14 MM-Vet v2: A Challenging Benchmark to Evaluate Large Multimodal Models for Integrated Capabilities MM-Vet, with open-ended vision-language questions targeting at evaluating integrated capabilities, has become one of the most popular benchmarks for large multimodal model evaluation. MM-Vet assesses six core vision-language (VL) capabilities: recognition, knowledge, spatial awareness, language generation, OCR, and math. However, its question format is restricted to single image-text pairs, lacking the interleaved image and text sequences prevalent in real-world scenarios. To address this limitation, we introduce MM-Vet v2, which includes a new VL capability called "image-text sequence understanding", evaluating models' ability to process VL sequences. Furthermore, we maintain the high quality of evaluation samples while further expanding the evaluation set size. Using MM-Vet v2 to benchmark large multimodal models, we found that Claude 3.5 Sonnet is the best model with a score of 71.8, slightly outperforming GPT-4o which scored 71.0. Among open-weight models, InternVL2-Llama3-76B leads with a score of 68.4. 10 authors · Aug 1, 2024 9
52 Med42-v2: A Suite of Clinical LLMs Med42-v2 introduces a suite of clinical large language models (LLMs) designed to address the limitations of generic models in healthcare settings. These models are built on Llama3 architecture and fine-tuned using specialized clinical data. They underwent multi-stage preference alignment to effectively respond to natural prompts. While generic models are often preference-aligned to avoid answering clinical queries as a precaution, Med42-v2 is specifically trained to overcome this limitation, enabling its use in clinical settings. Med42-v2 models demonstrate superior performance compared to the original Llama3 models in both 8B and 70B parameter configurations and GPT-4 across various medical benchmarks. These LLMs are developed to understand clinical queries, perform reasoning tasks, and provide valuable assistance in clinical environments. The models are now publicly available at https://huggingface.co/m42-health{https://huggingface.co/m42-health}. 5 authors · Aug 12, 2024 2
29 Code Llama: Open Foundation Models for Code We release Code Llama, a family of large language models for code based on Llama 2 providing state-of-the-art performance among open models, infilling capabilities, support for large input contexts, and zero-shot instruction following ability for programming tasks. We provide multiple flavors to cover a wide range of applications: foundation models (Code Llama), Python specializations (Code Llama - Python), and instruction-following models (Code Llama - Instruct) with 7B, 13B and 34B parameters each. All models are trained on sequences of 16k tokens and show improvements on inputs with up to 100k tokens. 7B and 13B Code Llama and Code Llama - Instruct variants support infilling based on surrounding content. Code Llama reaches state-of-the-art performance among open models on several code benchmarks, with scores of up to 53% and 55% on HumanEval and MBPP, respectively. Notably, Code Llama - Python 7B outperforms Llama 2 70B on HumanEval and MBPP, and all our models outperform every other publicly available model on MultiPL-E. We release Code Llama under a permissive license that allows for both research and commercial use. 25 authors · Aug 24, 2023 3