AEGIS: Exploring the Limit of World Knowledge Capabilities for Unified Mulitmodal Models
Abstract
AEGIS benchmark evaluates unified multimodal models' world knowledge across multiple tasks and reasoning types, revealing significant performance gaps and the need for improved reasoning capabilities.
The capability of Unified Multimodal Models (UMMs) to apply world knowledge across diverse tasks remains a critical, unresolved challenge. Existing benchmarks fall short, offering only siloed, single-task evaluations with limited diagnostic power. To bridge this gap, we propose AEGIS (i.e., Assessing Editing, Generation, Interpretation-Understanding for Super-intelligence), a comprehensive multi-task benchmark covering visual understanding, generation, editing, and interleaved generation. AEGIS comprises 1,050 challenging, manually-annotated questions spanning 21 topics (including STEM, humanities, daily life, etc.) and 6 reasoning types. To concretely evaluate the performance of UMMs in world knowledge scope without ambiguous metrics, we further propose Deterministic Checklist-based Evaluation (DCE), a protocol that replaces ambiguous prompt-based scoring with atomic ``Y/N'' judgments, to enhance evaluation reliability. Our extensive experiments reveal that most UMMs exhibit severe world knowledge deficits and that performance degrades significantly with complex reasoning. Additionally, simple plug-in reasoning modules can partially mitigate these vulnerabilities, highlighting a promising direction for future research. These results highlight the importance of world-knowledge-based reasoning as a critical frontier for UMMs.
Models citing this paper 0
No model linking this paper
Datasets citing this paper 1
Spaces citing this paper 0
No Space linking this paper
Collections including this paper 0
No Collection including this paper