reasoning with Large Language Models
Large language models (LLMs) have demonstrated remarkable capabilities in solving complex reasoning tasks, particularly in mathematics. However, the domain of physics reasoning presents unique challenges that have received significantly less attention. Existing benchmarks often fall short in evaluating LLMs' abilities on the breadth and depth of undergraduate-level physics, underscoring the need for a comprehensive evaluation. To fill this gap, we introduce UGPhysics, a large-scale and comprehensive benchmark specifically designed to evaluate UnderGraduate-level Physics (UGPhysics) reasoning with LLMs. UGPhysics includes 5,520 undergraduate-level physics problems in both English and Chinese, covering 13 subjects with seven different answer types and four distinct physics reasoning skills, all rigorously screened for data leakage. Additionally, we develop a Model-Assistant Rule-based Judgment (MARJ) pipeline specifically tailored for assessing answer correctness of physics problems, ensuring accurate evaluation. Our evaluation of 31 leading LLMs shows that the highest overall accuracy, 49.8% (achieved by OpenAI-o1-mini), emphasizes the necessity for models with stronger physics reasoning skills, beyond math abilities. We hope UGPhysics, along with MARJ, will drive future advancements in AI for physics reasoning.
LLaMa-SciQ: An Educational Chatbot for Answering Science MCQ
Large Language Models (LLMs) often struggle with tasks requiring mathematical reasoning, particularly multiple-choice questions (MCQs). To address this issue, we developed LLaMa-SciQ, an educational chatbot designed to assist college students in solving and understanding MCQs in STEM fields. We begin by fine-tuning and aligning the models to human preferences. After comparing the performance of Mistral-7B and LLaMa-8B, we selected the latter as the base model due to its higher evaluation accuracy. To further enhance accuracy, we implement Retrieval-Augmented Generation (RAG) and apply quantization to compress the model, reducing inference time and increasing accessibility for students. For mathematical reasoning, LLaMa-SciQ achieved 74.5% accuracy on the GSM8k dataset and 30% on the MATH dataset. However, RAG does not improve performance and even reduces it, likely due to retriever issues or the model's unfamiliarity with context. Despite this, the quantized model shows only a 5% loss in performance, demonstrating significant efficiency improvements.
MixReasoning: Switching Modes to Think
Reasoning models enhance performance by tackling problems in a step-by-step manner, decomposing them into sub-problems and exploring long chains of thought before producing an answer. However, applying extended reasoning to every step introduces substantial redundancy, as sub-problems vary widely in difficulty and complexity: a small number of pivotal steps are genuinely challenging and decisive for the final answer, while many others only involve straightforward revisions or simple computations. Therefore, a natural idea is to endow reasoning models with the ability to adaptively respond to this variation, rather than treating all steps with the same level of elaboration. To this end, we propose MixReasoning, a framework that dynamically adjusts the depth of reasoning within a single response. The resulting chain of thought then becomes a mixture of detailed reasoning on difficult steps and concise inference on simpler ones. Experiments on GSM8K, MATH-500, and AIME show that MixReasoning shortens reasoning length and substantially improves efficiency without compromising accuracy.
START: Self-taught Reasoner with Tools
Large reasoning models (LRMs) like OpenAI-o1 and DeepSeek-R1 have demonstrated remarkable capabilities in complex reasoning tasks through the utilization of long Chain-of-thought (CoT). However, these models often suffer from hallucinations and inefficiencies due to their reliance solely on internal reasoning processes. In this paper, we introduce START (Self-Taught Reasoner with Tools), a novel tool-integrated long CoT reasoning LLM that significantly enhances reasoning capabilities by leveraging external tools. Through code execution, START is capable of performing complex computations, self-checking, exploring diverse methods, and self-debugging, thereby addressing the limitations of LRMs. The core innovation of START lies in its self-learning framework, which comprises two key techniques: 1) Hint-infer: We demonstrate that inserting artificially designed hints (e.g., ``Wait, maybe using Python here is a good idea.'') during the inference process of a LRM effectively stimulates its ability to utilize external tools without the need for any demonstration data. Hint-infer can also serve as a simple and effective sequential test-time scaling method; 2) Hint Rejection Sampling Fine-Tuning (Hint-RFT): Hint-RFT combines Hint-infer and RFT by scoring, filtering, and modifying the reasoning trajectories with tool invocation generated by a LRM via Hint-infer, followed by fine-tuning the LRM. Through this framework, we have fine-tuned the QwQ-32B model to achieve START. On PhD-level science QA (GPQA), competition-level math benchmarks (AMC23, AIME24, AIME25), and the competition-level code benchmark (LiveCodeBench), START achieves accuracy rates of 63.6%, 95.0%, 66.7%, 47.1%, and 47.3%, respectively. It significantly outperforms the base QwQ-32B and achieves performance comparable to the state-of-the-art open-weight model R1-Distill-Qwen-32B and the proprietary model o1-Preview.
LIMO: Less is More for Reasoning
We present a fundamental discovery that challenges our understanding of how complex reasoning emerges in large language models. While conventional wisdom suggests that sophisticated reasoning tasks demand extensive training data (>100,000 examples), we demonstrate that complex mathematical reasoning abilities can be effectively elicited with surprisingly few examples. Through comprehensive experiments, our proposed model LIMO demonstrates unprecedented performance in mathematical reasoning. With merely 817 curated training samples, LIMO achieves 57.1% accuracy on AIME and 94.8% on MATH, improving from previous SFT-based models' 6.5% and 59.2% respectively, while only using 1% of the training data required by previous approaches. LIMO demonstrates exceptional out-of-distribution generalization, achieving 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data, challenging the notion that SFT leads to memorization rather than generalization. Based on these results, we propose the Less-Is-More Reasoning Hypothesis (LIMO Hypothesis): In foundation models where domain knowledge has been comprehensively encoded during pre-training, sophisticated reasoning capabilities can emerge through minimal but precisely orchestrated demonstrations of cognitive processes. This hypothesis posits that the elicitation threshold for complex reasoning is determined by two key factors: (1) the completeness of the model's encoded knowledge foundation during pre-training, and (2) the effectiveness of post-training examples as "cognitive templates" that show the model how to utilize its knowledge base to solve complex reasoning tasks. To facilitate reproducibility and future research in data-efficient reasoning, we release LIMO as a comprehensive open-source suite at https://github.com/GAIR-NLP/LIMO.
Rethinking Thinking Tokens: LLMs as Improvement Operators
Reasoning training incentivizes LLMs to produce long chains of thought (long CoT), which among other things, allows them to explore solution strategies with self-checking. This results in higher accuracy, but inflates context length, token/compute cost, and answer latency. We ask: Can current models leverage their metacognition to provide other combinations on this Pareto frontier, e.g., better accuracy with lower context length and/or latency? Abstractly, we view the model as an improvement operator on its own "thoughts" with a continuum of possible strategies. We identify an interesting inference family Parallel-Distill-Refine (PDR), which performs the following: (i) generate diverse drafts in parallel; (ii) distill them into a bounded, textual workspace; and (iii) refine conditioned on this workspace, producing an output that seeds the next round. Importantly, context length (hence compute cost) is controllable via degree of parallelism, and is no longer conflated with the total number of generated tokens. We report PDR instantiations of current models that give better accuracy than long CoT while incurring lower latency. Setting degree of parallelism to 1 yields an interesting subcase, Sequential Refinement (SR) (iteratively improve a single candidate answer) which provides performance superior to long CoT. Success of such model orchestrations raises the question whether further training could shift the Pareto frontier. To this end, we train an 8B thinking model with Reinforcement Learning (RL) to make it consistent with PDR as the inference method. On math tasks with verifiable answers, iterative pipelines surpass single-pass baselines at matched sequential budgets, with PDR delivering the largest gains (e.g., +11% on AIME 2024 and +9% on AIME 2025).
Pensez: Less Data, Better Reasoning -- Rethinking French LLM
Large language models (LLMs) have demonstrated remarkable capabilities in various natural language processing tasks. However, achieving strong performance in specialized domains like mathematical reasoning and non-English languages often requires extensive training on massive datasets. This paper investigates a contrasting approach: strategic fine-tuning on a small, high-quality, bilingual (English-French) dataset to enhance both the reasoning capabilities and French language proficiency of a large language model. Rather than relying on scale, we explore the hypothesis that targeted data curation and optimized training can achieve competitive, or even superior, performance. We demonstrate, through targeted supervised fine-tuning (SFT) on only 2,000 carefully selected samples, significant improvements in mathematical reasoning. Specifically, Pensez 7B exhibits an increase in accuracy of the base model up to 20% on the AIME25 and a 12% increase on a French MATH level 5 benchmark. These results challenge the prevailing assumption that massive datasets are aprerequisite for strong reasoning performance in LLMs, highlighting the potential of strategic data curation and optimized fine-tuning for enhancing both specialized skills and multilingual capabilities. Our findings have implications for the efficient development of high-performing, multilingual LLMs, especially in resource-constrained scenarios.
SmallToLarge (S2L): Scalable Data Selection for Fine-tuning Large Language Models by Summarizing Training Trajectories of Small Models
Despite the effectiveness of data selection for large language models (LLMs) during pretraining and instruction fine-tuning phases, improving data efficiency in supervised fine-tuning (SFT) for specialized domains poses significant challenges due to the complexity of fine-tuning data. To bridge this gap, we introduce an effective and scalable data selection method for SFT, SmallToLarge (S2L), which leverages training trajectories from small models to guide the data selection for larger models. We demonstrate through extensive experiments that S2L significantly improves data efficiency in SFT for mathematical problem-solving, reducing the training data to just 11% of the original MathInstruct dataset (Yue et al., 2023) to match full dataset performance while outperforming state-of-the-art data selection algorithms by an average of 4.7% across 6 in- and out-domain evaluation datasets. Remarkably, selecting only 50K data for SFT, S2L achieves a 32.7% accuracy on the most challenging MATH (Hendrycks et al., 2021) benchmark, improving Phi-2 (Li et al., 2023b) by 16.6%. In clinical text summarization on the MIMIC-III dataset (Johnson et al., 2016), S2L again outperforms training on the full dataset using only 50% of the data. Notably, S2L can perform data selection using a reference model 40x smaller than the target model, proportionally reducing the cost of data selection.
Let's Reinforce Step by Step
While recent advances have boosted LM proficiency in linguistic benchmarks, LMs consistently struggle to reason correctly on complex tasks like mathematics. We turn to Reinforcement Learning from Human Feedback (RLHF) as a method with which to shape model reasoning processes. In particular, we explore two reward schemes, outcome-supervised reward models (ORMs) and process-supervised reward models (PRMs), to optimize for logical reasoning. Our results show that the fine-grained reward provided by PRM-based methods enhances accuracy on simple mathematical reasoning (GSM8K) while, unexpectedly, reducing performance in complex tasks (MATH). Furthermore, we show the critical role reward aggregation functions play in model performance. Providing promising avenues for future research, our study underscores the need for further exploration into fine-grained reward modeling for more reliable language models.
Exploiting Tree Structure for Credit Assignment in RL Training of LLMs
Reinforcement learning improves LLM reasoning, yet sparse delayed reward over long sequences makes token-level credit assignment the key bottleneck. We study the verifiable-reward setting, where the final answer is checkable and multiple responses can be drawn per prompt. Reasoning tasks in math and medical QA align with this setup, where only a few decision tokens significantly impact the outcome. PPO offers token-level advantages with a learned value model, but it is complex to train both the actor and critic models simultaneously, and it is not easily generalizable, as the token-level values from the critic model can make training prone to overfitting. GRPO is critic-free and supports verifiable rewards, but spreads a single sequence-level return across tokens and ignores branching. We introduce Prefix-to-Tree (P2T), a simple procedure that converts a group of responses into a prefix tree and computes nonparametric prefix values \(V(s)\) by aggregating descendant outcomes. Built on P2T, we propose TEMPO (\textbf{Tree-Estimated Mean Prefix Value for Policy Optimization}), a critic-free algorithm that augments the group-relative outcome signal of GRPO with branch-gated temporal-difference corrections derived from the tree. At non-branch tokens, the temporal-difference (TD) term is zero, so TEMPO reduces to GRPO; at branching tokens, it supplies precise token-level credit without a learned value network or extra judges/teachers. On Qwen3-1.7B/4B, TEMPO outperforms PPO and GRPO on in-distribution (MATH, MedQA) and out-of-distribution (GSM-HARD, AMC23, MedMCQA, MMLU-Medical) benchmarks, and reaches higher validation accuracy with roughly the same wall-clock time.
Act Only When It Pays: Efficient Reinforcement Learning for LLM Reasoning via Selective Rollouts
Reinforcement learning, such as PPO and GRPO, has powered recent breakthroughs in LLM reasoning. Scaling rollout to sample more prompts enables models to selectively use higher-quality data for training, which can stabilize RL training and improve model performance. However, this comes at the cost of significant computational overhead. In this paper, we show that a substantial portion of this overhead can be avoided by skipping uninformative prompts before rollout. Our analysis of reward dynamics reveals a strong temporal consistency in prompt value: prompts that are uninformative in one epoch of training are likely to remain uninformative in future epochs. Based on these insights, we propose GRESO (GRPO with Efficient Selective Rollout), an online, lightweight pre-rollout filtering algorithm that predicts and skips uninformative prompts using reward training dynamics. By evaluating GRESO on a broad range of math reasoning benchmarks and models, such as Qwen2.5-Math-1.5B, DeepSeek-R1-Distill-Qwen-1.5B, and Qwen2.5-Math-7B, we show that GRESO achieves up to 2.4x wall-clock time speedup in rollout and up to 2.0x speedup in total training time without accuracy degradation.
Reinforcing the Diffusion Chain of Lateral Thought with Diffusion Language Models
We introduce the Diffusion Chain of Lateral Thought (DCoLT), a reasoning framework for diffusion language models. DCoLT treats each intermediate step in the reverse diffusion process as a latent "thinking" action and optimizes the entire reasoning trajectory to maximize the reward on the correctness of the final answer with outcome-based Reinforcement Learning (RL). Unlike traditional Chain-of-Thought (CoT) methods that follow a causal, linear thinking process, DCoLT allows bidirectional, non-linear reasoning with no strict rule on grammatical correctness amid its intermediate steps of thought. We implement DCoLT on two representative Diffusion Language Models (DLMs). First, we choose SEDD as a representative continuous-time discrete diffusion model, where its concrete score derives a probabilistic policy to maximize the RL reward over the entire sequence of intermediate diffusion steps. We further consider the discrete-time masked diffusion language model -- LLaDA, and find that the order to predict and unmask tokens plays an essential role to optimize its RL action resulting from the ranking-based Unmasking Policy Module (UPM) defined by the Plackett-Luce model. Experiments on both math and code generation tasks show that using only public data and 16 H800 GPUs, DCoLT-reinforced DLMs outperform other DLMs trained by SFT or RL or even both. Notably, DCoLT-reinforced LLaDA boosts its reasoning accuracy by +9.8%, +5.7%, +11.4%, +19.5% on GSM8K, MATH, MBPP, and HumanEval.
ReasonAgain: Using Extractable Symbolic Programs to Evaluate Mathematical Reasoning
Existing math datasets evaluate the reasoning abilities of large language models (LLMs) by either using the final answer or the intermediate reasoning steps derived from static examples. However, the former approach fails to surface model's uses of shortcuts and wrong reasoning while the later poses challenges in accommodating alternative solutions. In this work, we seek to use symbolic programs as a means for automated evaluation if a model can consistently produce correct final answers across various inputs to the program. We begin by extracting programs for popular math datasets (GSM8K and MATH) using GPT4-o. For those executable programs verified using the original input-output pairs, they are found to encapsulate the proper reasoning required to solve the original text questions. We then prompt GPT4-o to generate new questions using alternative input-output pairs based the extracted program. We apply the resulting datasets to evaluate a collection of LLMs. In our experiments, we observe significant accuracy drops using our proposed evaluation compared with original static examples, suggesting the fragility of math reasoning in state-of-the-art LLMs.
Benchmarking and Improving Generator-Validator Consistency of Language Models
As of September 2023, ChatGPT correctly answers "what is 7+8" with 15, but when asked "7+8=15, True or False" it responds with "False". This inconsistency between generating and validating an answer is prevalent in language models (LMs) and erodes trust. In this paper, we propose a framework for measuring the consistency between generation and validation (which we call generator-validator consistency, or GV-consistency), finding that even GPT-4, a state-of-the-art LM, is GV-consistent only 76% of the time. To improve the consistency of LMs, we propose to finetune on the filtered generator and validator responses that are GV-consistent, and call this approach consistency fine-tuning. We find that this approach improves GV-consistency of Alpaca-30B from 60% to 93%, and the improvement extrapolates to unseen tasks and domains (e.g., GV-consistency for positive style transfers extrapolates to unseen styles like humor). In addition to improving consistency, consistency fine-tuning improves both generator quality and validator accuracy without using any labeled data. Evaluated across 6 tasks, including math questions, knowledge-intensive QA, and instruction following, our method improves the generator quality by 16% and the validator accuracy by 6.3% across all tasks.
EquivPruner: Boosting Efficiency and Quality in LLM-Based Search via Action Pruning
Large Language Models (LLMs) excel at complex reasoning through search algorithms, yet current strategies often suffer from massive token consumption due to redundant exploration of semantically equivalent steps. Existing semantic similarity methods struggle to accurately identify such equivalence in domain-specific contexts like mathematical reasoning. To address this, we propose EquivPruner, a simple yet effective approach that identifies and prunes semantically equivalent actions during LLM reasoning search. We also introduce MathEquiv, the first dataset we created for mathematical statement equivalence, which enables the training of a lightweight equivalence detector. Extensive experiments across various models and tasks demonstrate that EquivPruner significantly reduces token consumption, improving searching efficiency and often bolstering reasoning accuracy. For instance, when applied to Qwen2.5-Math-7B-Instruct on GSM8K, EquivPruner reduced token consumption by 48.1\% while also improving accuracy. Our code is available at https://github.com/Lolo1222/EquivPruner.
Rho-1: Not All Tokens Are What You Need
Previous language model pre-training methods have uniformly applied a next-token prediction loss to all training tokens. Challenging this norm, we posit that "Not all tokens in a corpus are equally important for language model training". Our initial analysis delves into token-level training dynamics of language model, revealing distinct loss patterns for different tokens. Leveraging these insights, we introduce a new language model called Rho-1. Unlike traditional LMs that learn to predict every next token in a corpus, Rho-1 employs Selective Language Modeling (SLM), which selectively trains on useful tokens that aligned with the desired distribution. This approach involves scoring pretraining tokens using a reference model, and then training the language model with a focused loss on tokens with higher excess loss. When continual pretraining on 15B OpenWebMath corpus, Rho-1 yields an absolute improvement in few-shot accuracy of up to 30% in 9 math tasks. After fine-tuning, Rho-1-1B and 7B achieved state-of-the-art results of 40.6% and 51.8% on MATH dataset, respectively - matching DeepSeekMath with only 3% of the pretraining tokens. Furthermore, when pretraining on 80B general tokens, Rho-1 achieves 6.8% average enhancement across 15 diverse tasks, increasing both efficiency and performance of the language model pre-training.
The Climb Carves Wisdom Deeper Than the Summit: On the Noisy Rewards in Learning to Reason
Recent studies on post-training large language models (LLMs) for reasoning through reinforcement learning (RL) typically focus on tasks that can be accurately verified and rewarded, such as solving math problems. In contrast, our research investigates the impact of reward noise, a more practical consideration for real-world scenarios involving the post-training of LLMs using reward models. We found that LLMs demonstrate strong robustness to substantial reward noise. For example, manually flipping 40% of the reward function's outputs in math tasks still allows a Qwen-2.5-7B model to achieve rapid convergence, improving its performance on math tasks from 5% to 72%, compared to the 75% accuracy achieved by a model trained with noiseless rewards. Surprisingly, by only rewarding the appearance of key reasoning phrases (namely reasoning pattern reward, RPR), such as ``first, I need to''-without verifying the correctness of answers, the model achieved peak downstream performance (over 70% accuracy for Qwen-2.5-7B) comparable to models trained with strict correctness verification and accurate rewards. Recognizing the importance of the reasoning process over the final results, we combined RPR with noisy reward models. RPR helped calibrate the noisy reward models, mitigating potential false negatives and enhancing the LLM's performance on open-ended tasks. These findings suggest the importance of improving models' foundational abilities during the pre-training phase while providing insights for advancing post-training techniques. Our code and scripts are available at https://github.com/trestad/Noisy-Rewards-in-Learning-to-Reason.
Iterative Reasoning Preference Optimization
Iterative preference optimization methods have recently been shown to perform well for general instruction tuning tasks, but typically make little improvement on reasoning tasks (Yuan et al., 2024, Chen et al., 2024). In this work we develop an iterative approach that optimizes the preference between competing generated Chain-of-Thought (CoT) candidates by optimizing for winning vs. losing reasoning steps that lead to the correct answer. We train using a modified DPO loss (Rafailov et al., 2023) with an additional negative log-likelihood term, which we find to be crucial. We show reasoning improves across repeated iterations of this scheme. While only relying on examples in the training set, our approach results in increasing accuracy for Llama-2-70B-Chat from 55.6% to 81.6% on GSM8K (and 88.7% with majority voting out of 32 samples), from 12.5% to 20.8% on MATH, and from 77.8% to 86.7% on ARC-Challenge, which outperforms other Llama-2-based models not relying on additionally sourced datasets.
Low-probability Tokens Sustain Exploration in Reinforcement Learning with Verifiable Reward
Reinforcement Learning with Verifiable Rewards (RLVR) has propelled Large Language Models in complex reasoning, yet its scalability is often hindered by a training bottleneck where performance plateaus as policy entropy collapses, signaling a loss of exploration. Previous methods typically address this by maintaining high policy entropy, yet the precise mechanisms that govern meaningful exploration have remained underexplored. Our analysis suggests that an unselective focus on entropy risks amplifying irrelevant tokens and destabilizing training. This paper investigates the exploration dynamics within RLVR and identifies a key issue: the gradual elimination of valuable low-probability exploratory tokens, which we term \textit{reasoning sparks}. We find that while abundant in pre-trained models, these sparks are systematically extinguished during RLVR due to over-penalization, leading to a degeneracy in exploration. To address this, we introduce Low-probability Regularization (Lp-Reg). Its core mechanism regularizes the policy towards a heuristic proxy distribution. This proxy is constructed by filtering out presumed noise tokens and re-normalizing the distribution over the remaining candidates. The result is a less-noisy proxy where the probability of reasoning sparks is amplified, which then serves as a soft regularization target to shield these valuable tokens from elimination via KL divergence. Experiments show that Lp-Reg enables stable on-policy training for around 1,000 steps, a regime where baseline entropy-control methods collapse. This sustained exploration leads to state-of-the-art performance, achieving a 60.17% average accuracy on five math benchmarks, an improvement of 2.66% over prior methods. Code is available at https://github.com/CarlanLark/Lp-Reg.
Beyond Examples: High-level Automated Reasoning Paradigm in In-Context Learning via MCTS
In-context Learning (ICL) enables large language models (LLMs) to tackle downstream tasks through sophisticated prompting and high-quality demonstrations. However, this traditional ICL paradigm shows limitations when facing complex mathematical reasoning tasks, primarily due to its heavy dependence on example quality and the necessity for human intervention in challenging scenarios. To address these limitations, this paper presents HiAR-ICL, a High-level Automated Reasoning paradigm in ICL that shifts focus from specific examples to abstract thinking patterns, extending the conventional concept of context in ICL. HiAR-ICL introduces five atomic reasoning actions as fundamental components for constructing chain-structured patterns. Using Monte Carlo Tree Search, we explore reasoning paths and construct thought cards to guide subsequent inference. We then develop a cognitive complexity framework that dynamically matches problems with appropriate thought cards. Experimental results demonstrate HiAR-ICL's effectiveness, achieving state-of-the-art accuracy (79.6%) on the MATH benchmark with Qwen2.5-7B-Instruct, surpassing GPT-4o (76.6%) and Claude 3.5 (71.1%).
Train Long, Think Short: Curriculum Learning for Efficient Reasoning
Recent work on enhancing the reasoning abilities of large language models (LLMs) has introduced explicit length control as a means of constraining computational cost while preserving accuracy. However, existing approaches rely on fixed-length training budgets, which do not take advantage of the natural progression from exploration to compression during learning. In this work, we propose a curriculum learning strategy for length-controlled reasoning using Group Relative Policy Optimization (GRPO). Our method starts with generous token budgets and gradually tightens them over training, encouraging models to first discover effective solution strategies and then distill them into more concise reasoning traces. We augment GRPO with a reward function that balances three signals: task correctness (via verifier feedback), length efficiency, and formatting adherence (via structural tags). Experiments on GSM8K, MATH500, SVAMP, College Math, and GSM+ demonstrate that curriculum-based training consistently outperforms fixed-budget baselines at the same final budget, achieving higher accuracy and significantly improved token efficiency. We further ablate the impact of reward weighting and decay schedule design, showing that progressive constraint serves as a powerful inductive bias for training efficient reasoning models. Our code and checkpoints are released at: https://github.com/hammoudhasan/curriculum_grpo.
VOGUE: Guiding Exploration with Visual Uncertainty Improves Multimodal Reasoning
Reinforcement learning with verifiable rewards (RLVR) improves reasoning in large language models (LLMs) but struggles with exploration, an issue that still persists for multimodal LLMs (MLLMs). Current methods treat the visual input as a fixed, deterministic condition, overlooking a critical source of ambiguity and struggling to build policies robust to plausible visual variations. We introduce VOGUE (Visual Uncertainty Guided Exploration), a novel method that shifts exploration from the output (text) to the input (visual) space. By treating the image as a stochastic context, VOGUE quantifies the policy's sensitivity to visual perturbations using the symmetric KL divergence between a "raw" and "noisy" branch, creating a direct signal for uncertainty-aware exploration. This signal shapes the learning objective via an uncertainty-proportional bonus, which, combined with a token-entropy bonus and an annealed sampling schedule, effectively balances exploration and exploitation. Implemented within GRPO on two model scales (Qwen2.5-VL-3B/7B), VOGUE boosts pass@1 accuracy by an average of 2.6% on three visual math benchmarks and 3.7% on three general-domain reasoning benchmarks, while simultaneously increasing pass@4 performance and mitigating the exploration decay commonly observed in RL fine-tuning. Our work shows that grounding exploration in the inherent uncertainty of visual inputs is an effective strategy for improving multimodal reasoning.
Learning from Failures in Multi-Attempt Reinforcement Learning
Recent advancements in reinforcement learning (RL) for large language models (LLMs), exemplified by DeepSeek R1, have shown that even a simple question-answering task can substantially improve an LLM's reasoning capabilities. In this work, we extend this approach by modifying the task into a multi-attempt setting. Instead of generating a single response per question, the model is given multiple attempts, with feedback provided after incorrect responses. The multi-attempt task encourages the model to refine its previous attempts and improve search efficiency. Experimental results show that even a small LLM trained on a multi-attempt task achieves significantly higher accuracy when evaluated with more attempts, improving from 45.6% with 1 attempt to 52.5% with 2 attempts on the math benchmark. In contrast, the same LLM trained on a standard single-turn task exhibits only a marginal improvement, increasing from 42.3% to 43.2% when given more attempts during evaluation. The results indicate that, compared to the standard single-turn task, an LLM trained on a multi-attempt task achieves slightly better performance on math benchmarks while also learning to refine its responses more effectively based on user feedback. Full code is available at https://github.com/DualityRL/multi-attempt
Syzygy of Thoughts: Improving LLM CoT with the Minimal Free Resolution
Chain-of-Thought (CoT) prompting enhances the reasoning of large language models (LLMs) by decomposing problems into sequential steps, mimicking human logic and reducing errors. However, complex tasks with vast solution spaces and vague constraints often exceed the capacity of a single reasoning chain. Inspired by Minimal Free Resolution (MFR) in commutative algebra and algebraic geometry, we propose Syzygy of Thoughts (SoT)-a novel framework that extends CoT by introducing auxiliary, interrelated reasoning paths. SoT captures deeper logical dependencies, enabling more robust and structured problem-solving. MFR decomposes a module into a sequence of free modules with minimal rank, providing a structured analytical approach to complex systems. This method introduces the concepts of "Module", "Betti numbers","Freeness", "Mapping", "Exactness" and "Minimality", enabling the systematic decomposition of the original complex problem into logically complete minimal subproblems while preserving key problem features and reducing reasoning length. We tested SoT across diverse datasets (e.g., GSM8K, MATH) and models (e.g., GPT-4o-mini, Qwen2.5), achieving inference accuracy that matches or surpasses mainstream CoTs standards. Additionally, by aligning the sampling process with algebraic constraints, our approach enhances the scalability of inference time in LLMs, ensuring both transparent reasoning and high performance. Our code will be publicly available at https://github.com/dlMARiA/Syzygy-of-thoughts.
CritiQ: Mining Data Quality Criteria from Human Preferences
Language model heavily depends on high-quality data for optimal performance. Existing approaches rely on manually designed heuristics, the perplexity of existing models, training classifiers, or careful prompt engineering, which require significant expert experience and human annotation effort while introduce biases. We introduce CritiQ, a novel data selection method that automatically mines criteria from human preferences for data quality with only sim30 human-annotated pairs and performs efficient data selection. The main component, CritiQ Flow, employs a manager agent to evolve quality criteria and worker agents to make pairwise judgments. We build a knowledge base that extracts quality criteria from previous work to boost CritiQ Flow. Compared to perplexity- and classifier- based methods, verbal criteria are more interpretable and possess reusable value. After deriving the criteria, we train the CritiQ Scorer to give quality scores and perform efficient data selection. We demonstrate the effectiveness of our method in the code, math, and logic domains, achieving high accuracy on human-annotated test sets. To validate the quality of the selected data, we continually train Llama 3.1 models and observe improved performance on downstream tasks compared to uniform sampling. Ablation studies validate the benefits of the knowledge base and the reflection process. We analyze how criteria evolve and the effectiveness of majority voting.
The Relationship Between Reasoning and Performance in Large Language Models -- o3 (mini) Thinks Harder, Not Longer
Large language models have demonstrated remarkable progress in mathematical reasoning, leveraging chain-of-thought and test-time compute scaling. However, many open questions remain regarding the interplay between reasoning token usage and accuracy gains. In particular, when comparing models across generations, it is unclear whether improved performance results from longer reasoning chains or more efficient reasoning. We systematically analyze chain-of-thought length across o1-mini and o3-mini variants on the Omni-MATH benchmark, finding that o3-mini (m) achieves superior accuracy without requiring longer reasoning chains than o1-mini. Moreover, we show that accuracy generally declines as reasoning chains grow across all models and compute settings, even when controlling for difficulty of the questions. This accuracy drop is significantly smaller in more proficient models, suggesting that new generations of reasoning models use test-time compute more effectively. Finally, we highlight that while o3-mini (h) achieves a marginal accuracy gain over o3-mini (m), it does so by allocating substantially more reasoning tokens across all problems, even the ones that o3-mini (m) can already solve. These findings provide new insights into the relationship between model capability and reasoning length, with implications for efficiency, scaling, and evaluation methodologies.
Value-Guided Search for Efficient Chain-of-Thought Reasoning
In this paper, we propose a simple and efficient method for value model training on long-context reasoning traces. Compared to existing process reward models (PRMs), our method does not require a fine-grained notion of "step," which is difficult to define for long-context reasoning models. By collecting a dataset of 2.5 million reasoning traces, we train a 1.5B token-level value model and apply it to DeepSeek models for improved performance with test-time compute scaling. We find that block-wise value-guided search (VGS) with a final weighted majority vote achieves better test-time scaling than standard methods such as majority voting or best-of-n. With an inference budget of 64 generations, VGS with DeepSeek-R1-Distill-1.5B achieves an average accuracy of 45.7% across four competition math benchmarks (AIME 2024 & 2025, HMMT Feb 2024 & 2025), reaching parity with o3-mini-medium. Moreover, VGS significantly reduces the inference FLOPs required to achieve the same performance of majority voting. Our dataset, model and codebase are open-sourced.
PAL: Program-aided Language Models
Large language models (LLMs) have recently demonstrated an impressive ability to perform arithmetic and symbolic reasoning tasks, when provided with a few examples at test time ("few-shot prompting"). Much of this success can be attributed to prompting methods such as "chain-of-thought'', which employ LLMs for both understanding the problem description by decomposing it into steps, as well as solving each step of the problem. While LLMs seem to be adept at this sort of step-by-step decomposition, LLMs often make logical and arithmetic mistakes in the solution part, even when the problem is decomposed correctly. In this paper, we present Program-Aided Language models (PAL): a novel approach that uses the LLM to read natural language problems and generate programs as the intermediate reasoning steps, but offloads the solution step to a runtime such as a Python interpreter. With PAL, decomposing the natural language problem into runnable steps remains the only learning task for the LLM, while solving is delegated to the interpreter. We demonstrate this synergy between a neural LLM and a symbolic interpreter across 13 mathematical, symbolic, and algorithmic reasoning tasks from BIG-Bench Hard and other benchmarks. In all these natural language reasoning tasks, generating code using an LLM and reasoning using a Python interpreter leads to more accurate results than much larger models. For example, PAL using Codex achieves state-of-the-art few-shot accuracy on the GSM8K benchmark of math word problems, surpassing PaLM-540B which uses chain-of-thought by absolute 15% top-1. Our code and data are publicly available at http://reasonwithpal.com/ .
Shrinking the Generation-Verification Gap with Weak Verifiers
Verifiers can improve language model capabilities by scoring and ranking responses from generated candidates. Currently, high-quality verifiers are either unscalable (e.g., humans) or limited in utility (e.g., tools like Lean). While LM judges and reward models have become broadly useful as general-purpose verifiers, a significant performance gap remains between them and oracle verifiers (verifiers with perfect accuracy). To help close this gap, we introduce Weaver, a framework for designing a strong verifier by combining multiple weak, imperfect verifiers. We find weighted ensembles of verifiers, which typically require learning from labeled data, significantly outperform unweighted combinations due to differences in verifier accuracies. To reduce dependency on labeled data, Weaver leverages weak supervision to estimate each verifier's accuracy and combines outputs into a unified score that better reflects true response quality. However, directly applying weak supervision algorithms poses challenges, including inconsistent verifier output formats and handling low-quality verifiers. Weaver addresses these using dataset statistics to normalize outputs and filter specific verifiers. We study Weaver's effectiveness in test-time repeated sampling, where a model generates multiple candidate responses and selects one. Our evaluations show Weaver significantly improves over Pass@1-performance when selecting the first candidate-across reasoning and math tasks, achieving o3-mini-level accuracy with Llama 3.3 70B Instruct as generator, and an ensemble of 70B or smaller judge and reward models as verifiers (87.7% average). This gain mirrors the jump between GPT-4o and o3-mini (69.0% vs. 86.7%), which required extensive finetuning and post-training. To reduce computational costs of verifier ensembles, we train a 400M cross-encoder using Weaver's combined output scores.
CPPO: Accelerating the Training of Group Relative Policy Optimization-Based Reasoning Models
This paper introduces Completion Pruning Policy Optimization (CPPO) to accelerate the training of reasoning models based on Group Relative Policy Optimization (GRPO). GRPO, while effective, incurs high training costs due to the need for sampling multiple completions for each question. Our experiment and theoretical analysis reveals that the number of completions impacts model accuracy yet increases training time multiplicatively, and not all completions contribute equally to policy training -- their contribution depends on their relative advantage. To address these issues, we propose CPPO, which prunes completions with low absolute advantages, significantly reducing the number needed for gradient calculation and updates. Additionally, we introduce a dynamic completion allocation strategy to maximize GPU utilization by incorporating additional questions, further enhancing training efficiency. Experimental results demonstrate that CPPO achieves up to 8.32times speedup on GSM8K and 3.51times on Math while preserving or even enhancing the accuracy compared to the original GRPO. We release our code at https://github.com/lzhxmu/CPPO.
Complexity-Based Prompting for Multi-Step Reasoning
We study the task of prompting large-scale language models to perform multi-step reasoning. Existing work shows that when prompted with a chain of thoughts (CoT), sequences of short sentences describing intermediate reasoning steps towards a final answer, large language models can generate new reasoning chains and predict answers for new inputs. A central question is which reasoning examples make the most effective prompts. In this work, we propose complexity-based prompting, a simple and effective example selection scheme for multi-step reasoning. We show that prompts with higher reasoning complexity, i.e., chains with more reasoning steps, achieve substantially better performance on multi-step reasoning tasks over strong baselines. We further extend our complexity-based criteria from prompting (selecting inputs) to decoding (selecting outputs), where we sample multiple reasoning chains from the model, then choose the majority of generated answers from complex reasoning chains (over simple chains). When used to prompt GPT-3 and Codex, our approach substantially improves multi-step reasoning accuracy and achieves new state-of-the-art (SOTA) performance on three math benchmarks (GSM8K, MultiArith, and MathQA) and two BigBenchHard tasks (Date Understanding and Penguins), with an average +5.3 and up to +18 accuracy improvements. Compared with existing example selection schemes like manual tuning or retrieval-based selection, selection based on reasoning complexity is intuitive, easy to implement, and annotation-efficient. Further results demonstrate the robustness of performance gains from complex prompts under format perturbation and distribution shift.
How Difficulty-Aware Staged Reinforcement Learning Enhances LLMs' Reasoning Capabilities: A Preliminary Experimental Study
Enhancing the reasoning capabilities of Large Language Models (LLMs) with efficiency and scalability remains a fundamental challenge in artificial intelligence research. This paper presents a rigorous experimental investigation into how difficulty-aware staged reinforcement learning (RL) strategies can substantially improve LLM reasoning performance. Through systematic analysis, we demonstrate that strategically selecting training data according to well-defined difficulty levels markedly enhances RL optimization. Moreover, we introduce a staged training methodology, progressively exposing models to increasingly challenging tasks, further amplifying reasoning capabilities. Our findings reveal significant cross-domain benefits when simultaneously training models on mathematical reasoning and code generation tasks. Notably, our proposed approach enables a 1.5B parameter model to achieve an accuracy of 42.3\% on the AIME-2024 benchmark, 89.5\% on the MATH-500 benchmark. These results underscore the efficacy of our method in advancing the reasoning proficiency of LLMs. We will open-source our datasets on GitHub and Hugging Face.
Don't Get Lost in the Trees: Streamlining LLM Reasoning by Overcoming Tree Search Exploration Pitfalls
Recent advancements in tree search algorithms guided by verifiers have significantly enhanced the reasoning capabilities of large language models (LLMs), but at the cost of increased computational resources. In this work, we identify two key challenges contributing to this inefficiency: over-exploration due to redundant states with semantically equivalent content, and under-exploration caused by high variance in verifier scoring leading to frequent trajectory switching. To address these issues, we propose FETCH, an efficient tree search framework, which is a flexible, plug-and-play system compatible with various tree search algorithms. Our framework mitigates over-exploration by merging semantically similar states using agglomerative clustering of text embeddings obtained from a fine-tuned SimCSE model. To tackle under-exploration, we enhance verifiers by incorporating temporal difference learning with adjusted lambda-returns during training to reduce variance, and employing a verifier ensemble to aggregate scores during inference. Experiments on GSM8K, GSM-Plus, and MATH datasets demonstrate that our methods significantly improve reasoning accuracy and computational efficiency across four different tree search algorithms, paving the way for more practical applications of LLM-based reasoning. The code is available at https://github.com/Soistesimmer/Fetch.
Faithful Chain-of-Thought Reasoning
While Chain-of-Thought (CoT) prompting boosts Language Models' (LM) performance on a gamut of complex reasoning tasks, the generated reasoning chain does not necessarily reflect how the model arrives at the answer (aka. faithfulness). We propose Faithful CoT, a faithful-by-construction framework that decomposes a reasoning task into two stages: Translation (Natural Language query rightarrow symbolic reasoning chain) and Problem Solving (reasoning chain rightarrow answer), using an LM and a deterministic solver respectively. We demonstrate the efficacy of our approach on 10 reasoning datasets from 4 diverse domains. It outperforms traditional CoT prompting on 9 out of the 10 datasets, with an average accuracy gain of 4.4 on Math Word Problems, 1.9 on Planning, 4.0 on Multi-hop Question Answering (QA), and 18.1 on Logical Inference, under greedy decoding. Together with self-consistency decoding, we achieve new state-of-the-art few-shot performance on 7 out of the 10 datasets, showing a strong synergy between faithfulness and accuracy.
TheoremQA: A Theorem-driven Question Answering dataset
The recent LLMs like GPT-4 and PaLM-2 have made tremendous progress in solving fundamental math problems like GSM8K by achieving over 90\% accuracy. However, their capabilities to solve more challenging math problems which require domain-specific knowledge (i.e. theorem) have yet to be investigated. In this paper, we introduce TheoremQA, the first theorem-driven question-answering dataset designed to evaluate AI models' capabilities to apply theorems to solve challenging science problems. \dataset is curated by domain experts containing 800 high-quality questions covering 350 theoremse.g. Taylor's theorem, Lagrange's theorem, Huffman coding, Quantum Theorem, Elasticity Theorem, etc from Math, Physics, EE\&CS, and Finance. We evaluate a wide spectrum of 16 large language and code models with different prompting strategies like Chain-of-Thoughts and Program-of-Thoughts. We found that GPT-4's capabilities to solve these problems are unparalleled, achieving an accuracy of 51\% with Program-of-Thoughts Prompting. All the existing open-sourced models are below 15\%, barely surpassing the random-guess baseline. Given the diversity and broad coverage of \dataset, we believe it can be used as a better benchmark to evaluate LLMs' capabilities to solve challenging science problems. The data and code are released in https://github.com/wenhuchen/TheoremQA.
SelfBudgeter: Adaptive Token Allocation for Efficient LLM Reasoning
Recently, large reasoning models demonstrate exceptional performance on various tasks. However, reasoning models inefficiently over-process both trivial and complex queries, leading to resource waste and prolonged user latency. To address this challenge, we propose SelfBudgeter - a self-adaptive controllable reasoning strategy for efficient reasoning. Our approach adopts a dual-phase training paradigm: first, the model learns to pre-estimate the reasoning cost based on the difficulty of the query. Then, we introduce budget-guided GPRO for reinforcement learning, which effectively maintains accuracy while reducing output length. SelfBudgeter allows users to anticipate generation time and make informed decisions about continuing or interrupting the process. Furthermore, our method enables direct manipulation of reasoning length via pre-filling token budget. Experimental results demonstrate that SelfBudgeter can rationally allocate budgets according to problem complexity, achieving up to 74.47% response length compression on the MATH benchmark while maintaining nearly undiminished accuracy.
The Jailbreak Tax: How Useful are Your Jailbreak Outputs?
Jailbreak attacks bypass the guardrails of large language models to produce harmful outputs. In this paper, we ask whether the model outputs produced by existing jailbreaks are actually useful. For example, when jailbreaking a model to give instructions for building a bomb, does the jailbreak yield good instructions? Since the utility of most unsafe answers (e.g., bomb instructions) is hard to evaluate rigorously, we build new jailbreak evaluation sets with known ground truth answers, by aligning models to refuse questions related to benign and easy-to-evaluate topics (e.g., biology or math). Our evaluation of eight representative jailbreaks across five utility benchmarks reveals a consistent drop in model utility in jailbroken responses, which we term the jailbreak tax. For example, while all jailbreaks we tested bypass guardrails in models aligned to refuse to answer math, this comes at the expense of a drop of up to 92% in accuracy. Overall, our work proposes the jailbreak tax as a new important metric in AI safety, and introduces benchmarks to evaluate existing and future jailbreaks. We make the benchmark available at https://github.com/ethz-spylab/jailbreak-tax
S$^2$R: Teaching LLMs to Self-verify and Self-correct via Reinforcement Learning
Recent studies have demonstrated the effectiveness of LLM test-time scaling. However, existing approaches to incentivize LLMs' deep thinking abilities generally require large-scale data or significant training efforts. Meanwhile, it remains unclear how to improve the thinking abilities of less powerful base models. In this work, we introduce S^2R, an efficient framework that enhances LLM reasoning by teaching models to self-verify and self-correct during inference. Specifically, we first initialize LLMs with iterative self-verification and self-correction behaviors through supervised fine-tuning on carefully curated data. The self-verification and self-correction skills are then further strengthened by both outcome-level and process-level reinforcement learning, with minimized resource requirements, enabling the model to adaptively refine its reasoning process during inference. Our results demonstrate that, with only 3.1k self-verifying and self-correcting behavior initialization samples, Qwen2.5-math-7B achieves an accuracy improvement from 51.0\% to 81.6\%, outperforming models trained on an equivalent amount of long-CoT distilled data. Extensive experiments and analysis based on three base models across both in-domain and out-of-domain benchmarks validate the effectiveness of S^2R. Our code and data are available at https://github.com/NineAbyss/S2R.
AgentRxiv: Towards Collaborative Autonomous Research
Progress in scientific discovery is rarely the result of a single "Eureka" moment, but is rather the product of hundreds of scientists incrementally working together toward a common goal. While existing agent workflows are capable of producing research autonomously, they do so in isolation, without the ability to continuously improve upon prior research results. To address these challenges, we introduce AgentRxiv-a framework that lets LLM agent laboratories upload and retrieve reports from a shared preprint server in order to collaborate, share insights, and iteratively build on each other's research. We task agent laboratories to develop new reasoning and prompting techniques and find that agents with access to their prior research achieve higher performance improvements compared to agents operating in isolation (11.4% relative improvement over baseline on MATH-500). We find that the best performing strategy generalizes to benchmarks in other domains (improving on average by 3.3%). Multiple agent laboratories sharing research through AgentRxiv are able to work together towards a common goal, progressing more rapidly than isolated laboratories, achieving higher overall accuracy (13.7% relative improvement over baseline on MATH-500). These findings suggest that autonomous agents may play a role in designing future AI systems alongside humans. We hope that AgentRxiv allows agents to collaborate toward research goals and enables researchers to accelerate discovery.
SEED-GRPO: Semantic Entropy Enhanced GRPO for Uncertainty-Aware Policy Optimization
Large language models (LLMs) exhibit varying levels of confidence across input prompts (questions): some lead to consistent, semantically similar answers, while others yield diverse or contradictory outputs. This variation reflects LLM's uncertainty about the input prompt, a signal of how confidently the model understands a given problem. However, vanilla Group Relative Policy Optimization (GRPO) treats all prompts equally during policy updates, ignoring this important information about the model's knowledge boundaries. To address this limitation, we propose SEED-GRPO (Semantic Entropy EnhanceD GRPO), which explicitly measures LLMs' uncertainty of the input prompts semantic entropy. Semantic entropy measures the diversity of meaning in multiple generated answers given a prompt and uses this to modulate the magnitude of policy updates. This uncertainty-aware training mechanism enables dynamic adjustment of policy update magnitudes based on question uncertainty. It allows more conservative updates on high-uncertainty questions while maintaining the original learning signal on confident ones. Experimental results on five mathematical reasoning benchmarks (AIME24 56.7, AMC 68.7, MATH 83.4, Minerva 34.2, and OlympiadBench 48.0) demonstrate that SEED-GRPO achieves new state-of-the-art performance in average accuracy, validating the effectiveness of uncertainty-aware policy optimization.
Chain-of-Thought Prompting Elicits Reasoning in Large Language Models
We explore how generating a chain of thought -- a series of intermediate reasoning steps -- significantly improves the ability of large language models to perform complex reasoning. In particular, we show how such reasoning abilities emerge naturally in sufficiently large language models via a simple method called chain of thought prompting, where a few chain of thought demonstrations are provided as exemplars in prompting. Experiments on three large language models show that chain of thought prompting improves performance on a range of arithmetic, commonsense, and symbolic reasoning tasks. The empirical gains can be striking. For instance, prompting a 540B-parameter language model with just eight chain of thought exemplars achieves state of the art accuracy on the GSM8K benchmark of math word problems, surpassing even finetuned GPT-3 with a verifier.
Dynamic Experts Search: Enhancing Reasoning in Mixture-of-Experts LLMs at Test Time
Test-Time Scaling (TTS) enhances the reasoning ability of large language models (LLMs) by allocating additional computation during inference. However, existing approaches primarily rely on output-level sampling while overlooking the role of model architecture. In mainstream Mixture-of-Experts (MoE) LLMs, we observe that varying the number of activated experts yields complementary solution sets with stable accuracy, revealing a new and underexplored source of diversity. Motivated by this observation, we propose Dynamic Experts Search (DES), a TTS strategy that elevates expert activation into a controllable dimension of the search space. DES integrates two key components: (1) Dynamic MoE, which enables direct control of expert counts during inference to generate diverse reasoning trajectories without additional cost; and (2) Expert Configuration Inheritance, which preserves consistent expert counts within a reasoning path while varying them across runs, thereby balancing stability and diversity throughout the search. Extensive experiments across MoE architectures, verifiers and reasoning benchmarks (i.e., math, code and knowledge) demonstrate that DES reliably outperforms TTS baselines, enhancing accuracy and stability without additional cost. These results highlight DES as a practical and scalable form of architecture-aware TTS, illustrating how structural flexibility in modern LLMs can advance reasoning.
V-STaR: Training Verifiers for Self-Taught Reasoners
Common self-improvement approaches for large language models (LLMs), such as STaR (Zelikman et al., 2022), iteratively fine-tune LLMs on self-generated solutions to improve their problem-solving ability. However, these approaches discard the large amounts of incorrect solutions generated during this process, potentially neglecting valuable information in such solutions. To address this shortcoming, we propose V-STaR that utilizes both the correct and incorrect solutions generated during the self-improvement process to train a verifier using DPO that judges correctness of model-generated solutions. This verifier is used at inference time to select one solution among many candidate solutions. Running V-STaR for multiple iterations results in progressively better reasoners and verifiers, delivering a 4% to 17% test accuracy improvement over existing self-improvement and verification approaches on common code generation and math reasoning benchmarks with LLaMA2 models.
The Hallucination Tax of Reinforcement Finetuning
Reinforcement finetuning (RFT) has become a standard approach for enhancing the reasoning capabilities of large language models (LLMs). However, its impact on model trustworthiness remains underexplored. In this work, we identify and systematically study a critical side effect of RFT, which we term the hallucination tax: a degradation in refusal behavior causing models to produce hallucinated answers to unanswerable questions confidently. To investigate this, we introduce SUM (Synthetic Unanswerable Math), a high-quality dataset of unanswerable math problems designed to probe models' ability to recognize an unanswerable question by reasoning from the insufficient or ambiguous information. Our results show that standard RFT training could reduce model refusal rates by more than 80%, which significantly increases model's tendency to hallucinate. We further demonstrate that incorporating just 10% SUM during RFT substantially restores appropriate refusal behavior, with minimal accuracy trade-offs on solvable tasks. Crucially, this approach enables LLMs to leverage inference-time compute to reason about their own uncertainty and knowledge boundaries, improving generalization not only to out-of-domain math problems but also to factual question answering tasks.
Encode, Think, Decode: Scaling test-time reasoning with recursive latent thoughts
Most efforts to improve the reasoning capabilities of large language models (LLMs) involve either scaling the number of parameters and the size of training data, or scaling inference computation by letting models generate complex chains of thought. Motivated by interpretability studies showing that the crucial computation required for reasoning tasks is concentrated in a limited range of layers, we introduce Encode-Think-Decode (ETD), a method that enhances the reasoning capabilities of a base model by training it to iterate over a small subset of reasoning-relevant layers during the mid-training stage. ETD amplifies latent reasoning while preserving the original architecture, parameter count, hyperparameters, and training data composition. When iterating on the selected layers at inference time, ETD models yield substantial gains on 17 reasoning benchmarks, including +28.4% relative accuracy improvement on GSM8K and +36% on MATH with the OLMo-2 1B Base model. We also explore an adaptive depth strategy that adjusts the computation per input token. Our results show that recursive latent reasoning offers a simple and effective path to stronger LLM reasoning.
Dynamic Early Exit in Reasoning Models
Recent advances in large reasoning language models (LRLMs) rely on test-time scaling, which extends long chain-of-thought (CoT) generation to solve complex tasks. However, overthinking in long CoT not only slows down the efficiency of problem solving, but also risks accuracy loss due to the extremely detailed or redundant reasoning steps. We propose a simple yet effective method that allows LLMs to self-truncate CoT sequences by early exit during generation. Instead of relying on fixed heuristics, the proposed method monitors model behavior at potential reasoning transition points (e.g.,"Wait" tokens) and dynamically terminates the next reasoning chain's generation when the model exhibits high confidence in a trial answer. Our method requires no additional training and can be seamlessly integrated into existing o1-like reasoning LLMs. Experiments on 10 reasoning benchmarks (e.g., GSM8K, MATH-500, AMC, GPQA, AIME and LiveCodeBench) show that the proposed method is consistently effective on 11 cutting-edge reasoning LLMs of varying series and sizes, reducing the length of CoT sequences by an average of 19.1% to 80.1% while improving accuracy by 0.3% to 5.0%.
ThinkEdit: Interpretable Weight Editing to Mitigate Overly Short Thinking in Reasoning Models
Recent studies have shown that Large Language Models (LLMs) augmented with chain-of-thought (CoT) reasoning demonstrate impressive problem-solving abilities. However, in this work, we identify a recurring issue where these models occasionally generate overly short reasoning, leading to degraded performance on even simple mathematical problems. Specifically, we investigate how reasoning length is embedded in the hidden representations of reasoning models and its impact on accuracy. Our analysis reveals that reasoning length is governed by a linear direction in the representation space, allowing us to induce overly short reasoning by steering the model along this direction. Building on this insight, we introduce ThinkEdit, a simple yet effective weight-editing approach to mitigate the issue of overly short reasoning. We first identify a small subset of attention heads (approximately 2%) that predominantly drive short reasoning behavior. We then edit the output projection weights of these heads to suppress the short reasoning direction. With changes to only 0.1% of the model's parameters, ThinkEdit effectively reduces overly short reasoning and yields notable accuracy gains for short reasoning outputs (+5.44%), along with an overall improvement across multiple math benchmarks (+2.43%). Our findings provide new mechanistic insights into how reasoning length is controlled within LLMs and highlight the potential of fine-grained model interventions to improve reasoning quality. Our code is available at https://github.com/Trustworthy-ML-Lab/ThinkEdit
AGIEval: A Human-Centric Benchmark for Evaluating Foundation Models
Evaluating the general abilities of foundation models to tackle human-level tasks is a vital aspect of their development and application in the pursuit of Artificial General Intelligence (AGI). Traditional benchmarks, which rely on artificial datasets, may not accurately represent human-level capabilities. In this paper, we introduce AGIEval, a novel benchmark specifically designed to assess foundation model in the context of human-centric standardized exams, such as college entrance exams, law school admission tests, math competitions, and lawyer qualification tests. We evaluate several state-of-the-art foundation models, including GPT-4, ChatGPT, and Text-Davinci-003, using this benchmark. Impressively, GPT-4 surpasses average human performance on SAT, LSAT, and math competitions, attaining a 95% accuracy rate on the SAT Math test and a 92.5% accuracy on the English test of the Chinese national college entrance exam. This demonstrates the extraordinary performance of contemporary foundation models. In contrast, we also find that GPT-4 is less proficient in tasks that require complex reasoning or specific domain knowledge. Our comprehensive analyses of model capabilities (understanding, knowledge, reasoning, and calculation) reveal these models' strengths and limitations, providing valuable insights into future directions for enhancing their general capabilities. By concentrating on tasks pertinent to human cognition and decision-making, our benchmark delivers a more meaningful and robust evaluation of foundation models' performance in real-world scenarios. The data, code, and all model outputs are released in https://github.com/microsoft/AGIEval.
S-GRPO: Early Exit via Reinforcement Learning in Reasoning Models
As Test-Time Scaling emerges as an active research focus in the large language model community, advanced post-training methods increasingly emphasize extending chain-of-thought (CoT) generation length, thereby enhancing reasoning capabilities to approach Deepseek R1-like reasoning models. However, recent studies reveal that reasoning models (even Qwen3) consistently exhibit excessive thought redundancy in CoT generation. This overthinking issue arises from the inherent limitations of conventional outcome-reward reinforcement learning, which systematically overlooks the regulation of intermediate reasoning processes. This paper introduces Serial-Group Decaying-Reward Policy Optimization (S-GRPO), a novel reinforcement learning paradigm that enables models to implicitly evaluate the sufficiency of intermediate reasoning steps, thereby facilitating early exit in CoT generation. Unlike GRPO, which samples multiple possible reasoning paths in parallel (parallel group), S-GRPO only samples one reasoning path and serially selects multiple temporal positions from the path to exit thinking and directly generate answers (serial group). For correct answers within a serial group, rewards gradually decrease based on the exit positions along the reasoning path from front to back. This design encourages the model to produce more accurate and concise thoughts, while also incentivizing early thinking termination when appropriate. Empirical evaluations demonstrate that S-GRPO is compatible with state-of-the-art reasoning models, including Qwen3 and Deepseek-distill. Across diverse benchmarks such as GSM8K, AIME 2024, AMC 2023, MATH-500, and GPQA Diamond, S-GRPO achieves a substantial reduction in sequence length (35.4% - 61.1%) while simultaneously improving accuracy (absolute 0.72% - 6.08%).
Stop Summation: Min-Form Credit Assignment Is All Process Reward Model Needs for Reasoning
Process reward models (PRMs) have proven effective for test-time scaling of Large Language Models (LLMs) on challenging reasoning tasks. However, reward hacking issues with PRMs limit their successful application in reinforcement fine-tuning. In this paper, we identify the main cause of PRM-induced reward hacking: the canonical summation-form credit assignment in reinforcement learning (RL), which defines the value as cumulative gamma-decayed future rewards, easily induces LLMs to hack steps with high rewards. To address this, we propose PURE: Process sUpervised Reinforcement lEarning. The key innovation of PURE is a min-form credit assignment that formulates the value function as the minimum of future rewards. This method significantly alleviates reward hacking by limiting the value function range and distributing advantages more reasonably. Through extensive experiments on 3 base models, we show that PRM-based approaches enabling min-form credit assignment achieve comparable reasoning performance to verifiable reward-based methods within only 30% steps. In contrast, the canonical sum-form credit assignment collapses training even at the beginning! Additionally, when we supplement PRM-based fine-tuning with just 10% verifiable rewards, we further alleviate reward hacking and produce the best fine-tuned model based on Qwen2.5-Math-7B in our experiments, achieving 82.5% accuracy on AMC23 and 53.3% average accuracy across 5 benchmarks. Moreover, we summarize the observed reward hacking cases and analyze the causes of training collapse. Code and models are available at https://github.com/CJReinforce/PURE.
Generating Narrated Lecture Videos from Slides with Synchronized Highlights
Turning static slides into engaging video lectures takes considerable time and effort, requiring presenters to record explanations and visually guide their audience through the material. We introduce an end-to-end system designed to automate this process entirely. Given a slide deck, this system synthesizes a video lecture featuring AI-generated narration synchronized precisely with dynamic visual highlights. These highlights automatically draw attention to the specific concept being discussed, much like an effective presenter would. The core technical contribution is a novel highlight alignment module. This module accurately maps spoken phrases to locations on a given slide using diverse strategies (e.g., Levenshtein distance, LLM-based semantic analysis) at selectable granularities (line or word level) and utilizes timestamp-providing Text-to-Speech (TTS) for timing synchronization. We demonstrate the system's effectiveness through a technical evaluation using a manually annotated slide dataset with 1000 samples, finding that LLM-based alignment achieves high location accuracy (F1 > 92%), significantly outperforming simpler methods, especially on complex, math-heavy content. Furthermore, the calculated generation cost averages under $1 per hour of video, offering potential savings of two orders of magnitude compared to conservative estimates of manual production costs. This combination of high accuracy and extremely low cost positions this approach as a practical and scalable tool for transforming static slides into effective, visually-guided video lectures.
Cross-Lingual Consistency: A Novel Inference Framework for Advancing Reasoning in Large Language Models
Chain-of-thought (CoT) has emerged as a critical mechanism for enhancing reasoning capabilities in large language models (LLMs), with self-consistency demonstrating notable promise in boosting performance. However, inherent linguistic biases in multilingual training corpora frequently cause semantic drift and logical inconsistencies, especially in sub-10B parameter LLMs handling complex inference tasks. To overcome these constraints, we propose the Cross-Lingual Consistency (CLC) framework, an innovative inference paradigm that integrates multilingual reasoning paths through majority voting to elevate LLMs' reasoning capabilities. Empirical evaluations on the CMATH dataset reveal CLC's superiority over the conventional self-consistency method, delivering 9.5%, 6.5%, and 6.0% absolute accuracy gains for DeepSeek-Math-7B-Instruct, Qwen2.5-Math-7B-Instruct, and Gemma2-9B-Instruct respectively. Expanding CLC's linguistic scope to 11 diverse languages implies two synergistic benefits: 1) neutralizing linguistic biases in multilingual training corpora through multilingual ensemble voting, 2) escaping monolingual reasoning traps by exploring the broader multilingual solution space. This dual benefits empirically enables more globally optimal reasoning paths compared to monolingual self-consistency baselines, as evidenced by the 4.1%-18.5% accuracy gains using Gemma2-9B-Instruct on the MGSM dataset.
Guiding Through Complexity: What Makes Good Supervision for Hard Reasoning Tasks?
How can "weak teacher models" such as average human annotators or existing AI systems, effectively supervise LLMs to improve performance on hard reasoning tasks, especially those that challenge and requires expertise or daily practice from the teacher models? In this paper, we seek for empirical answers to this question by investigating various data-driven strategies that offer supervision data at different quality levels upon tasks of varying complexity. Two intuitive strategies emerge for teacher models to provide supervision during alignment training: 1) using lower-quality supervision from complete tasks that match the difficulty of the target reasoning tasks, and 2) leveraging higher-quality supervision from easier subtasks that are less challenging. Interestingly, we find that even when the outcome error rate for hard task supervision is high (e.g., 90\%), training on such data can outperform perfectly correct supervision on easier subtasks on multiple hard math benchmarks. We further identify a more critical factor influencing training performance: step-wise error rates, which indicate the severity of errors in solutions. Specifically, training on hard task supervision with the same outcome error rates but disparate step-wise error rates can lead to a 30\% accuracy gap on MATH benchmark. Our results also reveal that supplementing hard task supervision with the corresponding subtask supervision can yield notable performance improvements than simply combining rephrased hard full task supervision, suggesting new avenues for data augmentation. Data and code are released at https://github.com/hexuan21/Weak-to-Strong.
Sketch to Adapt: Fine-Tunable Sketches for Efficient LLM Adaptation
Adapting pre-trained large language models (LLMs) is crucial but challenging due to their enormous size. Parameter-efficient fine-tuning (PEFT) techniques typically employ additive adapters applied to frozen model weights. To further reduce memory usage, model weights can be compressed through quantization. However, existing PEFT methods often yield suboptimal model quality due to restrictive assumptions, such as imposing low-rank constraints on adapters to reduce trainable parameters. We find that sketching, a popular data compression technique, can serve as an efficient adaptation strategy for LLMs while avoiding low-rank assumptions. We introduce SketchTune, a compressive adaptation strategy that compresses LLM weights into compact fine-tunable sketches, integrating compression and adaptation into a unified framework. This integration eliminates the need for complex two-path computation common in existing PEFT techniques, enabling faster and more memory-efficient training and inference. SketchTune is supported by mathematical insights into matrix classes that are better approximated using sketching rather than low-rank methods. Our rigorous evaluations with Llama-1/2/3 models demonstrate that SketchTune outperforms leading PEFT methods across diverse tasks including math problem-solving, common sense reasoning, and instruction following, while using substantially smaller base models and comparable trainable parameters. As a highlight, SketchTune outperforms LoRA, DoRA, and S2FT on commonsense and math benchmarks using 2.6-3.5times smaller base models and exceeds LoftQ in accuracy by 14.48% on GSM8K with 7.3times fewer trainable parameters.
LEAN-GitHub: Compiling GitHub LEAN repositories for a versatile LEAN prover
Recently, large language models have presented promising results in aiding formal mathematical reasoning. However, their performance is restricted due to the scarcity of formal theorem-proving data, which requires additional effort to be extracted from raw formal language corpora. Meanwhile, a significant amount of human-written formal language corpora remains underutilized. To address this issue, we propose LEAN-GitHub, a dataset consisting of large-scale formal data extracted from almost all Lean 4 repositories on GitHub. After fine-tuning InternLM-math-plus on this dataset, our model achieved accuracies of 48.8% with a single pass and 54.5% with 64 passes on the Lean 4 miniF2F test, surpassing state-of-the-art method at 52%. And it also achieves state-of-the-art on two other Lean 4 benchmarks (ProofNet and Putnam) targeting different fields/levels of math. These results demonstrate that our proposed dataset is beneficial for formal reasoning on a wide range of math topics. We open-source our model at https://GitHub. com/InternLM/InternLM-Math and our data at https://huggingface.co/ datasets/InternLM/Lean-GitHub
Monte Carlo Tree Search Boosts Reasoning via Iterative Preference Learning
We introduce an approach aimed at enhancing the reasoning capabilities of Large Language Models (LLMs) through an iterative preference learning process inspired by the successful strategy employed by AlphaZero. Our work leverages Monte Carlo Tree Search (MCTS) to iteratively collect preference data, utilizing its look-ahead ability to break down instance-level rewards into more granular step-level signals. To enhance consistency in intermediate steps, we combine outcome validation and stepwise self-evaluation, continually updating the quality assessment of newly generated data. The proposed algorithm employs Direct Preference Optimization (DPO) to update the LLM policy using this newly generated step-level preference data. Theoretical analysis reveals the importance of using on-policy sampled data for successful self-improving. Extensive evaluations on various arithmetic and commonsense reasoning tasks demonstrate remarkable performance improvements over existing models. For instance, our approach outperforms the Mistral-7B Supervised Fine-Tuning (SFT) baseline on GSM8K, MATH, and ARC-C, with substantial increases in accuracy to 81.8% (+5.9%), 34.7% (+5.8%), and 76.4% (+15.8%), respectively. Additionally, our research delves into the training and inference compute tradeoff, providing insights into how our method effectively maximizes performance gains. Our code is publicly available at https://github.com/YuxiXie/MCTS-DPO.
ATHENA: Mathematical Reasoning with Thought Expansion
Solving math word problems depends on how to articulate the problems, the lens through which models view human linguistic expressions. Real-world settings count on such a method even more due to the diverse practices of the same mathematical operations. Earlier works constrain available thinking processes by limited prediction strategies without considering their significance in acquiring mathematical knowledge. We introduce Attention-based THought Expansion Network Architecture (ATHENA) to tackle the challenges of real-world practices by mimicking human thought expansion mechanisms in the form of neural network propagation. A thought expansion recurrently generates the candidates carrying the thoughts of possible math expressions driven from the previous step and yields reasonable thoughts by selecting the valid pathways to the goal. Our experiments show that ATHENA achieves a new state-of-the-art stage toward the ideal model that is compelling in variant questions even when the informativeness in training examples is restricted.
Sample More to Think Less: Group Filtered Policy Optimization for Concise Reasoning
Large language models trained with reinforcement learning with verifiable rewards tend to trade accuracy for length--inflating response lengths to achieve gains in accuracy. While longer answers may be warranted for harder problems, many tokens are merely "filler": repetitive, verbose text that makes no real progress. We introduce GFPO (Group Filtered Policy Optimization), which curbs this length explosion by sampling larger groups per problem during training and filtering responses to train on based on two key metrics: (1) response length and (2) token efficiency: reward per token ratio. By sampling more at training time, we teach models to think less at inference time. On the Phi-4-reasoning model, GFPO cuts GRPO's length inflation by 46-71% across challenging STEM and coding benchmarks (AIME 24/25, GPQA, Omni-MATH, LiveCodeBench) while maintaining accuracy. Optimizing for reward per token further increases reductions in length inflation to 71-85%. We also propose Adaptive Difficulty GFPO, which dynamically allocates more training resources to harder problems based on real-time difficulty estimates, improving the balance between computational efficiency and accuracy especially on difficult questions. GFPO demonstrates that increased training-time compute directly translates to reduced test-time compute--a simple yet effective trade-off for efficient reasoning.
Self-Training Elicits Concise Reasoning in Large Language Models
Chain-of-thought (CoT) reasoning has enabled large language models (LLMs) to utilize additional computation through intermediate tokens to solve complex tasks. However, we posit that typical reasoning traces contain many redundant tokens, incurring extraneous inference costs. Upon examination of the output distribution of current LLMs, we find evidence on their latent ability to reason more concisely, relative to their default behavior. To elicit this capability, we propose simple fine-tuning methods which leverage self-generated concise reasoning paths obtained by best-of-N sampling and few-shot conditioning, in task-specific settings. Our combined method achieves a 30% reduction in output tokens on average, across five model families on GSM8K and MATH, while maintaining average accuracy. By exploiting the fundamental stochasticity and in-context learning capabilities of LLMs, our self-training approach robustly elicits concise reasoning on a wide range of models, including those with extensive post-training. Code is available at https://github.com/TergelMunkhbat/concise-reasoning
ASyMOB: Algebraic Symbolic Mathematical Operations Benchmark
Large language models (LLMs) are rapidly approaching the level of proficiency in university-level symbolic mathematics required for applications in advanced science and technology. However, existing benchmarks fall short in assessing the core skills of LLMs in symbolic mathematics-such as integration, differential equations, and algebraic simplification. To address this gap, we introduce ASyMOB, a novel assessment framework focused exclusively on symbolic manipulation, featuring 17,092 unique math challenges, organized by similarity and complexity. ASyMOB enables analysis of LLM generalization capabilities by comparing performance in problems that differ by simple numerical or symbolic `perturbations'. Evaluated LLMs exhibit substantial degradation in performance for all perturbation types (up to -70.3%), suggesting reliance on memorized patterns rather than deeper understanding of symbolic math, even among models achieving high baseline accuracy. Comparing LLM performance to computer algebra systems, we identify examples where they fail while LLMs succeed, as well as problems solved only by combining both approaches. Models capable of integrated code execution yielded higher accuracy compared to their performance without code, particularly stabilizing weaker models (up to +33.1% for certain perturbation types). Notably, the most advanced models (o4-mini, Gemini 2.5 Flash) demonstrate not only high symbolic math proficiency (scoring 96.8% and 97.6% on the unperturbed set), but also remarkable robustness against perturbations, (-21.7% and -21.2% vs. average -50.4% for the other models). This may indicate a recent "phase transition" in the generalization capabilities of frontier LLMs. It remains to be seen whether the path forward lies in deeper integration with sophisticated external tools, or in developing models so capable that symbolic math systems like CAS become unnecessary.
Stepwise Self-Consistent Mathematical Reasoning with Large Language Models
Using Large Language Models for complex mathematical reasoning is difficult, primarily due to the complexity of multi-step reasoning. The main challenges of this process include (1) selecting critical intermediate results to advance the procedure, and (2) limited exploration of potential solutions. To address these issues, we introduce a novel algorithm, namely Stepwise Self-Consistent Chain-of-Thought (SSC-CoT). SSC-CoT employs a strategy of selecting intermediate steps based on the intersection of various reasoning chains. Additionally, SSC-CoT enables the model to discover critical intermediate steps by querying a knowledge graph comprising relevant domain knowledge. To validate SSC-CoT, we present a new dataset, TriMaster100, tailored for complex trigonometry problems. This dataset contains 100 questions, with each solution broken down into scored intermediate steps, facilitating a comprehensive evaluation of the mathematical reasoning process. On TriMaster100, SSC-CoT triples the effectiveness of the state-of-the-art methods. Furthermore, we benchmark SSC-CoT on the widely recognized complex mathematical question dataset, MATH level 5, and it surpasses the second-best method by 7.2% in accuracy. Code and the TriMaster100 dataset can be found at: https://github.com/zhao-zilong/ssc-cot.
Diffusion of Thoughts: Chain-of-Thought Reasoning in Diffusion Language Models
Recently, diffusion models have garnered significant interest in the field of text processing due to their many potential advantages compared to conventional autoregressive models. In this work, we propose Diffusion-of-Thought (DoT), a novel approach that integrates diffusion models with Chain-of-Thought, a well-established technique for improving the reasoning ability of autoregressive language models. In contrast to autoregressive language models that make decisions in a left-to-right, token-by-token manner, DoT allows reasoning steps to diffuse over time through a diffusion language model and offers greater flexibility in trading-off computation for reasoning performance. Our experimental results demonstrate the effectiveness of DoT in multi-digit multiplication, boolean logic, and grade school math problems, with a small diffusion model outperforming a much larger autoregressive model in both efficiency and accuracy. In addition to that, DoT showcases promising self-correction abilities and benefits from existing reasoning-enhancing techniques like self-consistency decoding. Our findings contribute to the understanding and development of reasoning with diffusion language models.
SHANKS: Simultaneous Hearing and Thinking for Spoken Language Models
Current large language models (LLMs) and spoken language models (SLMs) begin thinking and taking actions only after the user has finished their turn. This prevents the model from interacting during the user's turn and can lead to high response latency while it waits to think. Consequently, thinking after receiving the full input is not suitable for speech-to-speech interaction, where real-time, low-latency exchange is important. We address this by noting that humans naturally "think while listening." In this paper, we propose SHANKS, a general inference framework that enables SLMs to generate unspoken chain-of-thought reasoning while listening to the user input. SHANKS streams the input speech in fixed-duration chunks and, as soon as a chunk is received, generates unspoken reasoning based on all previous speech and reasoning, while the user continues speaking. SHANKS uses this unspoken reasoning to decide whether to interrupt the user and to make tool calls to complete the task. We demonstrate that SHANKS enhances real-time user-SLM interaction in two scenarios: (1) when the user is presenting a step-by-step solution to a math problem, SHANKS can listen, reason, and interrupt when the user makes a mistake, achieving 37.1% higher interruption accuracy than a baseline that interrupts without thinking; and (2) in a tool-augmented dialogue, SHANKS can complete 56.9% of the tool calls before the user finishes their turn. Overall, SHANKS moves toward models that keep thinking throughout the conversation, not only after a turn ends. Animated illustrations of Shanks can be found at https://d223302.github.io/SHANKS/
Entropy Regularizing Activation: Boosting Continuous Control, Large Language Models, and Image Classification with Activation as Entropy Constraints
We propose ERA, a new paradigm that constrains the sampling entropy above given thresholds by applying specially designed activations to the outputs of models. Our approach demonstrates broad effectiveness across different domains: 1) for large language models(LLMs), boosting the AIME 2025 score for Qwen2.5-Math-7B by 37.4%; 2) for continuous control reinforcement learning agents, improving performance by more than 30% over strong baselines such as SAC on the challenging HumanoidBench; 3) for image classification, enhancing ImageNet top-1 accuracy by 0.69% for ResNet-50. These gains are achieved with a computational overhead of less than 7%. Our work validates output activation as a powerful tool for entropy control, opening a new direction for designing simpler and more robust algorithms.
PARAMANU-GANITA: Language Model with Mathematical Capabilities
In this paper, we present Paramanu-Ganita, a 208 million parameter novel Auto Regressive (AR) decoder based language model on mathematics. The model is pretrained from scratch at context size of 4096 on our curated mixed mathematical corpus. We evaluate our model on both perplexity metric and GSM8k mathematical benchmark. Paramanu-Ganita despite being 35 times smaller than 7B LLMs, outperformed generalist LLMs such as LLaMa-1 7B by 28.4% points, LLaMa-2 7B by 27.6% points, Falcon 7B by 32.6% points, PaLM 8B by 35.3% points, and math specialised LLMs such as Minerva 8B by 23.2% points, and LLEMMA-7B by 3.0% points in GSM8k test accuracy metric respectively. Paramanu-Ganita also outperformed giant LLMs like PaLM 62B by 6.4% points, Falcon 40B by 19.8% points, LLaMa-1 33B by 3.8% points and Vicuna 13B by 11.8% points respectively. The large significant margin improvement in performance of our math model over the existing LLMs signifies that reasoning capabilities of language model are just not restricted to LLMs with humongous number of parameters. Paramanu-Ganita took 146 hours of A100 training whereas math specialised LLM, LLEMMA 7B, was trained for 23,000 A100 hours of training equivalent. Thus, our approach of pretraining powerful domain specialised language models from scratch for domain adaptation is much more cost-effective than performing continual training of LLMs for domain adaptation. Hence, we conclude that for strong mathematical reasoning abilities of language model, we do not need giant LLMs and immense computing power to our end. In the end, we want to point out that we have only trained Paramanu-Ganita only on a part of our entire mathematical corpus and yet to explore the full potential of our model.
Evaluating Language Model Math Reasoning via Grounding in Educational Curricula
Our work presents a novel angle for evaluating language models' (LMs) mathematical abilities, by investigating whether they can discern skills and concepts enabled by math content. We contribute two datasets: one consisting of 385 fine-grained descriptions of K-12 math skills and concepts, or standards, from Achieve the Core (ATC), and another of 9.9K problems labeled with these standards (MathFish). Working with experienced teachers, we find that LMs struggle to tag and verify standards linked to problems, and instead predict labels that are close to ground truth, but differ in subtle ways. We also show that LMs often generate problems that do not fully align with standards described in prompts. Finally, we categorize problems in GSM8k using math standards, allowing us to better understand why some problems are more difficult to solve for models than others.
UGMathBench: A Diverse and Dynamic Benchmark for Undergraduate-Level Mathematical Reasoning with Large Language Models
Large Language Models (LLMs) have made significant strides in mathematical reasoning, underscoring the need for a comprehensive and fair evaluation of their capabilities. However, existing benchmarks often fall short, either lacking extensive coverage of undergraduate-level mathematical problems or probably suffering from test-set contamination. To address these issues, we introduce UGMathBench, a diverse and dynamic benchmark specifically designed for evaluating undergraduate-level mathematical reasoning with LLMs. UGMathBench comprises 5,062 problems across 16 subjects and 111 topics, featuring 10 distinct answer types. Each problem includes three randomized versions, with additional versions planned for release as leading open-source LLMs become saturated in UGMathBench. Furthermore, we propose two key metrics: effective accuracy (EAcc), which measures the percentage of correctly solved problems across all three versions, and reasoning gap (Delta), which assesses reasoning robustness by calculating the difference between the average accuracy across all versions and EAcc. Our extensive evaluation of 23 leading LLMs reveals that the highest EAcc achieved is 56.3\% by OpenAI-o1-mini, with large Delta values observed across different models. This highlights the need for future research aimed at developing "large reasoning models" with high EAcc and Delta = 0. We anticipate that the release of UGMathBench, along with its detailed evaluation codes, will serve as a valuable resource to advance the development of LLMs in solving mathematical problems.
Give Me FP32 or Give Me Death? Challenges and Solutions for Reproducible Reasoning
Large Language Models (LLMs) are now integral across various domains and have demonstrated impressive performance. Progress, however, rests on the premise that benchmark scores are both accurate and reproducible. We demonstrate that the reproducibility of LLM performance is fragile: changing system configuration such as evaluation batch size, GPU count, and GPU version can introduce significant difference in the generated responses. This issue is especially pronounced in reasoning models, where minor rounding differences in early tokens can cascade into divergent chains of thought, ultimately affecting accuracy. For instance, under bfloat16 precision with greedy decoding, a reasoning model like DeepSeek-R1-Distill-Qwen-7B can exhibit up to 9% variation in accuracy and 9,000 tokens difference in response length due to differences in GPU count, type, and evaluation batch size. We trace the root cause of this variability to the non-associative nature of floating-point arithmetic under limited numerical precision. This work presents the first systematic investigation into how numerical precision affects reproducibility in LLM inference. Through carefully controlled experiments across various hardware, software, and precision settings, we quantify when and how model outputs diverge. Our analysis reveals that floating-point precision -- while critical for reproducibility -- is often neglected in evaluation practices. Inspired by this, we develop a lightweight inference pipeline, dubbed LayerCast, that stores weights in 16-bit precision but performs all computations in FP32, balancing memory efficiency with numerical stability. Code is available at https://github.com/nanomaoli/llm_reproducibility.
GPT Can Solve Mathematical Problems Without a Calculator
Previous studies have typically assumed that large language models are unable to accurately perform arithmetic operations, particularly multiplication of >8 digits, and operations involving decimals and fractions, without the use of calculator tools. This paper aims to challenge this misconception. With sufficient training data, a 2 billion-parameter language model can accurately perform multi-digit arithmetic operations with almost 100% accuracy without data leakage, significantly surpassing GPT-4 (whose multi-digit multiplication accuracy is only 4.3%). We also demonstrate that our MathGLM, fine-tuned from GLM-10B on a dataset with additional multi-step arithmetic operations and math problems described in text, achieves similar performance to GPT-4 on a 5,000-samples Chinese math problem test set.
MATH-Perturb: Benchmarking LLMs' Math Reasoning Abilities against Hard Perturbations
Large language models have demonstrated impressive performance on challenging mathematical reasoning tasks, which has triggered the discussion of whether the performance is achieved by true reasoning capability or memorization. To investigate this question, prior work has constructed mathematical benchmarks when questions undergo simple perturbations -- modifications that still preserve the underlying reasoning patterns of the solutions. However, no work has explored hard perturbations, which fundamentally change the nature of the problem so that the original solution steps do not apply. To bridge the gap, we construct MATH-P-Simple and MATH-P-Hard via simple perturbation and hard perturbation, respectively. Each consists of 279 perturbed math problems derived from level-5 (hardest) problems in the MATH dataset (Hendrycksmath et. al., 2021). We observe significant performance drops on MATH-P-Hard across various models, including o1-mini (-16.49%) and gemini-2.0-flash-thinking (-12.9%). We also raise concerns about a novel form of memorization where models blindly apply learned problem-solving skills without assessing their applicability to modified contexts. This issue is amplified when using original problems for in-context learning. We call for research efforts to address this challenge, which is critical for developing more robust and reliable reasoning models.
SelfCheck: Using LLMs to Zero-Shot Check Their Own Step-by-Step Reasoning
The recent progress in large language models (LLMs), especially the invention of chain-of-thoughts (CoT) prompting, makes it possible to solve reasoning problems. However, even the strongest LLMs are still struggling with more complicated problems that require non-linear thinking and multi-step reasoning. In this work, we explore whether LLMs have the ability to recognize their own errors, without resorting to external resources. In particular, we investigate whether they can be used to identify individual errors within a step-by-step reasoning. To this end, we propose a zero-shot verification scheme to recognize such errors. We then use this verification scheme to improve question-answering performance, by using it to perform weighted voting on different generated answers. We test the method on three math datasets-GSM8K, MathQA, and MATH-and find that it successfully recognizes errors and, in turn, increases final predictive performance.
Mathematical Capabilities of ChatGPT
We investigate the mathematical capabilities of ChatGPT by testing it on publicly available datasets, as well as hand-crafted ones, and measuring its performance against other models trained on a mathematical corpus, such as Minerva. We also test whether ChatGPT can be a useful assistant to professional mathematicians by emulating various use cases that come up in the daily professional activities of mathematicians (question answering, theorem searching). In contrast to formal mathematics, where large databases of formal proofs are available (e.g., the Lean Mathematical Library), current datasets of natural-language mathematics, used to benchmark language models, only cover elementary mathematics. We address this issue by introducing a new dataset: GHOSTS. It is the first natural-language dataset made and curated by working researchers in mathematics that (1) aims to cover graduate-level mathematics and (2) provides a holistic overview of the mathematical capabilities of language models. We benchmark ChatGPT on GHOSTS and evaluate performance against fine-grained criteria. We make this new dataset publicly available to assist a community-driven comparison of ChatGPT with (future) large language models in terms of advanced mathematical comprehension. We conclude that contrary to many positive reports in the media (a potential case of selection bias), ChatGPT's mathematical abilities are significantly below those of an average mathematics graduate student. Our results show that ChatGPT often understands the question but fails to provide correct solutions. Hence, if your goal is to use it to pass a university exam, you would be better off copying from your average peer!
Learning Math Reasoning from Self-Sampled Correct and Partially-Correct Solutions
Pretrained language models have shown superior performance on many natural language processing tasks, yet they still struggle at multi-step formal reasoning tasks like grade school math problems. One key challenge of finetuning them to solve such math reasoning problems is that many existing datasets only contain one reference solution for each problem, despite the fact that there are often alternative solutions resembling different reasoning paths to the final answer. This way, the finetuned models are biased towards the limited reference solutions, which limits their generalization to unseen examples. To mitigate this issue, we propose to let the model perform sampling during training and learn from both self-sampled fully-correct solutions, which yield the correct answer upon execution, and partially-correct solutions, whose intermediate state matches an intermediate state of a known correct solution. We show that our use of self-sampled correct and partially-correct solutions can benefit learning and help guide the sampling process, leading to more efficient exploration of the solution space. Additionally, we explore various training objectives to support learning from multiple solutions per example and find they greatly affect the performance. Experiments on two math reasoning datasets show the effectiveness of our method compared to learning from a single reference solution with MLE, where we improve PASS@100 from 35.5% to 44.5% for GSM8K, and 27.6% to 36.2% PASS@80 for MathQA. Such improvements are also consistent across different model sizes. Our code is available at https://github.com/microsoft/TraceCodegen.
Alvorada-Bench: Can Language Models Solve Brazilian University Entrance Exams?
Language models are increasingly used in Brazil, but most evaluation remains English-centric. This paper presents Alvorada-Bench, a 4,515-question, text-only benchmark drawn from five Brazilian university entrance examinations. Evaluating twenty models under zero-shot, role-playing, and chain-of-thought prompting, producing 270,900 responses with structured self-reports of confidence, perceived difficulty, and Bloom level. The top models exceed 94% accuracy overall, but accuracy declines on Mathematics and on the engineering oriented IME and ITA exams, indicating persistent weaknesses in multi-step reasoning. Confidence is well calibrated and correlates with perceived difficulty, revealing that models can accurately assess their own certainty capabilities. A cost accuracy analysis shows that high accuracy is achievable at under $2 per 1K tokens. On ENEM 2024 the top model (O3) achieved perfect scores in Languages subject questions while even the weakest system (GPT-4.1 Nano) only underperforms humans in Mathematics. Through exams that distill decades of Brazilian educational priorities and assess millions of students yearly, Alvorada-Bench establishes whether language models can navigate the intersection of language, culture, and reasoning that defines academic readiness in Brazil.
Measuring Massive Multitask Language Understanding
We propose a new test to measure a text model's multitask accuracy. The test covers 57 tasks including elementary mathematics, US history, computer science, law, and more. To attain high accuracy on this test, models must possess extensive world knowledge and problem solving ability. We find that while most recent models have near random-chance accuracy, the very largest GPT-3 model improves over random chance by almost 20 percentage points on average. However, on every one of the 57 tasks, the best models still need substantial improvements before they can reach expert-level accuracy. Models also have lopsided performance and frequently do not know when they are wrong. Worse, they still have near-random accuracy on some socially important subjects such as morality and law. By comprehensively evaluating the breadth and depth of a model's academic and professional understanding, our test can be used to analyze models across many tasks and to identify important shortcomings.
GSM-Plus: A Comprehensive Benchmark for Evaluating the Robustness of LLMs as Mathematical Problem Solvers
Large language models (LLMs) have achieved impressive performance across various mathematical reasoning benchmarks. However, there are increasing debates regarding whether these models truly understand and apply mathematical knowledge or merely rely on shortcuts for mathematical reasoning. One essential and frequently occurring evidence is that when the math questions are slightly changed, LLMs can behave incorrectly. This motivates us to evaluate the robustness of LLMs' math reasoning capability by testing a wide range of question variations. We introduce the adversarial grade school math (\datasetname) dataset, an extension of GSM8K augmented with various mathematical perturbations. Our experiments on 25 LLMs and 4 prompting techniques show that while LLMs exhibit different levels of math reasoning abilities, their performances are far from robust. In particular, even for problems that have been solved in GSM8K, LLMs can make mistakes when new statements are added or the question targets are altered. We also explore whether more robust performance can be achieved by composing existing prompting methods, in which we try an iterative method that generates and verifies each intermediate thought based on its reasoning goal and calculation result. Code and data are available at https://github.com/qtli/GSM-Plus.
A Careful Examination of Large Language Model Performance on Grade School Arithmetic
Large language models (LLMs) have achieved impressive success on many benchmarks for mathematical reasoning. However, there is growing concern that some of this performance actually reflects dataset contamination, where data closely resembling benchmark questions leaks into the training data, instead of true reasoning ability. To investigate this claim rigorously, we commission Grade School Math 1000 (GSM1k). GSM1k is designed to mirror the style and complexity of the established GSM8k benchmark, the gold standard for measuring elementary mathematical reasoning. We ensure that the two benchmarks are comparable across important metrics such as human solve rates, number of steps in solution, answer magnitude, and more. When evaluating leading open- and closed-source LLMs on GSM1k, we observe accuracy drops of up to 13%, with several families of models (e.g., Phi and Mistral) showing evidence of systematic overfitting across almost all model sizes. At the same time, many models, especially those on the frontier, (e.g., Gemini/GPT/Claude) show minimal signs of overfitting. Further analysis suggests a positive relationship (Spearman's r^2=0.32) between a model's probability of generating an example from GSM8k and its performance gap between GSM8k and GSM1k, suggesting that many models may have partially memorized GSM8k.
MatheMagic: Generating Dynamic Mathematics Benchmarks Robust to Memorization
Conducting contamination-free evaluation of mathematical capabilities can be difficult for two reasons: models may memorize a test set once it is made public, and current mathematical benchmarks are prone to overfitting due to having limited diversity of symbols and rules, coupled with closed-ended answers. This paper proposes a method to leverage these shortcomings as useful features to a construct dynamic, counterfactual benchmark, which can be used to both reveal overfitting and measure true reasoning. We demonstrate this via MatheMagic, which generates math test instances with the interpretations of numbers and operators altered, yet has automatically verifiable answers. Test instances are randomly seeded and constructed at test time to evaluate a model's induction or deduction capability, offering stability, extensibility, comparability, and robustness to overfitting. Our experiments find that models solve deduction more easily than induction, but they revert to standard math. Further analysis reveals that math-adapted models fail to exhibit a general "skill" of reasoning, and fine-tuning on induction tasks generalizes poorly.
Temporal Consistency for LLM Reasoning Process Error Identification
Verification is crucial for effective mathematical reasoning. We present a new temporal consistency method where verifiers iteratively refine their judgments based on the previous assessment. Unlike one-round verification or multi-model debate approaches, our method leverages consistency in a sequence of self-reflection actions to improve verification accuracy. Empirical evaluations across diverse mathematical process error identification benchmarks (Mathcheck, ProcessBench, and PRM800K) show consistent performance improvements over baseline methods. When applied to the recent DeepSeek R1 distilled models, our method demonstrates strong performance, enabling 7B/8B distilled models to outperform all 70B/72B models and GPT-4o on ProcessBench. Notably, the distilled 14B model with our method achieves performance comparable to Deepseek-R1. Our codes are available at https://github.com/jcguo123/Temporal-Consistency
VisScience: An Extensive Benchmark for Evaluating K12 Educational Multi-modal Scientific Reasoning
Multi-modal large language models (MLLMs) have demonstrated promising capabilities across various tasks by integrating textual and visual information to achieve visual understanding in complex scenarios. Despite the availability of several benchmarks aims to evaluating MLLMs in tasks from visual question answering to complex problem-solving, most focus predominantly on mathematics or general visual understanding tasks. This reveals a critical gap in current benchmarks, which often overlook the inclusion of other key scientific disciplines such as physics and chemistry. To address this gap, we meticulously construct a comprehensive benchmark, named VisScience, which is utilized to assess the multi-modal scientific reasoning across the three disciplines of mathematics, physics, and chemistry. This benchmark comprises 3,000 questions drawn from K12 education - spanning elementary school through high school - equally distributed across three disciplines, with 1,000 questions per discipline. The questions within VisScience span 21 distinct subjects and are categorized into five difficulty levels, offering a broad spectrum of topics within each discipline. With VisScience, we present a detailed evaluation of the performance of 25 representative MLLMs in scientific reasoning. Experimental results demonstrate that closed-source MLLMs generally outperform open-source models. The best performance observed include a 53.4\% accuracy in mathematics by Claude3.5-Sonnet, 38.2\% in physics by GPT-4o, and 47.0\% in chemistry by Gemini-1.5-Pro. These results underscore the strengths and limitations of MLLMs, suggesting areas for future improvement and highlighting the importance of developing models that can effectively handle the diverse demands of multi-modal scientific reasoning.
Is Your Model Really A Good Math Reasoner? Evaluating Mathematical Reasoning with Checklist
Exceptional mathematical reasoning ability is one of the key features that demonstrate the power of large language models (LLMs). How to comprehensively define and evaluate the mathematical abilities of LLMs, and even reflect the user experience in real-world scenarios, has emerged as a critical issue. Current benchmarks predominantly concentrate on problem-solving capabilities, which presents a substantial risk of model overfitting and fails to accurately represent genuine mathematical reasoning abilities. In this paper, we argue that if a model really understands a problem, it should be robustly and readily applied across a diverse array of tasks. Motivated by this, we introduce MATHCHECK, a well-designed checklist for testing task generalization and reasoning robustness, as well as an automatic tool to generate checklists efficiently. MATHCHECK includes multiple mathematical reasoning tasks and robustness test types to facilitate a comprehensive evaluation of both mathematical reasoning ability and behavior testing. Utilizing MATHCHECK, we develop MATHCHECK-GSM and MATHCHECK-GEO to assess mathematical textual reasoning and multi-modal reasoning capabilities, respectively, serving as upgraded versions of benchmarks including GSM8k, GeoQA, UniGeo, and Geometry3K. We adopt MATHCHECK-GSM and MATHCHECK-GEO to evaluate over 20 LLMs and 11 MLLMs, assessing their comprehensive mathematical reasoning abilities. Our results demonstrate that while frontier LLMs like GPT-4o continue to excel in various abilities on the checklist, many other model families exhibit a significant decline. Further experiments indicate that, compared to traditional math benchmarks, MATHCHECK better reflects true mathematical abilities and represents mathematical intelligence more linearly, thereby supporting our design. On our MATHCHECK, we can easily conduct detailed behavior analysis to deeply investigate models.
MathPrompter: Mathematical Reasoning using Large Language Models
Large Language Models (LLMs) have limited performance when solving arithmetic reasoning tasks and often provide incorrect answers. Unlike natural language understanding, math problems typically have a single correct answer, making the task of generating accurate solutions more challenging for LLMs. To the best of our knowledge, we are not aware of any LLMs that indicate their level of confidence in their responses which fuels a trust deficit in these models impeding their adoption. To address this deficiency, we propose `MathPrompter', a technique that improves performance of LLMs on arithmetic problems along with increased reliance in the predictions. MathPrompter uses the Zero-shot chain-of-thought prompting technique to generate multiple Algebraic expressions or Python functions to solve the same math problem in different ways and thereby raise the confidence level in the output results. This is in contrast to other prompt based CoT methods, where there is no check on the validity of the intermediate steps followed. Our technique improves over state-of-the-art on the MultiArith dataset (78.7%rightarrow92.5%) evaluated using 175B parameter GPT-based LLM.
How is ChatGPT's behavior changing over time?
GPT-3.5 and GPT-4 are the two most widely used large language model (LLM) services. However, when and how these models are updated over time is opaque. Here, we evaluate the March 2023 and June 2023 versions of GPT-3.5 and GPT-4 on four diverse tasks: 1) solving math problems, 2) answering sensitive/dangerous questions, 3) generating code and 4) visual reasoning. We find that the performance and behavior of both GPT-3.5 and GPT-4 can vary greatly over time. For example, GPT-4 (March 2023) was very good at identifying prime numbers (accuracy 97.6%) but GPT-4 (June 2023) was very poor on these same questions (accuracy 2.4%). Interestingly GPT-3.5 (June 2023) was much better than GPT-3.5 (March 2023) in this task. GPT-4 was less willing to answer sensitive questions in June than in March, and both GPT-4 and GPT-3.5 had more formatting mistakes in code generation in June than in March. Overall, our findings shows that the behavior of the same LLM service can change substantially in a relatively short amount of time, highlighting the need for continuous monitoring of LLM quality.
Mathematical Reasoning in Large Language Models: Assessing Logical and Arithmetic Errors across Wide Numerical Ranges
Mathematical reasoning in Large Language Models (LLMs) is often evaluated using benchmarks with limited numerical ranges, failing to reflect real-world problem-solving across diverse scales. Furthermore, most existing evaluation methods only compare model outputs to ground-truth answers, obscuring insights into reasoning processes. To address these limitations, we introduce GSM-Ranges, a dataset generator derived from GSM8K that systematically perturbs numerical values in math problems to assess model robustness across varying numerical scales. Additionally, we propose a novel grading methodology that distinguishes between logical and non-logical errors, offering a more precise evaluation of reasoning processes beyond computational accuracy. Our experiments with various models reveal a significant increase in logical error rates-up to 14 percentage points-as numerical complexity rises, demonstrating a general weakness in reasoning with out-of-distribution numerical values. Moreover, while models demonstrate high accuracy on standalone arithmetic tasks, their performance deteriorates substantially when computations are embedded within word problems. These findings provide a comprehensive evaluation of LLMs' mathematical reasoning capabilities and inform future research directions for improving numerical generalization in language models.
CMM-Math: A Chinese Multimodal Math Dataset To Evaluate and Enhance the Mathematics Reasoning of Large Multimodal Models
Large language models (LLMs) have obtained promising results in mathematical reasoning, which is a foundational skill for human intelligence. Most previous studies focus on improving and measuring the performance of LLMs based on textual math reasoning datasets (e.g., MATH, GSM8K). Recently, a few researchers have released English multimodal math datasets (e.g., MATHVISTA and MATH-V) to evaluate the effectiveness of large multimodal models (LMMs). In this paper, we release a Chinese multimodal math (CMM-Math) dataset, including benchmark and training parts, to evaluate and enhance the mathematical reasoning of LMMs. CMM-Math contains over 28,000 high-quality samples, featuring a variety of problem types (e.g., multiple-choice, fill-in-the-blank, and so on) with detailed solutions across 12 grade levels from elementary to high school in China. Specifically, the visual context may be present in the questions or opinions, which makes this dataset more challenging. Through comprehensive analysis, we discover that state-of-the-art LMMs on the CMM-Math dataset face challenges, emphasizing the necessity for further improvements in LMM development. We also propose a Multimodal Mathematical LMM (Math-LMM) to handle the problems with mixed input of multiple images and text segments. We train our model using three stages, including foundational pre-training, foundational fine-tuning, and mathematical fine-tuning. The extensive experiments indicate that our model effectively improves math reasoning performance by comparing it with the SOTA LMMs over three multimodal mathematical datasets.
Training Verifiers to Solve Math Word Problems
State-of-the-art language models can match human performance on many tasks, but they still struggle to robustly perform multi-step mathematical reasoning. To diagnose the failures of current models and support research, we introduce GSM8K, a dataset of 8.5K high quality linguistically diverse grade school math word problems. We find that even the largest transformer models fail to achieve high test performance, despite the conceptual simplicity of this problem distribution. To increase performance, we propose training verifiers to judge the correctness of model completions. At test time, we generate many candidate solutions and select the one ranked highest by the verifier. We demonstrate that verification significantly improves performance on GSM8K, and we provide strong empirical evidence that verification scales more effectively with increased data than a finetuning baseline.
CHECK-MAT: Checking Hand-Written Mathematical Answers for the Russian Unified State Exam
This paper introduces a novel benchmark, EGE-Math Solutions Assessment Benchmark, for evaluating Vision-Language Models (VLMs) on their ability to assess hand-written mathematical solutions. Unlike existing benchmarks that focus on problem solving, our approach centres on understanding student solutions, identifying mistakes, and assigning grades according to fixed criteria. We compile 122 scanned solutions from the Russian Unified State Exam (EGE) together with official expert grades, and evaluate seven modern VLMs from Google, OpenAI, Arcee AI, and Alibaba Cloud in three inference modes. The results reveal current limitations in mathematical reasoning and human-rubric alignment, opening new research avenues in AI-assisted assessment. You can find code in https://github.com/Karifannaa/Auto-check-EGE-math
ProcessBench: Identifying Process Errors in Mathematical Reasoning
As language models regularly make mistakes when solving math problems, automated identification of errors in the reasoning process becomes increasingly significant for their scalable oversight. In this paper, we introduce ProcessBench for measuring the ability to identify erroneous steps in mathematical reasoning. It consists of 3,400 test cases, primarily focused on competition- and Olympiad-level math problems. Each test case contains a step-by-step solution with error location annotated by human experts. Models are required to identify the earliest step that contains an error, or conclude that all steps are correct. We conduct extensive evaluation on ProcessBench, involving two types of models: process reward models (PRMs) and critic models, where for the latter we prompt general language models to critique each solution step by step. We draw two main observations: (1) Existing PRMs typically fail to generalize to more challenging math problems beyond GSM8K and MATH. They underperform both critic models (i.e., prompted general language models) and our own trained PRM that is straightforwardly fine-tuned on the PRM800K dataset. (2) The best open-source model, QwQ-32B-Preview, has demonstrated the critique capability competitive with the proprietary model GPT-4o, despite that it still lags behind the reasoning-specialized o1-mini. We hope ProcessBench can foster future research in reasoning process assessment, paving the way toward scalable oversight of language models.
FineMath: A Fine-Grained Mathematical Evaluation Benchmark for Chinese Large Language Models
To thoroughly assess the mathematical reasoning abilities of Large Language Models (LLMs), we need to carefully curate evaluation datasets covering diverse mathematical concepts and mathematical problems at different difficulty levels. In pursuit of this objective, we propose FineMath in this paper, a fine-grained mathematical evaluation benchmark dataset for assessing Chinese LLMs. FineMath is created to cover the major key mathematical concepts taught in elementary school math, which are further divided into 17 categories of math word problems, enabling in-depth analysis of mathematical reasoning abilities of LLMs. All the 17 categories of math word problems are manually annotated with their difficulty levels according to the number of reasoning steps required to solve these problems. We conduct extensive experiments on a wide range of LLMs on FineMath and find that there is still considerable room for improvements in terms of mathematical reasoning capability of Chinese LLMs. We also carry out an in-depth analysis on the evaluation process and methods that have been overlooked previously. These two factors significantly influence the model results and our understanding of their mathematical reasoning capabilities. The dataset will be publicly available soon.
HARDMath: A Benchmark Dataset for Challenging Problems in Applied Mathematics
Advanced applied mathematics problems are underrepresented in existing Large Language Model (LLM) benchmark datasets. To address this, we introduce HARDMath, a dataset inspired by a graduate course on asymptotic methods, featuring challenging applied mathematics problems that require analytical approximation techniques. These problems demand a combination of mathematical reasoning, computational tools, and subjective judgment, making them difficult for LLMs. Our framework auto-generates a large number of problems with solutions validated against numerical ground truths. We evaluate both open- and closed-source LLMs on HARDMath-mini, a sub-sampled test set of 366 problems, as well as on 40 word problems formulated in applied science contexts. Even leading closed-source models like GPT-4 achieve only 43.8% overall accuracy with few-shot Chain-of-Thought prompting, and all models demonstrate significantly lower performance compared to results on existing mathematics benchmark datasets. We additionally conduct a detailed error analysis to gain insights into the failure cases of LLMs. These results demonstrate limitations of current LLM performance on advanced graduate-level applied math problems and underscore the importance of datasets like HARDMath to advance mathematical abilities of LLMs.
DocMath-Eval: Evaluating Numerical Reasoning Capabilities of LLMs in Understanding Long Documents with Tabular Data
Recent LLMs have demonstrated remarkable performance in solving exam-like math word problems. However, the degree to which these numerical reasoning skills are effective in real-world scenarios, particularly in expert domains, is still largely unexplored. This paper introduces DocMath-Eval, a comprehensive benchmark specifically designed to evaluate the numerical reasoning and problem-solving capabilities of LLMs in the context of understanding and analyzing financial documents containing both text and tables. We evaluate a wide spectrum of 19 LLMs, including those specialized in coding and finance. We also incorporate different prompting strategies (i.e., Chain-of-Thoughts and Program-of-Thoughts) to comprehensively assess the capabilities and limitations of existing LLMs in DocMath-Eval. We found that, although the current best-performing system (i.e., GPT-4), can perform well on simple problems such as calculating the rate of increase in a financial metric within a short document context, it significantly lags behind human experts in more complex problems grounded in longer contexts. We believe DocMath-Eval can be used as a valuable benchmark to evaluate LLMs' capabilities to solve challenging numerical reasoning problems in expert domains. We will release the benchmark and code at https://github.com/yale-nlp/DocMath-Eval.
MathQA: Towards Interpretable Math Word Problem Solving with Operation-Based Formalisms
We introduce a large-scale dataset of math word problems and an interpretable neural math problem solver that learns to map problems to operation programs. Due to annotation challenges, current datasets in this domain have been either relatively small in scale or did not offer precise operational annotations over diverse problem types. We introduce a new representation language to model precise operation programs corresponding to each math problem that aim to improve both the performance and the interpretability of the learned models. Using this representation language, our new dataset, MathQA, significantly enhances the AQuA dataset with fully-specified operational programs. We additionally introduce a neural sequence-to-program model enhanced with automatic problem categorization. Our experiments show improvements over competitive baselines in our MathQA as well as the AQuA dataset. The results are still significantly lower than human performance indicating that the dataset poses new challenges for future research. Our dataset is available at: https://math-qa.github.io/math-QA/
An In-depth Look at Gemini's Language Abilities
The recently released Google Gemini class of models are the first to comprehensively report results that rival the OpenAI GPT series across a wide variety of tasks. In this paper, we do an in-depth exploration of Gemini's language abilities, making two contributions. First, we provide a third-party, objective comparison of the abilities of the OpenAI GPT and Google Gemini models with reproducible code and fully transparent results. Second, we take a closer look at the results, identifying areas where one of the two model classes excels. We perform this analysis over 10 datasets testing a variety of language abilities, including reasoning, answering knowledge-based questions, solving math problems, translating between languages, generating code, and acting as instruction-following agents. From this analysis, we find that Gemini Pro achieves accuracy that is close but slightly inferior to the corresponding GPT 3.5 Turbo on all tasks that we benchmarked. We further provide explanations for some of this under-performance, including failures in mathematical reasoning with many digits, sensitivity to multiple-choice answer ordering, aggressive content filtering, and others. We also identify areas where Gemini demonstrates comparably high performance, including generation into non-English languages, and handling longer and more complex reasoning chains. Code and data for reproduction can be found at https://github.com/neulab/gemini-benchmark
A Benchmark for Math Misconceptions: Bridging Gaps in Middle School Algebra with AI-Supported Instruction
This study introduces an evaluation benchmark for middle school algebra to be used in artificial intelligence(AI) based educational platforms. The goal is to support the design of AI systems that can enhance learner conceptual understanding of algebra by taking into account their current level of algebra comprehension. The data set comprises 55 misconceptions about algebra, common errors, and 220 diagnostic examples identified in previous peer-reviewed studies. We provide an example application using a large language model, observing a range of precision and recall scores depending on the topic and experimental setup that reaches 83.9% when including educator feedback and restricting it by topic. We found that topics such as ratios and proportions prove as difficult for LLMs as they are for students. We included a human assessment of LLMs results and feedback from five middle school math educators on the clarity and occurrence of misconceptions in the dataset and the potential use of AI in conjunction with the dataset. Most educators (80% or more) indicated that they encounter these misconceptions among their students, suggesting the relevance of the data set to teaching middle school algebra. Despite varying familiarity with AI tools, four out of five educators expressed interest in using the data set with AI to diagnose student misconceptions or train teachers. The results emphasize the importance of topic-constrained testing, the need for multimodal approaches, and the relevance of human expertise to gain practical insights when using AI for human learning.
Teaching-Inspired Integrated Prompting Framework: A Novel Approach for Enhancing Reasoning in Large Language Models
Large Language Models (LLMs) exhibit impressive performance across various domains but still struggle with arithmetic reasoning tasks. Recent work shows the effectiveness of prompt design methods in enhancing reasoning capabilities. However, these approaches overlook crucial requirements for prior knowledge of specific concepts, theorems, and tricks to tackle most arithmetic reasoning problems successfully. To address this issue, we propose a novel and effective Teaching-Inspired Integrated Framework, which emulates the instructional process of a teacher guiding students. This method equips LLMs with essential concepts, relevant theorems, and similar problems with analogous solution approaches, facilitating the enhancement of reasoning abilities. Additionally, we introduce two new Chinese datasets, MathMC and MathToF, both with detailed explanations and answers. Experiments are conducted on nine benchmarks which demonstrates that our approach improves the reasoning accuracy of LLMs. With GPT-4 and our framework, we achieve new state-of-the-art performance on four math benchmarks (AddSub, SVAMP, Math23K and AQuA) with accuracies of 98.2% (+3.3%), 93.9% (+0.2%), 94.3% (+7.2%) and 81.1% (+1.2%). Our data and code are available at https://github.com/SallyTan13/Teaching-Inspired-Prompting.
Subtle Errors Matter: Preference Learning via Error-injected Self-editing
Large Language Models (LLMs) have exhibited strong mathematical reasoning and computational prowess, tackling tasks ranging from basic arithmetic to advanced competition-level problems. However, frequently occurring subtle errors, such as miscalculations or incorrect substitutions, limit the models' full mathematical potential. Existing studies to improve mathematical ability typically involve distilling reasoning skills from stronger LLMs or applying preference learning to step-wise response pairs. Although these methods leverage samples of varying granularity to mitigate reasoning errors, they overlook the frequently occurring subtle errors. A major reason is that sampled preference pairs involve differences unrelated to the errors, which may distract the model from focusing on subtle errors. In this work, we propose a novel preference learning framework called eRror-Injected Self-Editing (RISE), which injects predefined subtle errors into partial tokens of correct solutions to construct hard pairs for error mitigation. In detail, RISE uses the model itself to edit a small number of tokens in the solution, injecting designed subtle errors. Then, pairs composed of self-edited solutions and their corresponding correct ones, along with pairs of correct and incorrect solutions obtained through sampling, are used together for subtle error-aware DPO training. Compared with other preference learning methods, RISE further refines the training objective to focus on predefined errors and their tokens, without requiring fine-grained sampling or preference annotation. Extensive experiments validate the effectiveness of RISE, with preference learning on Qwen2-7B-Instruct yielding notable improvements of 3.0% on GSM8K and 7.9% on MATH.
MathScale: Scaling Instruction Tuning for Mathematical Reasoning
Large language models (LLMs) have demonstrated remarkable capabilities in problem-solving. However, their proficiency in solving mathematical problems remains inadequate. We propose MathScale, a simple and scalable method to create high-quality mathematical reasoning data using frontier LLMs (e.g., {\tt GPT-3.5}). Inspired by the cognitive mechanism in human mathematical learning, it first extracts topics and knowledge points from seed math questions and then build a concept graph, which is subsequently used to generate new math questions. MathScale exhibits effective scalability along the size axis of the math dataset that we generate. As a result, we create a mathematical reasoning dataset (MathScaleQA) containing two million math question-answer pairs. To evaluate mathematical reasoning abilities of LLMs comprehensively, we construct {\sc MwpBench}, a benchmark of Math Word Problems, which is a collection of ten datasets (including GSM8K and MATH) covering K-12, college, and competition level math problems. We apply MathScaleQA to fine-tune open-source LLMs (e.g., LLaMA-2 and Mistral), resulting in significantly improved capabilities in mathematical reasoning. Evaluated on {\sc MwpBench}, MathScale-7B achieves state-of-the-art performance across all datasets, surpassing its best peers of equivalent size by 42.9\% in micro average accuracy and 43.7\% in macro average accuracy, respectively.
Functional Benchmarks for Robust Evaluation of Reasoning Performance, and the Reasoning Gap
We propose a framework for robust evaluation of reasoning capabilities of language models, using functional variants of benchmarks. Models that solve a reasoning test should exhibit no difference in performance over the static version of a problem compared to a snapshot of the functional variant. We have rewritten the relevant fragment of the MATH benchmark into its functional variant MATH(), with functionalization of other benchmarks to follow. When evaluating current state-of-the-art models over snapshots of MATH(), we find a reasoning gap -- the percentage difference between the static and functional accuracies. We find reasoning gaps from 58.35% to 80.31% among the state-of-the-art closed and open weights models that perform well on static benchmarks, with the caveat that the gaps are likely to be smaller with more sophisticated prompting strategies. Here we show that models which anecdotally have good reasoning performance over real-world tasks, have quantifiable lower gaps, motivating the open problem of building "gap 0" models. Code for evaluation and new evaluation datasets, three MATH() snapshots, are publicly available at https://github.com/consequentai/fneval/.
MetaMath: Bootstrap Your Own Mathematical Questions for Large Language Models
Large language models (LLMs) have pushed the limits of natural language understanding and exhibited excellent problem-solving ability. Despite the great success, most existing open-source LLMs (\eg, LLaMA-2) are still far away from satisfactory for solving mathematical problem due to the complex reasoning procedures. To bridge this gap, we propose MetaMath, a fine-tuned language model that specializes in mathematical reasoning. Specifically, we start by bootstrapping mathematical questions by rewriting the question from multiple perspectives without extra knowledge, which results in a new dataset called {MetaMathQA}. Then we fine-tune the LLaMA-2 models on MetaMathQA. Experimental results on two popular benchmarks (\ie, GSM8K and MATH) for mathematical reasoning demonstrate that MetaMath outperforms a suite of open-source LLMs by a significant margin. Our MetaMath-7B model achieves 66.4% on GSM8K and 19.4% on MATH, exceeding the state-of-the-art models of the same size by 11.5% and 8.7%. Particularly, {MetaMath-70B} achieves an accuracy of 82.3% on {GSM8K}, slightly better than {GPT-3.5-Turbo}. We release the {MetaMathQA} dataset, the {MetaMath} models with different model sizes and the training code for public use.
A Puzzle-Based Dataset for Natural Language Inference
We provide here a dataset for tasks related to natural language understanding and natural language inference. The dataset contains logical puzzles in natural language from three domains: comparing puzzles, knighs and knaves, and zebra puzzles. Each puzzle is associated with the entire set of atomic questions that can be generated based on the relations and individuals occurring in the text. For each question we provide the correct answer: entailment, contradiction or ambiguity. The answer's correctness is verified against theorem provers. Good puzzles have two properties: (i) each piece of information is necessary and (ii) no unnecessary information is provided. These properties make puzzles interesting candidates for machine comprehension tasks.
The Curious Case of Factual (Mis)Alignment between LLMs' Short- and Long-Form Answers
Large language models (LLMs) can correctly answer "When was Einstein born?" yet fail to provide the same date when writing about Einstein's life revealing a fundamental inconsistency in how models access factual knowledge across task complexities. While models display impressive accuracy on factual question-answering benchmarks, the reliability gap between simple and complex queries remains poorly understood, eroding their trustworthiness. In this work, we introduce Short-Long Form Alignment for Factual Question Answering (SLAQ), a controlled evaluation framework that compares LLMs' answers to the same factual questions asked (a) in isolation (short) vs. (b) integrated into complex queries (long). Looking at 16 LLMs across 600 queries, we find a systematic misalignment of answers to the corresponding short and long queries. We further uncover position-dependent accuracy loss and momentum effects where consecutive correct or incorrect answers create self-reinforcing patterns. Through mechanistic analysis, we find that aligned facts activate overlapping model internals, and that metrics based on mechanistic similarity can predict short-long answer alignment with up to 78% accuracy. Our work establishes factual consistency over query complexity as an important aspect of LLMs' trustworthiness and challenges current evaluation practices, which implicitly assume that good performance for simple factual queries implies reliability in more complex knowledge-seeking tasks too.
Putnam-AXIOM: A Functional and Static Benchmark
Current mathematical reasoning benchmarks for large language models (LLMs) are approaching saturation, with some achieving > 90% accuracy, and are increasingly compromised by training-set contamination. We introduce Putnam-AXIOM, a benchmark of 522 university-level competition problems drawn from the prestigious William Lowell Putnam Mathematical Competition, and Putnam-AXIOM Variation, an unseen companion set of 100 functional variants generated by programmatically perturbing variables and constants. The variation protocol produces an unlimited stream of equally difficult, unseen instances -- yielding a contamination-resilient test bed. On the Original set, OpenAI's o1-preview -- the strongest evaluated model -- scores 41.9%, but its accuracy drops by 19.6% (46.8% relative decrease) on the paired Variations. The remaining eighteen models show the same downward trend, ten of them with non-overlapping 95% confidence intervals. These gaps suggest memorization and highlight the necessity of dynamic benchmarks. We complement "boxed" accuracy with Teacher-Forced Accuracy (TFA), a lightweight metric that directly scores reasoning traces and automates natural language proof evaluations. Putnam-AXIOM therefore provides a rigorous, contamination-resilient evaluation framework for assessing advanced mathematical reasoning of LLMs. Data and evaluation code are publicly available at https://github.com/brando90/putnam-axiom.
BEATS: Optimizing LLM Mathematical Capabilities with BackVerify and Adaptive Disambiguate based Efficient Tree Search
Large Language Models (LLMs) have exhibited exceptional performance across a broad range of tasks and domains. However, they still encounter difficulties in solving mathematical problems due to the rigorous and logical nature of mathematics. Previous studies have employed techniques such as supervised fine-tuning (SFT), prompt engineering, and search-based methods to improve the mathematical problem-solving abilities of LLMs. Despite these efforts, their performance remains suboptimal and demands substantial computational resources. To address this issue, we propose a novel approach, BEATS, to enhance mathematical problem-solving abilities. Our method leverages newly designed prompts that guide the model to iteratively rewrite, advance by one step, and generate answers based on previous steps. Additionally, we introduce a new back-verification technique that uses LLMs to validate the correctness of the generated answers. Furthermore, we employ a pruning tree search to optimize search time while achieving strong performance. Notably, our method improves Qwen2-7b-Instruct's score from 36.94 to 61.52, outperforming GPT4's 42.5 on the MATH benchmark.
MathClean: A Benchmark for Synthetic Mathematical Data Cleaning
With the rapid development of large language models (LLMs), the quality of training data has become crucial. Among the various types of training data, mathematical data plays a key role in enabling LLMs to acquire strong reasoning abilities. While high-quality open-source data is important, it is often insufficient for pre-training, necessitating the addition of synthetic math problems. However, synthetic math questions and answers can introduce inaccuracies, which may degrade both the training data and web data. Therefore, an effective method for cleaning synthetic math data is essential. In this paper, we propose the MathClean benchmark to evaluate the effectiveness of math data cleaning models. The MathClean benchmark consists of 2,000 correct questions and 2,000 erroneous questions with additional 2,000 correct and erroneous answers sourced from augmented data based on GSM8K and MATH. Moreover, we also annotate error types for each question or answer, since it can assess whether models can correctly identify the error categories for future improvements. Finally, we present comprehensive evaluations using state-of-the-art (SOTA) models. Our results demonstrate that even strong models like GPT-o1 and DeepSeek-R1 perform poorly on this benchmark, highlighting the utility of MathClean. Our code and data is available at https://github.com/YuYingLi0/MathClean.
Skywork-Math: Data Scaling Laws for Mathematical Reasoning in Large Language Models -- The Story Goes On
In this paper, we investigate the underlying factors that potentially enhance the mathematical reasoning capabilities of large language models (LLMs). We argue that the data scaling law for math reasoning capabilities in modern LLMs is far from being saturated, highlighting how the model's quality improves with increases in data quantity. To support this claim, we introduce the Skywork-Math model series, supervised fine-tuned (SFT) on common 7B LLMs using our proposed 2.5M-instance Skywork-MathQA dataset. Skywork-Math 7B has achieved impressive accuracies of 51.2% on the competition-level MATH benchmark and 83.9% on the GSM8K benchmark using only SFT data, outperforming an early version of GPT-4 on MATH. The superior performance of Skywork-Math models contributes to our novel two-stage data synthesis and model SFT pipelines, which include three different augmentation methods and a diverse seed problem set, ensuring both the quantity and quality of Skywork-MathQA dataset across varying difficulty levels. Most importantly, we provide several practical takeaways to enhance math reasoning abilities in LLMs for both research and industry applications.
Step-by-Step Diffusion: An Elementary Tutorial
We present an accessible first course on diffusion models and flow matching for machine learning, aimed at a technical audience with no diffusion experience. We try to simplify the mathematical details as much as possible (sometimes heuristically), while retaining enough precision to derive correct algorithms.
Not All LLM Reasoners Are Created Equal
We study the depth of grade-school math (GSM) problem-solving capabilities of LLMs. To this end, we evaluate their performance on pairs of existing math word problems together so that the answer to the second problem depends on correctly answering the first problem. Our findings reveal a significant reasoning gap in most LLMs, that is performance difference between solving the compositional pairs and solving each question independently. This gap is more pronounced in smaller, more cost-efficient, and math-specialized models. Moreover, instruction-tuning recipes and code generation have varying effects across LLM sizes, while finetuning on GSM can lead to task overfitting. Our analysis indicates that large reasoning gaps are not because of test-set leakage, but due to distraction from additional context and poor second-hop reasoning. Overall, LLMs exhibit systematic differences in their reasoning abilities, despite what their performance on standard benchmarks indicates.
MegaMath: Pushing the Limits of Open Math Corpora
Mathematical reasoning is a cornerstone of human intelligence and a key benchmark for advanced capabilities in large language models (LLMs). However, the research community still lacks an open, large-scale, high-quality corpus tailored to the demands of math-centric LLM pre-training. We present MegaMath, an open dataset curated from diverse, math-focused sources through following practices: (1) Revisiting web data: We re-extracted mathematical documents from Common Crawl with math-oriented HTML optimizations, fasttext-based filtering and deduplication, all for acquiring higher-quality data on the Internet. (2) Recalling Math-related code data: We identified high quality math-related code from large code training corpus, Stack-V2, further enhancing data diversity. (3) Exploring Synthetic data: We synthesized QA-style text, math-related code, and interleaved text-code blocks from web data or code data. By integrating these strategies and validating their effectiveness through extensive ablations, MegaMath delivers 371B tokens with the largest quantity and top quality among existing open math pre-training datasets.
Learning by Analogy: Enhancing Few-Shot Prompting for Math Word Problem Solving with Computational Graph-Based Retrieval
Large language models (LLMs) are known to struggle with complicated reasoning tasks such as math word problems (MWPs). In this paper, we present how analogy from similarly structured questions can improve LLMs' problem-solving capabilities for MWPs. Specifically, we rely on the retrieval of problems with similar computational graphs to the given question to serve as exemplars in the prompt, providing the correct reasoning path for the generation model to refer to. Empirical results across six math word problem datasets demonstrate the effectiveness of our proposed method, which achieves a significant improvement of up to 6.7 percent on average in absolute value, compared to baseline methods. These results highlight our method's potential in addressing the reasoning challenges in current LLMs.
Proof or Bluff? Evaluating LLMs on 2025 USA Math Olympiad
Recent math benchmarks for large language models (LLMs) such as MathArena indicate that state-of-the-art reasoning models achieve impressive performance on mathematical competitions like AIME, with the leading model, o3-mini, achieving scores comparable to top human competitors. However, these benchmarks evaluate models solely based on final numerical answers, neglecting rigorous reasoning and proof generation which are essential for real-world mathematical tasks. To address this, we introduce the first comprehensive evaluation of full-solution reasoning for challenging mathematical problems. Using expert human annotators, we evaluated several state-of-the-art reasoning models on the six problems from the 2025 USAMO within hours of their release. Our results reveal that all tested models struggled significantly, achieving less than 5% on average. Through detailed analysis of reasoning traces, we identify the most common failure modes and find several unwanted artifacts arising from the optimization strategies employed during model training. Overall, our results suggest that current LLMs are inadequate for rigorous mathematical reasoning tasks, highlighting the need for substantial improvements in reasoning and proof generation capabilities.
A Survey of Deep Learning for Mathematical Reasoning
Mathematical reasoning is a fundamental aspect of human intelligence and is applicable in various fields, including science, engineering, finance, and everyday life. The development of artificial intelligence (AI) systems capable of solving math problems and proving theorems has garnered significant interest in the fields of machine learning and natural language processing. For example, mathematics serves as a testbed for aspects of reasoning that are challenging for powerful deep learning models, driving new algorithmic and modeling advances. On the other hand, recent advances in large-scale neural language models have opened up new benchmarks and opportunities to use deep learning for mathematical reasoning. In this survey paper, we review the key tasks, datasets, and methods at the intersection of mathematical reasoning and deep learning over the past decade. We also evaluate existing benchmarks and methods, and discuss future research directions in this domain.
Toward Errorless Training ImageNet-1k
In this paper, we describe a feedforward artificial neural network trained on the ImageNet 2012 contest dataset [7] with the new method of [5] to an accuracy rate of 98.3% with a 99.69 Top-1 rate, and an average of 285.9 labels that are perfectly classified over the 10 batch partitions of the dataset. The best performing model uses 322,430,160 parameters, with 4 decimal places precision. We conjecture that the reason our model does not achieve a 100% accuracy rate is due to a double-labeling problem, by which there are duplicate images in the dataset with different labels.
Rethinking Fine-Tuning when Scaling Test-Time Compute: Limiting Confidence Improves Mathematical Reasoning
Recent progress in large language models (LLMs) highlights the power of scaling test-time compute to achieve strong performance on complex tasks, such as mathematical reasoning and code generation. This raises a critical question: how should model training be modified to optimize performance under a subsequent test-time compute strategy and budget? To explore this, we focus on pass@N, a simple test-time strategy that searches for a correct answer in N independent samples. We show, surprisingly, that training with cross-entropy (CE) loss can be {it misaligned} with pass@N in that pass@N accuracy {it decreases} with longer training. We explain the origins of this misalignment in terms of model overconfidence induced by CE, and experimentally verify our prediction of overconfidence as an impediment to scaling test-time compute via pass@N. Furthermore we suggest a principled, modified training loss that is better aligned to pass@N by limiting model confidence and rescuing pass@N test performance. Our algorithm demonstrates improved mathematical reasoning on MATH and MiniF2F benchmarks under several scenarios: (1) providing answers to math questions; and (2) proving theorems by searching over proof trees of varying shapes. Overall our work underscores the importance of co-designing two traditionally separate phases of LLM development: training-time protocols and test-time search and reasoning strategies.
More efficient manual review of automatically transcribed tabular data
Machine learning methods have proven useful in transcribing historical data. However, results from even highly accurate methods require manual verification and correction. Such manual review can be time-consuming and expensive, therefore the objective of this paper was to make it more efficient. Previously, we used machine learning to transcribe 2.3 million handwritten occupation codes from the Norwegian 1950 census with high accuracy (97%). We manually reviewed the 90,000 (3%) codes with the lowest model confidence. We allocated those 90,000 codes to human reviewers, who used our annotation tool to review the codes. To assess reviewer agreement, some codes were assigned to multiple reviewers. We then analyzed the review results to understand the relationship between accuracy improvements and effort. Additionally, we interviewed the reviewers to improve the workflow. The reviewers corrected 62.8% of the labels and agreed with the model label in 31.9% of cases. About 0.2% of the images could not be assigned a label, while for 5.1% the reviewers were uncertain, or they assigned an invalid label. 9,000 images were independently reviewed by multiple reviewers, resulting in an agreement of 86.43% and disagreement of 8.96%. We learned that our automatic transcription is biased towards the most frequent codes, with a higher degree of misclassification for the lowest frequency codes. Our interview findings show that the reviewers did internal quality control and found our custom tool well-suited. So, only one reviewer is needed, but they should report uncertainty.
Logic Contrastive Reasoning with Lightweight Large Language Model for Math Word Problems
This study focuses on improving the performance of lightweight Large Language Models (LLMs) in mathematical reasoning tasks. We introduce a novel method for measuring mathematical logic similarity and design an automatic screening mechanism to construct a set of reference problems that integrate both semantic and logical similarity. By employing carefully crafted positive and negative example prompts, we guide the model towards adopting sound reasoning logic. To the best of our knowledge, this is the first attempt to utilize retrieval-enhanced generation for mathematical problem-solving. Experimental results demonstrate that our method achieves a 15.8% improvement over the Chain of Thought approach on the SVAMP dataset and a 21.5 % improvement on the GSM8K dataset. Further application of this method to a large-scale model with 175 billion parameters yields performance comparable to the best results on both aforementioned datasets. Finally, we conduct an analysis of errors during the reasoning process, providing valuable insights and directions for future research on reasoning tasks using large language models.
Does Math Reasoning Improve General LLM Capabilities? Understanding Transferability of LLM Reasoning
Math reasoning has become the poster child of progress in large language models (LLMs), with new models rapidly surpassing human-level performance on benchmarks like MATH and AIME. But as math leaderboards improve week by week, it is worth asking: do these gains reflect broader problem-solving ability or just narrow overfitting? To answer this question, we evaluate over 20 open-weight reasoning-tuned models across a broad suite of tasks, including math, scientific QA, agent planning, coding, and standard instruction-following. We surprisingly find that most models that succeed in math fail to transfer their gains to other domains. To rigorously study this phenomenon, we conduct controlled experiments on Qwen3-14B models using math-only data but different tuning methods. We find that reinforcement learning (RL)-tuned models generalize well across domains, while supervised fine-tuning (SFT)-tuned models often forget general capabilities. Latent-space representation and token-space distribution shift analyses reveal that SFT induces substantial representation and output drift, while RL preserves general-domain structure. Our results suggest a need to rethink standard post-training recipes, particularly the reliance on SFT-distilled data for advancing reasoning models.
Unsupervised Discovery of Formulas for Mathematical Constants
Ongoing efforts that span over decades show a rise of AI methods for accelerating scientific discovery, yet accelerating discovery in mathematics remains a persistent challenge for AI. Specifically, AI methods were not effective in creation of formulas for mathematical constants because each such formula must be correct for infinite digits of precision, with "near-true" formulas providing no insight toward the correct ones. Consequently, formula discovery lacks a clear distance metric needed to guide automated discovery in this realm. In this work, we propose a systematic methodology for categorization, characterization, and pattern identification of such formulas. The key to our methodology is introducing metrics based on the convergence dynamics of the formulas, rather than on the numerical value of the formula. These metrics enable the first automated clustering of mathematical formulas. We demonstrate this methodology on Polynomial Continued Fraction formulas, which are ubiquitous in their intrinsic connections to mathematical constants, and generalize many mathematical functions and structures. We test our methodology on a set of 1,768,900 such formulas, identifying many known formulas for mathematical constants, and discover previously unknown formulas for pi, ln(2), Gauss', and Lemniscate's constants. The uncovered patterns enable a direct generalization of individual formulas to infinite families, unveiling rich mathematical structures. This success paves the way towards a generative model that creates formulas fulfilling specified mathematical properties, accelerating the rate of discovery of useful formulas.
Learning From Mistakes Makes LLM Better Reasoner
Large language models (LLMs) recently exhibited remarkable reasoning capabilities on solving math problems. To further improve this capability, this work proposes Learning from Mistakes (LeMa), akin to human learning processes. Consider a human student who failed to solve a math problem, he will learn from what mistake he has made and how to correct it. Mimicking this error-driven learning process, LeMa fine-tunes LLMs on mistake-correction data pairs generated by GPT-4. Specifically, we first collect inaccurate reasoning paths from various LLMs and then employ GPT-4 as a "corrector" to (1) identify the mistake step, (2) explain the reason for the mistake, and (3) correct the mistake and generate the final answer. Experimental results demonstrate the effectiveness of LeMa: across five backbone LLMs and two mathematical reasoning tasks, LeMa consistently improves the performance compared with fine-tuning on CoT data alone. Impressively, LeMa can also benefit specialized LLMs such as WizardMath and MetaMath, achieving 85.4% pass@1 accuracy on GSM8K and 27.1% on MATH. This surpasses the SOTA performance achieved by non-execution open-source models on these challenging tasks. Our code, data and models will be publicly available at https://github.com/microsoft/CodeT.
Proving the Coding Interview: A Benchmark for Formally Verified Code Generation
We introduce the Formally Verified Automated Programming Progress Standards, or FVAPPS, a benchmark of 4715 samples for writing programs and proving their correctness, the largest formal verification benchmark, including 1083 curated and quality controlled samples. Previously, APPS provided a benchmark and dataset for programming puzzles to be completed in Python and checked against unit tests, of the kind seen in technical assessments in the software engineering industry. Building upon recent approaches for benchmarks in interactive theorem proving, we generalize the unit tests to Lean 4 theorems given without proof (i.e., using Lean's "sorry" keyword). On the 406 theorems of 100 randomly selected samples, Sonnet correctly proves 30% and Gemini correctly proves 18%. We challenge the machine learning and program synthesis communities to solve both each general purpose programming problem and its associated correctness specifications. The benchmark is available at https://huggingface.co/datasets/quinn-dougherty/fvapps.
Hermes 4 Technical Report
We present Hermes 4, a family of hybrid reasoning models that combine structured, multi-turn reasoning with broad instruction-following ability. We describe the challenges encountered during data curation, synthesis, training, and evaluation, and outline the solutions employed to address these challenges at scale. We comprehensively evaluate across mathematical reasoning, coding, knowledge, comprehension, and alignment benchmarks, and we report both quantitative performance and qualitative behavioral analysis. To support open research, all model weights are published publicly at https://huggingface.co/collections/NousResearch/hermes-4-collection-68a731bfd452e20816725728
Language Models (Mostly) Know What They Know
We study whether language models can evaluate the validity of their own claims and predict which questions they will be able to answer correctly. We first show that larger models are well-calibrated on diverse multiple choice and true/false questions when they are provided in the right format. Thus we can approach self-evaluation on open-ended sampling tasks by asking models to first propose answers, and then to evaluate the probability "P(True)" that their answers are correct. We find encouraging performance, calibration, and scaling for P(True) on a diverse array of tasks. Performance at self-evaluation further improves when we allow models to consider many of their own samples before predicting the validity of one specific possibility. Next, we investigate whether models can be trained to predict "P(IK)", the probability that "I know" the answer to a question, without reference to any particular proposed answer. Models perform well at predicting P(IK) and partially generalize across tasks, though they struggle with calibration of P(IK) on new tasks. The predicted P(IK) probabilities also increase appropriately in the presence of relevant source materials in the context, and in the presence of hints towards the solution of mathematical word problems. We hope these observations lay the groundwork for training more honest models, and for investigating how honesty generalizes to cases where models are trained on objectives other than the imitation of human writing.
Inference Scaling scriptsizeFLaws: The Limits of LLM Resampling with Imperfect Verifiers
Recent research has generated hope that inference scaling could allow weaker language models to match or exceed the accuracy of stronger models, such as by repeatedly sampling solutions to a coding problem until it passes unit tests. The central thesis of this paper is that there is no free lunch for inference scaling: indefinite accuracy improvement through resampling can only be realized if the "verifier" (in this case, a set of unit tests) is perfect. When the verifier is imperfect, as it almost always is in domains such as reasoning or coding (for example, unit tests have imperfect coverage), there is a nonzero probability of false positives: incorrect solutions that pass the verifier. Resampling cannot decrease this probability, so it imposes an upper bound to the accuracy of resampling-based inference scaling even with an infinite compute budget. We find that there is a very strong correlation between the model's single-sample accuracy (i.e. accuracy without unit tests) and its false positive rate on coding benchmarks HumanEval and MBPP, whose unit tests have limited coverage. Therefore, no amount of inference scaling of weaker models can enable them to match the single-sample accuracy of a sufficiently strong model (Fig. 1a). When we consider that false positives have a negative utility compared to abstaining from producing a solution, it bends the inference scaling curve further downward. Empirically, we find that the optimal number of samples can be less than 10 under realistic assumptions (Fig. 1b). Finally, we show that beyond accuracy, false positives may have other undesirable qualities, such as poor adherence to coding style conventions.
AceMath: Advancing Frontier Math Reasoning with Post-Training and Reward Modeling
In this paper, we introduce AceMath, a suite of frontier math models that excel in solving complex math problems, along with highly effective reward models capable of evaluating generated solutions and reliably identifying the correct ones. To develop the instruction-tuned math models, we propose a supervised fine-tuning (SFT) process that first achieves competitive performance across general domains, followed by targeted fine-tuning for the math domain using a carefully curated set of prompts and synthetically generated responses. The resulting model, AceMath-72B-Instruct greatly outperforms Qwen2.5-Math-72B-Instruct, GPT-4o and Claude-3.5 Sonnet. To develop math-specialized reward model, we first construct AceMath-RewardBench, a comprehensive and robust benchmark for evaluating math reward models across diverse problems and difficulty levels. After that, we present a systematic approach to build our math reward models. The resulting model, AceMath-72B-RM, consistently outperforms state-of-the-art reward models. Furthermore, when combining AceMath-72B-Instruct with AceMath-72B-RM, we achieve the highest average rm@8 score across the math reasoning benchmarks. We will release model weights, training data, and evaluation benchmarks at: https://research.nvidia.com/labs/adlr/acemath
Big-Math: A Large-Scale, High-Quality Math Dataset for Reinforcement Learning in Language Models
Increasing interest in reasoning models has led math to become a prominent testing ground for algorithmic and methodological improvements. However, existing open math datasets either contain a small collection of high-quality, human-written problems or a large corpus of machine-generated problems of uncertain quality, forcing researchers to choose between quality and quantity. In this work, we present Big-Math, a dataset of over 250,000 high-quality math questions with verifiable answers, purposefully made for reinforcement learning (RL). To create Big-Math, we rigorously filter, clean, and curate openly available datasets, extracting questions that satisfy our three desiderata: (1) problems with uniquely verifiable solutions, (2) problems that are open-ended, (3) and problems with a closed-form solution. To ensure the quality of Big-Math, we manually verify each step in our filtering process. Based on the findings from our filtering process, we introduce 47,000 new questions with verified answers, Big-Math-Reformulated: closed-ended questions (i.e. multiple choice questions) that have been reformulated as open-ended questions through a systematic reformulation algorithm. Compared to the most commonly used existing open-source datasets for math reasoning, GSM8k and MATH, Big-Math is an order of magnitude larger, while our rigorous filtering ensures that we maintain the questions most suitable for RL. We also provide a rigorous analysis of the dataset, finding that Big-Math contains a high degree of diversity across problem domains, and incorporates a wide range of problem difficulties, enabling a wide range of downstream uses for models of varying capabilities and training requirements. By bridging the gap between data quality and quantity, Big-Math establish a robust foundation for advancing reasoning in LLMs.
MathHay: An Automated Benchmark for Long-Context Mathematical Reasoning in LLMs
Recent large language models (LLMs) have demonstrated versatile capabilities in long-context scenarios. Although some recent benchmarks have been developed to evaluate the long-context capabilities of LLMs, there is a lack of benchmarks evaluating the mathematical reasoning abilities of LLMs over long contexts, which is crucial for LLMs' application in real-world scenarios. In this paper, we introduce MathHay, an automated benchmark designed to assess the long-context mathematical reasoning capabilities of LLMs. Unlike previous benchmarks like Needle in a Haystack, which focus primarily on information retrieval within long texts, MathHay demands models with both information-seeking and complex mathematical reasoning abilities. We conduct extensive experiments on MathHay to assess the long-context mathematical reasoning abilities of eight top-performing LLMs. Even the best-performing model, Gemini-1.5-Pro-002, still struggles with mathematical reasoning over long contexts, achieving only 51.26% accuracy at 128K tokens. This highlights the significant room for improvement on the MathHay benchmark.
Do NLP Models Know Numbers? Probing Numeracy in Embeddings
The ability to understand and work with numbers (numeracy) is critical for many complex reasoning tasks. Currently, most NLP models treat numbers in text in the same way as other tokens---they embed them as distributed vectors. Is this enough to capture numeracy? We begin by investigating the numerical reasoning capabilities of a state-of-the-art question answering model on the DROP dataset. We find this model excels on questions that require numerical reasoning, i.e., it already captures numeracy. To understand how this capability emerges, we probe token embedding methods (e.g., BERT, GloVe) on synthetic list maximum, number decoding, and addition tasks. A surprising degree of numeracy is naturally present in standard embeddings. For example, GloVe and word2vec accurately encode magnitude for numbers up to 1,000. Furthermore, character-level embeddings are even more precise---ELMo captures numeracy the best for all pre-trained methods---but BERT, which uses sub-word units, is less exact.
Do PhD-level LLMs Truly Grasp Elementary Addition? Probing Rule Learning vs. Memorization in Large Language Models
Despite high benchmark scores, Large Language Models (LLMs) often fail simple problem, raising a critical question: Do LLMs learn mathematical principles or merely memorize patterns? Rather than designing increasingly complex benchmarks like recent works, we investigate this using elementary two-integer addition (0 to 2^{64}), probing two core properties: commutativity (A+B=B+A) and compositional generalization (via isomorphic symbolic mappings, e.g., 7 rightarrow y). While state-of-the-art LLMs achieve 73.8-99.8\% accuracy on numerical addition, performance collapses to leq7.5\% under symbolic mapping, indicating failure to generalize learned rules. Non-monotonic performance scaling with digit count and frequent commutativity violations (over 1,700 cases of A+B neq B+A) further support this. Explicitly providing addition rules degrades performance by 81.2\% on average, while self-explanation maintains baseline accuracy, suggesting LLM arithmetic processing is misaligned with human-defined principles. Our findings indicate current LLMs rely on memory pattern over genuine rule learning, highlighting architectural limitations and the need for new approaches to achieve true mathematical reasoning.
Dynamic Prompt Learning via Policy Gradient for Semi-structured Mathematical Reasoning
Mathematical reasoning, a core ability of human intelligence, presents unique challenges for machines in abstract thinking and logical reasoning. Recent large pre-trained language models such as GPT-3 have achieved remarkable progress on mathematical reasoning tasks written in text form, such as math word problems (MWP). However, it is unknown if the models can handle more complex problems that involve math reasoning over heterogeneous information, such as tabular data. To fill the gap, we present Tabular Math Word Problems (TabMWP), a new dataset containing 38,431 open-domain grade-level problems that require mathematical reasoning on both textual and tabular data. Each question in TabMWP is aligned with a tabular context, which is presented as an image, semi-structured text, and a structured table. There are two types of questions: free-text and multi-choice, and each problem is annotated with gold solutions to reveal the multi-step reasoning process. We evaluate different pre-trained models on TabMWP, including the GPT-3 model in a few-shot setting. As earlier studies suggest, since few-shot GPT-3 relies on the selection of in-context examples, its performance is unstable and can degrade to near chance. The unstable issue is more severe when handling complex problems like TabMWP. To mitigate this, we further propose a novel approach, PromptPG, which utilizes policy gradient to learn to select in-context examples from a small amount of training data and then constructs the corresponding prompt for the test example. Experimental results show that our method outperforms the best baseline by 5.31% on the accuracy metric and reduces the prediction variance significantly compared to random selection, which verifies its effectiveness in selecting in-context examples.
Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations
Existing research predominantly focuses on developing powerful language learning models (LLMs) for mathematical reasoning within monolingual languages, with few explorations in preserving efficacy in a multilingual context. To bridge this gap, this paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs. Firstly, by utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages, thus addressing the issue of training data scarcity in xMR tasks. Based on the collected dataset, we propose different training strategies to build powerful xMR LLMs, named MathOctopus, notably outperform conventional open-source LLMs and exhibit superiority over ChatGPT in few-shot scenarios. Notably, MathOctopus-13B reaches 47.6% accuracy which exceeds ChatGPT 46.3% on MGSM testset. Beyond remarkable results, we unearth several pivotal observations and insights from extensive experiments: (1) When extending the rejection sampling strategy to the multilingual context, it proves effective for model performances, albeit limited. (2) Employing parallel corpora for math Supervised Fine-Tuning (SFT) across multiple languages not only significantly enhances model performance multilingually but also elevates their monolingual performance. This indicates that crafting multilingual corpora can be regarded as a vital strategy for enhancing model performance in a specific language, especially in mathematical reasoning tasks. For instance, MathOctopus-7B improves its counterparts that trained on English from 42.2% to 50.8% on GSM8K testset.
Critique Fine-Tuning: Learning to Critique is More Effective than Learning to Imitate
Supervised Fine-Tuning (SFT) is commonly used to train language models to imitate annotated responses for given instructions. In this paper, we challenge this paradigm and propose Critique Fine-Tuning (CFT), a strategy where models learn to critique noisy responses rather than simply imitate correct ones. Inspired by human learning processes that emphasize critical thinking, CFT encourages deeper analysis and nuanced understanding-traits often overlooked by standard SFT. To validate the effectiveness of CFT, we construct a 50K-sample dataset from WebInstruct, using GPT-4o as the teacher to generate critiques in the form of (input=[query; noisy response], output=critique). CFT on this dataset yields a consistent 4-10% improvement over SFT on six math benchmarks with different base models like Qwen2.5, Qwen2.5-Math and DeepSeek-Math. We further expand to MetaMath and NuminaMath datasets and observe similar gains over SFT. Notably, our Qwen2.5-Math-CFT model-trained on just 50K samples-matches or outperforms competitive models such as AceMath and Qwen2.5-Math-Instruct on most benchmarks, both of which use over 2M samples. Ablation studies show that CFT is robust to the source of noisy response and teacher critique model. Through these findings, we argue that critique-based training offers a more effective alternative to advance the reasoning of language models.
Humans Continue to Outperform Large Language Models in Complex Clinical Decision-Making: A Study with Medical Calculators
Although large language models (LLMs) have been assessed for general medical knowledge using medical licensing exams, their ability to effectively support clinical decision-making tasks, such as selecting and using medical calculators, remains uncertain. Here, we evaluate the capability of both medical trainees and LLMs to recommend medical calculators in response to various multiple-choice clinical scenarios such as risk stratification, prognosis, and disease diagnosis. We assessed eight LLMs, including open-source, proprietary, and domain-specific models, with 1,009 question-answer pairs across 35 clinical calculators and measured human performance on a subset of 100 questions. While the highest-performing LLM, GPT-4o, provided an answer accuracy of 74.3% (CI: 71.5-76.9%), human annotators, on average, outperformed LLMs with an accuracy of 79.5% (CI: 73.5-85.0%). With error analysis showing that the highest-performing LLMs continue to make mistakes in comprehension (56.6%) and calculator knowledge (8.1%), our findings emphasize that humans continue to surpass LLMs on complex clinical tasks such as calculator recommendation.
A Sober Look at Progress in Language Model Reasoning: Pitfalls and Paths to Reproducibility
Reasoning has emerged as the next major frontier for language models (LMs), with rapid advances from both academic and industrial labs. However, this progress often outpaces methodological rigor, with many evaluations relying on benchmarking practices that lack transparency, robustness, or statistical grounding. In this work, we conduct a comprehensive empirical study and find that current mathematical reasoning benchmarks are highly sensitive to subtle implementation choices - including decoding parameters, random seeds, prompt formatting, and even hardware and software-framework configurations. Performance gains reported in recent studies frequently hinge on unclear comparisons or unreported sources of variance. To address these issues, we propose a standardized evaluation framework with clearly defined best practices and reporting standards. Using this framework, we reassess recent methods and find that reinforcement learning (RL) approaches yield only modest improvements - far below prior claims - and are prone to overfitting, especially on small-scale benchmarks like AIME24. In contrast, supervised finetuning (SFT) methods show consistently stronger generalization. To foster reproducibility, we release all code, prompts, and model outputs, for reasoning benchmarks, establishing more rigorous foundations for future work.
Training with Pseudo-Code for Instruction Following
Despite the rapid progress in the capabilities of Large Language Models (LLMs), they continue to have difficulty following relatively simple, unambiguous instructions, especially when compositions are involved. In this paper, we take inspiration from recent work that suggests that models may follow instructions better when they are expressed in pseudo-code. However, writing pseudo-code programs can be tedious and using few-shot demonstrations to craft code representations for use in inference can be unnatural for non-expert users of LLMs. To overcome these limitations, we propose fine-tuning LLMs with instruction-tuning data that additionally includes instructions re-expressed in pseudo-code along with the final response. We evaluate models trained using our method on 11 publicly available benchmarks comprising of tasks related to instruction-following, mathematics, and common-sense reasoning. We conduct rigorous experiments with 5 different models and find that not only do models follow instructions better when trained with pseudo-code, they also retain their capabilities on the other tasks related to mathematical and common sense reasoning. Specifically, we observe a relative gain of 3--19% on instruction-following benchmark, and an average gain of upto 14% across all tasks.
ReviewerGPT? An Exploratory Study on Using Large Language Models for Paper Reviewing
Given the rapid ascent of large language models (LLMs), we study the question: (How) can large language models help in reviewing of scientific papers or proposals? We first conduct some pilot studies where we find that (i) GPT-4 outperforms other LLMs (Bard, Vicuna, Koala, Alpaca, LLaMa, Dolly, OpenAssistant, StableLM), and (ii) prompting with a specific question (e.g., to identify errors) outperforms prompting to simply write a review. With these insights, we study the use of LLMs (specifically, GPT-4) for three tasks: 1. Identifying errors: We construct 13 short computer science papers each with a deliberately inserted error, and ask the LLM to check for the correctness of these papers. We observe that the LLM finds errors in 7 of them, spanning both mathematical and conceptual errors. 2. Verifying checklists: We task the LLM to verify 16 closed-ended checklist questions in the respective sections of 15 NeurIPS 2022 papers. We find that across 119 {checklist question, paper} pairs, the LLM had an 86.6% accuracy. 3. Choosing the "better" paper: We generate 10 pairs of abstracts, deliberately designing each pair in such a way that one abstract was clearly superior than the other. The LLM, however, struggled to discern these relatively straightforward distinctions accurately, committing errors in its evaluations for 6 out of the 10 pairs. Based on these experiments, we think that LLMs have a promising use as reviewing assistants for specific reviewing tasks, but not (yet) for complete evaluations of papers or proposals.
Evaluation of OpenAI o1: Opportunities and Challenges of AGI
This comprehensive study evaluates the performance of OpenAI's o1-preview large language model across a diverse array of complex reasoning tasks, spanning multiple domains, including computer science, mathematics, natural sciences, medicine, linguistics, and social sciences. Through rigorous testing, o1-preview demonstrated remarkable capabilities, often achieving human-level or superior performance in areas ranging from coding challenges to scientific reasoning and from language processing to creative problem-solving. Key findings include: -83.3% success rate in solving complex competitive programming problems, surpassing many human experts. -Superior ability in generating coherent and accurate radiology reports, outperforming other evaluated models. -100% accuracy in high school-level mathematical reasoning tasks, providing detailed step-by-step solutions. -Advanced natural language inference capabilities across general and specialized domains like medicine. -Impressive performance in chip design tasks, outperforming specialized models in areas such as EDA script generation and bug analysis. -Remarkable proficiency in anthropology and geology, demonstrating deep understanding and reasoning in these specialized fields. -Strong capabilities in quantitative investing. O1 has comprehensive financial knowledge and statistical modeling skills. -Effective performance in social media analysis, including sentiment analysis and emotion recognition. The model excelled particularly in tasks requiring intricate reasoning and knowledge integration across various fields. While some limitations were observed, including occasional errors on simpler problems and challenges with certain highly specialized concepts, the overall results indicate significant progress towards artificial general intelligence.
From Informal to Formal -- Incorporating and Evaluating LLMs on Natural Language Requirements to Verifiable Formal Proofs
The research in AI-based formal mathematical reasoning has shown an unstoppable growth trend. These studies have excelled in mathematical competitions like IMO, showing significant progress. However, these studies intertwined multiple skills simultaneously, i.e., problem-solving, reasoning, and writing formal specifications, making it hard to precisely identify the LLMs' strengths and weaknesses in each task. This paper focuses on formal verification, an immediate application scenario of formal reasoning, and decomposes it into six sub-tasks. We constructed 18k high-quality instruction-response pairs across five mainstream formal specification languages (Coq, Lean4, Dafny, ACSL, and TLA+) in six formal-verification-related tasks by distilling GPT-4o. They are split into a 14k+ fine-tuning dataset FM-alpaca and a 4k benchmark FM-Bench. We found that LLMs are good at writing proof segments when given either the code, or the detailed description of proof steps. Also, the fine-tuning brought about a nearly threefold improvement at most. Interestingly, we observed that fine-tuning with formal data also enhances mathematics, reasoning, and coding abilities. We hope our findings inspire further research. Fine-tuned models are released to facilitate subsequent studies
Can LLMs Correct Themselves? A Benchmark of Self-Correction in LLMs
Self-correction of large language models (LLMs) emerges as a critical component for enhancing their reasoning performance. Although various self-correction methods have been proposed, a comprehensive evaluation of these methods remains largely unexplored, and the question of whether LLMs can truly correct themselves is a matter of significant interest and concern. In this study, we introduce CorrectBench, a benchmark developed to evaluate the effectiveness of self-correction strategies, including intrinsic, external, and fine-tuned approaches, across three tasks: commonsense reasoning, mathematical reasoning, and code generation. Our findings reveal that: 1) Self-correction methods can improve accuracy, especially for complex reasoning tasks; 2) Mixing different self-correction strategies yields further improvements, though it reduces efficiency; 3) Reasoning LLMs (e.g., DeepSeek-R1) have limited optimization under additional self-correction methods and have high time costs. Interestingly, a comparatively simple chain-of-thought (CoT) baseline demonstrates competitive accuracy and efficiency. These results underscore the potential of self-correction to enhance LLM's reasoning performance while highlighting the ongoing challenge of improving their efficiency. Consequently, we advocate for further research focused on optimizing the balance between reasoning capabilities and operational efficiency. Project Page: https://correctbench.github.io/
Exposing the Achilles' Heel: Evaluating LLMs Ability to Handle Mistakes in Mathematical Reasoning
Large Language Models (LLMs) have been applied to Math Word Problems (MWPs) with transformative impacts, revolutionizing how these complex problems are approached and solved in various domains including educational settings. However, the evaluation of these models often prioritizes final accuracy, overlooking the crucial aspect of reasoning capabilities. This work addresses this gap by focusing on the ability of LLMs to detect and correct reasoning mistakes. We introduce a novel dataset MWP-MISTAKE, incorporating MWPs with both correct and incorrect reasoning steps generated through rule-based methods and smaller language models. Our comprehensive benchmarking reveals significant insights into the strengths and weaknesses of state-of-the-art models, such as GPT-4o, GPT-4, GPT-3.5Turbo, and others. We highlight GPT-$o's superior performance in mistake detection and rectification and the persistent challenges faced by smaller models. Additionally, we identify issues related to data contamination and memorization, impacting the reliability of LLMs in real-world applications. Our findings emphasize the importance of rigorous evaluation of reasoning processes and propose future directions to enhance the generalization and robustness of LLMs in mathematical problem-solving.
Beyond English-Only Reading Comprehension: Experiments in Zero-Shot Multilingual Transfer for Bulgarian
Recently, reading comprehension models achieved near-human performance on large-scale datasets such as SQuAD, CoQA, MS Macro, RACE, etc. This is largely due to the release of pre-trained contextualized representations such as BERT and ELMo, which can be fine-tuned for the target task. Despite those advances and the creation of more challenging datasets, most of the work is still done for English. Here, we study the effectiveness of multilingual BERT fine-tuned on large-scale English datasets for reading comprehension (e.g., for RACE), and we apply it to Bulgarian multiple-choice reading comprehension. We propose a new dataset containing 2,221 questions from matriculation exams for twelfth grade in various subjects -history, biology, geography and philosophy-, and 412 additional questions from online quizzes in history. While the quiz authors gave no relevant context, we incorporate knowledge from Wikipedia, retrieving documents matching the combination of question + each answer option. Moreover, we experiment with different indexing and pre-training strategies. The evaluation results show accuracy of 42.23%, which is well above the baseline of 24.89%.
Overview of Factify5WQA: Fact Verification through 5W Question-Answering
Researchers have found that fake news spreads much times faster than real news. This is a major problem, especially in today's world where social media is the key source of news for many among the younger population. Fact verification, thus, becomes an important task and many media sites contribute to the cause. Manual fact verification is a tedious task, given the volume of fake news online. The Factify5WQA shared task aims to increase research towards automated fake news detection by providing a dataset with an aspect-based question answering based fact verification method. Each claim and its supporting document is associated with 5W questions that help compare the two information sources. The objective performance measure in the task is done by comparing answers using BLEU score to measure the accuracy of the answers, followed by an accuracy measure of the classification. The task had submissions using custom training setup and pre-trained language-models among others. The best performing team posted an accuracy of 69.56%, which is a near 35% improvement over the baseline.
Diverse Inference and Verification for Advanced Reasoning
Reasoning LLMs such as OpenAI o1, o3 and DeepSeek R1 have made significant progress in mathematics and coding, yet find challenging advanced tasks such as International Mathematical Olympiad (IMO) combinatorics problems, Abstraction and Reasoning Corpus (ARC) puzzles, and Humanity's Last Exam (HLE) questions. We use a diverse inference approach that combines multiple models and methods at test time. We find that verifying mathematics and code problems, and rejection sampling on other problems is simple and effective. We automatically verify correctness of solutions to IMO problems by Lean, and ARC puzzles by code, and find that best-of-N effectively answers HLE questions. Our approach increases answer accuracy on IMO combinatorics problems from 33.3% to 77.8%, accuracy on HLE questions from 8% to 37%, and solves 80% of ARC puzzles that 948 humans could not and 26.5% of ARC puzzles that o3 high compute does not. Test-time simulations, reinforcement learning, and meta-learning with inference feedback improve generalization by adapting agent graph representations and varying prompts, code, and datasets. Our approach is reliable, robust, and scalable, and in the spirit of reproducible research, we will make it publicly available upon publication.
CLR-Bench: Evaluating Large Language Models in College-level Reasoning
Large language models (LLMs) have demonstrated their remarkable performance across various language understanding tasks. While emerging benchmarks have been proposed to evaluate LLMs in various domains such as mathematics and computer science, they merely measure the accuracy in terms of the final prediction on multi-choice questions. However, it remains insufficient to verify the essential understanding of LLMs given a chosen choice. To fill this gap, we present CLR-Bench to comprehensively evaluate the LLMs in complex college-level reasoning. Specifically, (i) we prioritize 16 challenging college disciplines in computer science and artificial intelligence. The dataset contains 5 types of questions, while each question is associated with detailed explanations from experts. (ii) To quantify a fair evaluation of LLMs' reasoning ability, we formalize the criteria with two novel metrics. QrightarrowA is utilized to measure the performance of direct answer prediction, and QrightarrowAR effectively considers the joint ability to answer the question and provide rationale simultaneously. Extensive experiments are conducted with 40 LLMs over 1,018 discipline-specific questions. The results demonstrate the key insights that LLMs, even the best closed-source LLM, i.e., GPT-4 turbo, tend to `guess' the college-level answers. It shows a dramatic decrease in accuracy from 63.31% QrightarrowA to 39.00% QrightarrowAR, indicating an unsatisfactory reasoning ability.
MathMist: A Parallel Multilingual Benchmark Dataset for Mathematical Problem Solving and Reasoning
Mathematical reasoning remains one of the most challenging domains for large language models (LLMs), requiring not only linguistic understanding but also structured logical deduction and numerical precision. While recent LLMs demonstrate strong general-purpose reasoning abilities, their mathematical competence across diverse languages remains underexplored. Existing benchmarks primarily focus on English or a narrow subset of high-resource languages, leaving significant gaps in assessing multilingual and cross-lingual mathematical reasoning. To address this, we introduce MathMist, a parallel multilingual benchmark for mathematical problem solving and reasoning. MathMist encompasses over 21K aligned question-answer pairs across seven languages, representing a balanced coverage of high-, medium-, and low-resource linguistic settings. The dataset captures linguistic variety, multiple types of problem settings, and solution synthesizing capabilities. We systematically evaluate a diverse suite of models, including open-source small and medium LLMs, proprietary systems, and multilingual-reasoning-focused models, under zero-shot, chain-of-thought (CoT), and code-switched reasoning paradigms. Our results reveal persistent deficiencies in LLMs' ability to perform consistent and interpretable mathematical reasoning across languages, with pronounced degradation in low-resource settings. All the codes and data are available at GitHub: https://github.com/mahbubhimel/MathMist
Effective Transfer Learning for Identifying Similar Questions: Matching User Questions to COVID-19 FAQs
People increasingly search online for answers to their medical questions but the rate at which medical questions are asked online significantly exceeds the capacity of qualified people to answer them. This leaves many questions unanswered or inadequately answered. Many of these questions are not unique, and reliable identification of similar questions would enable more efficient and effective question answering schema. COVID-19 has only exacerbated this problem. Almost every government agency and healthcare organization has tried to meet the informational need of users by building online FAQs, but there is no way for people to ask their question and know if it is answered on one of these pages. While many research efforts have focused on the problem of general question similarity, these approaches do not generalize well to domains that require expert knowledge to determine semantic similarity, such as the medical domain. In this paper, we show how a double fine-tuning approach of pretraining a neural network on medical question-answer pairs followed by fine-tuning on medical question-question pairs is a particularly useful intermediate task for the ultimate goal of determining medical question similarity. While other pretraining tasks yield an accuracy below 78.7% on this task, our model achieves an accuracy of 82.6% with the same number of training examples, an accuracy of 80.0% with a much smaller training set, and an accuracy of 84.5% when the full corpus of medical question-answer data is used. We also describe a currently live system that uses the trained model to match user questions to COVID-related FAQs.
Numerical Reasoning for Financial Reports
Financial reports offer critical insights into a company's operations, yet their extensive length typically spanning 30 40 pages poses challenges for swift decision making in dynamic markets. To address this, we leveraged finetuned Large Language Models (LLMs) to distill key indicators and operational metrics from these reports basis questions from the user. We devised a method to locate critical data, and leverage the FinQA dataset to fine-tune both Llama-2 7B and T5 models for customized question answering. We achieved results comparable to baseline on the final numerical answer, a competitive accuracy in numerical reasoning and calculation.
Teaching Models to Express Their Uncertainty in Words
We show that a GPT-3 model can learn to express uncertainty about its own answers in natural language -- without use of model logits. When given a question, the model generates both an answer and a level of confidence (e.g. "90% confidence" or "high confidence"). These levels map to probabilities that are well calibrated. The model also remains moderately calibrated under distribution shift, and is sensitive to uncertainty in its own answers, rather than imitating human examples. To our knowledge, this is the first time a model has been shown to express calibrated uncertainty about its own answers in natural language. For testing calibration, we introduce the CalibratedMath suite of tasks. We compare the calibration of uncertainty expressed in words ("verbalized probability") to uncertainty extracted from model logits. Both kinds of uncertainty are capable of generalizing calibration under distribution shift. We also provide evidence that GPT-3's ability to generalize calibration depends on pre-trained latent representations that correlate with epistemic uncertainty over its answers.
Query and Response Augmentation Cannot Help Out-of-domain Math Reasoning Generalization
In math reasoning with large language models (LLMs), fine-tuning data augmentation by query evolution and diverse reasoning paths is empirically verified effective, profoundly narrowing the gap between open-sourced LLMs and cutting-edge proprietary LLMs. In this paper, we conduct an investigation for such data augmentation in math reasoning and are intended to answer: (1) What strategies of data augmentation are more effective; (2) What is the scaling relationship between the amount of augmented data and model performance; and (3) Can data augmentation incentivize generalization to out-of-domain mathematical reasoning tasks? To this end, we create a new dataset, AugGSM8K, by complicating and diversifying the queries from GSM8K and sampling multiple reasoning paths. We obtained a series of LLMs called MuggleMath by fine-tuning on subsets of AugGSM8K. MuggleMath substantially achieves new state-of-the-art on GSM8K (from 54% to 68.4% at the scale of 7B, and from 63.9% to 74.0% at the scale of 13B). A log-linear relationship is presented between MuggleMath's performance and the amount of augmented data. We also find that MuggleMath is weak in out-of-domain math reasoning generalization to MATH. This is attributed to the differences in query distribution between AugGSM8K and MATH which suggest that augmentation on a single benchmark could not help with overall math reasoning performance. Codes and AugGSM8K will be uploaded to https://github.com/OFA-Sys/gsm8k-ScRel.
No Answer Needed: Predicting LLM Answer Accuracy from Question-Only Linear Probes
Do large language models (LLMs) anticipate when they will answer correctly? To study this, we extract activations after a question is read but before any tokens are generated, and train linear probes to predict whether the model's forthcoming answer will be correct. Across three open-source model families ranging from 7 to 70 billion parameters, projections on this "in-advance correctness direction" trained on generic trivia questions predict success in distribution and on diverse out-of-distribution knowledge datasets, outperforming black-box baselines and verbalised predicted confidence. Predictive power saturates in intermediate layers, suggesting that self-assessment emerges mid-computation. Notably, generalisation falters on questions requiring mathematical reasoning. Moreover, for models responding "I don't know", doing so strongly correlates with the probe score, indicating that the same direction also captures confidence. By complementing previous results on truthfulness and other behaviours obtained with probes and sparse auto-encoders, our work contributes essential findings to elucidate LLM internals.
Lost in Cultural Translation: Do LLMs Struggle with Math Across Cultural Contexts?
Large Language Models (LLMs) have significantly advanced various fields, particularly coding, mathematical reasoning, and logical problem solving. However, a critical question remains: Do these mathematical reasoning abilities persist when LLMs are presented with culturally adapted math problems? Specifically, how do LLMs perform when faced with math problems embedded in cultural contexts that have no significant representation in main stream web-scale AI training data? To explore this, we generated six synthetic cultural datasets from GSM8K, a widely used benchmark for assessing LLMs' mathematical reasoning skills. While preserving the mathematical logic and numerical values of the original GSM8K test set, we modify cultural elements such as personal names, food items, place names, etc. These culturally adapted datasets provide a more reliable framework for evaluating LLMs' mathematical reasoning under shifting cultural contexts. Our findings reveal that LLMs struggle with math problems when cultural references change, even though the underlying mathematical structure remains constant. Smaller models exhibit greater performance drops compared to larger models. Interestingly, our results also suggest that cultural familiarity can enhance mathematical reasoning. Even models with no explicit mathematical training but exposure to relevant cultural contexts sometimes outperform larger, mathematically proficient models on culturally embedded math problems. This study highlights the impact of cultural context on the mathematical reasoning abilities of LLMs, underscoring the need for more diverse and representative training data to improve robustness in real-world applications. The benchmark data sets and script for reproducing the results are available at https://github.com/akarim23131/Lost_in_Cultural_Translation
Time to Revist Exact Match
Temporal question answering is an established method for evaluating temporal reasoning in large language models. Expected answers are often numeric (e.g., dates or durations), yet model responses are evaluated like regular text with exact match (EM), unable to distinguish small from large errors. In this investigative work, we frame temporal question answering as a numerical estimation task to assess the shortcomings of EM. We introduce TempAnswerQA, a benchmark distilled from Test of Time and TempTabQA, where all questions require a numerical, temporal answer, allowing us to evaluate models beyond EM. We use the forecasting metrics symmetric mean absolute percentage error (sMAPE) and mean absolute scaled error (MASE). With sMAPE, we find that error size and EM are decoupled. Models with low EM still have low sMAPE (both ~20%), and some models have high sMAPE despite high EM. Scaling errors by the deviation of the ground truth data with MASE reshuffles model rankings compared to EM, revealing gaps in models' understanding of temporal domain knowledge, especially when trained with synthetic data. Lastly, the models' most frequent error is to deviate by only pm1 from the ground truth. sMAPE and MASE, unlike EM, adequately weight these errors. Our findings underscore the need for specialised metrics for temporal QA tasks. Code and data are available on https://github.com/aauss/temporal-answer-qa.
MathReal: We Keep It Real! A Real Scene Benchmark for Evaluating Math Reasoning in Multimodal Large Language Models
Multimodal Large Language Models (MLLMs) have demonstrated remarkable capabilities in visual mathematical reasoning across various existing benchmarks. However, these benchmarks are predominantly based on clean or processed multimodal inputs, without incorporating the images provided by real-world Kindergarten through 12th grade (K-12) educational users. To address this gap, we introduce MathReal, a meticulously curated dataset comprising 2,000 mathematical questions with images captured by handheld mobile devices in authentic scenarios. Each question is an image, containing the question text and visual element. We systematically classify the real images into three primary categories: image quality degradation, perspective variation, and irrelevant content interference, which are further delineated into 14 subcategories. Additionally, MathReal spans five core knowledge and ability categories, which encompass three question types and are divided into three difficulty levels. To comprehensively evaluate the multimodal mathematical reasoning abilities of state-of-the-art MLLMs in real-world scenarios, we design six experimental settings that enable a systematic analysis of their performance. Through extensive experimentation, we find that the problem-solving abilities of existing MLLMs are significantly challenged in realistic educational contexts. Based on this, we conduct a thorough analysis of their performance and error patterns, providing insights into their recognition, comprehension, and reasoning capabilities, and outlining directions for future improvements. Data and code: https://github.com/junfeng0288/MathReal.
MathVerse: Does Your Multi-modal LLM Truly See the Diagrams in Visual Math Problems?
The remarkable progress of Multi-modal Large Language Models (MLLMs) has garnered unparalleled attention, due to their superior performance in visual contexts. However, their capabilities in visual math problem-solving remain insufficiently evaluated and understood. We investigate current benchmarks to incorporate excessive visual content within textual questions, which potentially assist MLLMs in deducing answers without truly interpreting the input diagrams. To this end, we introduce MathVerse, an all-around visual math benchmark designed for an equitable and in-depth evaluation of MLLMs. We meticulously collect 2,612 high-quality, multi-subject math problems with diagrams from publicly available sources. Each problem is then transformed by human annotators into six distinct versions, each offering varying degrees of information content in multi-modality, contributing to 15K test samples in total. This approach allows MathVerse to comprehensively assess whether and how much MLLMs can truly understand the visual diagrams for mathematical reasoning. In addition, we propose a Chain-of-Thought (CoT) evaluation strategy for a fine-grained assessment of the output answers. Rather than naively judging True or False, we employ GPT-4(V) to adaptively extract crucial reasoning steps, and then score each step with detailed error analysis, which can reveal the intermediate CoT reasoning quality by MLLMs. We hope the MathVerse benchmark may provide unique insights to guide the future development of MLLMs. Project page: https://mathverse-cuhk.github.io
AI-Assisted Generation of Difficult Math Questions
Current LLM training positions mathematical reasoning as a core capability. With publicly available sources fully tapped, there is unmet demand for diverse and challenging math questions. Relying solely on human experts is both time-consuming and costly, while LLM-generated questions often lack the requisite diversity and difficulty. We present a design framework that combines the strengths of LLMs with a human-in-the-loop approach to generate a diverse array of challenging math questions. We leverage LLM metacognition skills [Didolkar et al., 2024] of a strong LLM to extract core "skills" from existing math datasets. These skills serve as the basis for generating novel and difficult questions by prompting the LLM with random pairs of core skills. The use of two different skills within each question makes finding such questions an "out of distribution" task for both LLMs and humans. Our pipeline employs LLMs to iteratively generate and refine questions and solutions through multiturn prompting. Human annotators then verify and further refine the questions, with their efficiency enhanced via further LLM interactions. Applying this pipeline on skills extracted from the MATH dataset [Hendrycks et al., 2021] resulted in MATH^2 - a dataset of higher-quality math questions, as evidenced by: (a) Lower performance of all models on MATH^2 than on MATH (b) Higher performance on MATH when using MATH^2 questions as in-context examples. Although focused on mathematics, our methodology seems applicable to other domains requiring structured reasoning, and potentially as a component of scalable oversight. Also of interest is a striking relationship observed between models' performance on the new dataset: the success rate on MATH^2 is the square on MATH, suggesting that successfully solving the question in MATH^2 requires a nontrivial combination of two distinct math skills.
AI-Driven Virtual Teacher for Enhanced Educational Efficiency: Leveraging Large Pretrain Models for Autonomous Error Analysis and Correction
Students frequently make mistakes while solving mathematical problems, and traditional error correction methods are both time-consuming and labor-intensive. This paper introduces an innovative Virtual AI Teacher system designed to autonomously analyze and correct student Errors (VATE). Leveraging advanced large language models (LLMs), the system uses student drafts as a primary source for error analysis, which enhances understanding of the student's learning process. It incorporates sophisticated prompt engineering and maintains an error pool to reduce computational overhead. The AI-driven system also features a real-time dialogue component for efficient student interaction. Our approach demonstrates significant advantages over traditional and machine learning-based error correction methods, including reduced educational costs, high scalability, and superior generalizability. The system has been deployed on the Squirrel AI learning platform for elementary mathematics education, where it achieves 78.3\% accuracy in error analysis and shows a marked improvement in student learning efficiency. Satisfaction surveys indicate a strong positive reception, highlighting the system's potential to transform educational practices.
Humans Perceive Wrong Narratives from AI Reasoning Texts
A new generation of AI models generates step-by-step reasoning text before producing an answer. This text appears to offer a human-readable window into their computation process, and is increasingly relied upon for transparency and interpretability. However, it is unclear whether human understanding of this text matches the model's actual computational process. In this paper, we investigate a necessary condition for correspondence: the ability of humans to identify which steps in a reasoning text causally influence later steps. We evaluated humans on this ability by composing questions based on counterfactual measurements and found a significant discrepancy: participant accuracy was only 29.3%, barely above chance (25%), and remained low (42%) even when evaluating the majority vote on questions with high agreement. Our results reveal a fundamental gap between how humans interpret reasoning texts and how models use it, challenging its utility as a simple interpretability tool. We argue that reasoning texts should be treated as an artifact to be investigated, not taken at face value, and that understanding the non-human ways these models use language is a critical research direction.
We-Math: Does Your Large Multimodal Model Achieve Human-like Mathematical Reasoning?
Visual mathematical reasoning, as a fundamental visual reasoning ability, has received widespread attention from the Large Multimodal Models (LMMs) community. Existing benchmarks, such as MathVista and MathVerse, focus more on the result-oriented performance but neglect the underlying principles in knowledge acquisition and generalization. Inspired by human-like mathematical reasoning, we introduce WE-MATH, the first benchmark specifically designed to explore the problem-solving principles beyond end-to-end performance. We meticulously collect and categorize 6.5K visual math problems, spanning 67 hierarchical knowledge concepts and five layers of knowledge granularity. We decompose composite problems into sub-problems according to the required knowledge concepts and introduce a novel four-dimensional metric, namely Insufficient Knowledge (IK), Inadequate Generalization (IG), Complete Mastery (CM), and Rote Memorization (RM), to hierarchically assess inherent issues in LMMs' reasoning process. With WE-MATH, we conduct a thorough evaluation of existing LMMs in visual mathematical reasoning and reveal a negative correlation between solving steps and problem-specific performance. We confirm the IK issue of LMMs can be effectively improved via knowledge augmentation strategies. More notably, the primary challenge of GPT-4o has significantly transitioned from IK to IG, establishing it as the first LMM advancing towards the knowledge generalization stage. In contrast, other LMMs exhibit a marked inclination towards Rote Memorization - they correctly solve composite problems involving multiple knowledge concepts yet fail to answer sub-problems. We anticipate that WE-MATH will open new pathways for advancements in visual mathematical reasoning for LMMs. The WE-MATH data and evaluation code are available at https://github.com/We-Math/We-Math.
CHAMP: A Competition-level Dataset for Fine-Grained Analyses of LLMs' Mathematical Reasoning Capabilities
Recent large language models (LLMs) have shown indications of mathematical reasoning ability. However it has not been clear how they would fare on more challenging competition-level problems. And while self-generated verbalizations of intermediate reasoning steps (i.e., chain-of-thought prompting) have been shown to be helpful, whether LLMs can make use of helpful side information such as problem-specific hints has not been investigated before. In this paper, we propose a challenging benchmark dataset for enabling such analyses. The Concept and Hint-Annotated Math Problems (CHAMP) consists of high school math competition problems, annotated with concepts, or general math facts, and hints, or problem-specific tricks. These annotations allow us to explore the effects of additional information, such as relevant hints, misleading concepts, or related problems. This benchmark is difficult, with the best model only scoring 58.1% in standard settings. With concepts and hints, performance sometimes improves, indicating that some models can make use of such side information. We further annotate model-generated solutions for their correctness. Using this corpus, we find that models often arrive at the correct final answer through wrong reasoning steps. In addition, we test whether models are able to verify these solutions, and find that most models struggle. The dataset and code are available on the project website.
MATH-Beyond: A Benchmark for RL to Expand Beyond the Base Model
With the advent of DeepSeek-R1, a new wave of reinforcement learning (RL) methods has emerged that seem to unlock stronger mathematical reasoning. However, a closer look at the open-source ecosystem reveals a critical limitation: with sufficiently many draws (e.g., pass@1024), many existing base models already solve nearly all questions on widely used math benchmarks such as MATH-500 and AIME 2024. This suggests that the RL fine-tuning methods prevalent in the LLM reasoning literature largely sharpen existing solution modes rather than discovering entirely new ones. Such sharpening stands in contrast to the broader promise of RL: to foster exploration and to acquire new skills. To move beyond this plateau, we introduce MATH-Beyond (MATH-B), a benchmark deliberately constructed to defeat common open-source models of up to 8B parameters even under large sampling budgets. Improving performance on our benchmark via RL requires methods that learn to reason in ways that go beyond base model capabilities in repeated sampling. Since the problems are drawn from subsets of DAPO-Math-17K and DeepScaleR datasets, they remain topically equivalent to standard high-school math. Validating our premise, RL fine-tuned models such as Nemotron-Research-Reasoning-Qwen-1.5B and DeepScaleR-1.5B-Preview perform poorly on MATH-B at pass@1024, showing how existing approaches fall short on tackling harder instances. We hope MATH-B will catalyze exploration-driven RL approaches that elicit deeper reasoning capabilities. We release MATH-B at https://huggingface.co/datasets/brendel-group/MATH-Beyond.
How predictable is language model benchmark performance?
We investigate large language model performance across five orders of magnitude of compute scaling in eleven recent model architectures. We show that average benchmark performance, aggregating over many individual tasks and evaluations as in the commonly-used BIG-Bench dataset, is decently predictable as a function of training compute scale. Specifically, when extrapolating BIG-Bench Hard performance across one order of magnitude in compute, we observe average absolute errors of 6 percentage points (pp). By contrast, extrapolation for individual BIG-Bench tasks across an order of magnitude in compute yields higher average errors of 18pp. Nonetheless, individual task performance remains significantly more predictable than chance. Overall, our work suggests compute scaling provides a promising basis to forecast AI capabilities in diverse benchmarks, though predicting performance in specific tasks poses challenges.
MathCoder: Seamless Code Integration in LLMs for Enhanced Mathematical Reasoning
The recently released GPT-4 Code Interpreter has demonstrated remarkable proficiency in solving challenging math problems, primarily attributed to its ability to seamlessly reason with natural language, generate code, execute code, and continue reasoning based on the execution output. In this paper, we present a method to fine-tune open-source language models, enabling them to use code for modeling and deriving math equations and, consequently, enhancing their mathematical reasoning abilities. We propose a method of generating novel and high-quality datasets with math problems and their code-based solutions, referred to as MathCodeInstruct. Each solution interleaves natural language, code, and execution results. We also introduce a customized supervised fine-tuning and inference approach. This approach yields the MathCoder models, a family of models capable of generating code-based solutions for solving challenging math problems. Impressively, the MathCoder models achieve state-of-the-art scores among open-source LLMs on the MATH (45.2%) and GSM8K (83.9%) datasets, substantially outperforming other open-source alternatives. Notably, the MathCoder model not only surpasses ChatGPT-3.5 and PaLM-2 on GSM8K and MATH but also outperforms GPT-4 on the competition-level MATH dataset. The dataset and models will be released at https://github.com/mathllm/MathCoder.
HyperTree Proof Search for Neural Theorem Proving
We propose an online training procedure for a transformer-based automated theorem prover. Our approach leverages a new search algorithm, HyperTree Proof Search (HTPS), inspired by the recent success of AlphaZero. Our model learns from previous proof searches through online training, allowing it to generalize to domains far from the training distribution. We report detailed ablations of our pipeline's main components by studying performance on three environments of increasing complexity. In particular, we show that with HTPS alone, a model trained on annotated proofs manages to prove 65.4% of a held-out set of Metamath theorems, significantly outperforming the previous state of the art of 56.5% by GPT-f. Online training on these unproved theorems increases accuracy to 82.6%. With a similar computational budget, we improve the state of the art on the Lean-based miniF2F-curriculum dataset from 31% to 42% proving accuracy.
Confidence in the Reasoning of Large Language Models
There is a growing literature on reasoning by large language models (LLMs), but the discussion on the uncertainty in their responses is still lacking. Our aim is to assess the extent of confidence that LLMs have in their answers and how it correlates with accuracy. Confidence is measured (i) qualitatively in terms of persistence in keeping their answer when prompted to reconsider, and (ii) quantitatively in terms of self-reported confidence score. We investigate the performance of three LLMs -- GPT4o, GPT4-turbo and Mistral -- on two benchmark sets of questions on causal judgement and formal fallacies and a set of probability and statistical puzzles and paradoxes. Although the LLMs show significantly better performance than random guessing, there is a wide variability in their tendency to change their initial answers. There is a positive correlation between qualitative confidence and accuracy, but the overall accuracy for the second answer is often worse than for the first answer. There is a strong tendency to overstate the self-reported confidence score. Confidence is only partially explained by the underlying token-level probability. The material effects of prompting on qualitative confidence and the strong tendency for overconfidence indicate that current LLMs do not have any internally coherent sense of confidence.
ACES: Translation Accuracy Challenge Sets for Evaluating Machine Translation Metrics
As machine translation (MT) metrics improve their correlation with human judgement every year, it is crucial to understand the limitations of such metrics at the segment level. Specifically, it is important to investigate metric behaviour when facing accuracy errors in MT because these can have dangerous consequences in certain contexts (e.g., legal, medical). We curate ACES, a translation accuracy challenge set, consisting of 68 phenomena ranging from simple perturbations at the word/character level to more complex errors based on discourse and real-world knowledge. We use ACES to evaluate a wide range of MT metrics including the submissions to the WMT 2022 metrics shared task and perform several analyses leading to general recommendations for metric developers. We recommend: a) combining metrics with different strengths, b) developing metrics that give more weight to the source and less to surface-level overlap with the reference and c) explicitly modelling additional language-specific information beyond what is available via multilingual embeddings.
BrokenMath: A Benchmark for Sycophancy in Theorem Proving with LLMs
Large language models (LLMs) have recently shown strong performance on mathematical benchmarks. At the same time, they are prone to hallucination and sycophancy, often providing convincing but flawed proofs for incorrect mathematical statements provided by users. This significantly limits the applicability of LLMs in theorem proving, as verification of these flawed proofs must be done manually by expert mathematicians. However, existing benchmarks that measure sycophancy in mathematics are limited: they focus solely on final-answer problems, rely on very simple and often contaminated datasets, and construct benchmark samples using synthetic modifications that create ill-posed questions rather than well-posed questions that are demonstrably false. To address these issues, we introduce BrokenMath, the first benchmark for evaluating sycophantic behavior in LLMs within the context of natural language theorem proving. BrokenMath is built from advanced 2025 competition problems, which are perturbed with an LLM to produce false statements and subsequently refined through expert review. Using an LLM-as-a-judge framework, we evaluate state-of-the-art LLMs and agentic systems and find that sycophancy is widespread, with the best model, GPT-5, producing sycophantic answers 29% of the time. We further investigate several mitigation strategies, including test-time interventions and supervised fine-tuning on curated sycophantic examples. These approaches substantially reduce, but do not eliminate, sycophantic behavior.
Spurious Rewards: Rethinking Training Signals in RLVR
We show that reinforcement learning with verifiable rewards (RLVR) can elicit strong mathematical reasoning in certain models even with spurious rewards that have little, no, or even negative correlation with the correct answer. For example, RLVR improves MATH-500 performance for Qwen2.5-Math-7B in absolute points by 21.4% (random reward), 13.8% (format reward), 24.1% (incorrect label), 26.0% (1-shot RL), and 27.1% (majority voting) -- nearly matching the 29.1% gained with ground truth rewards. However, the spurious rewards that work for Qwen often fail to yield gains with other model families like Llama3 or OLMo2. In particular, we find code reasoning -- thinking in code without actual code execution -- to be a distinctive Qwen2.5-Math behavior that becomes significantly more frequent after RLVR, from 65% to over 90%, even with spurious rewards. Overall, we hypothesize that, given the lack of useful reward signal, RLVR must somehow be surfacing useful reasoning representations learned during pretraining, although the exact mechanism remains a topic for future work. We suggest that future RLVR research should possibly be validated on diverse models rather than a single de facto choice, as we show that it is easy to get significant performance gains on Qwen models even with completely spurious reward signals.
