Papers
arxiv:2510.23981

TeleEgo: Benchmarking Egocentric AI Assistants in the Wild

Published on Oct 28
Authors:
,
,
,
,
,
,
,
,
,
,
,
,
,
,

Abstract

Egocentric AI assistants in real-world settings must process multi-modal inputs (video, audio, text), respond in real time, and retain evolving long-term memory. However, existing benchmarks typically evaluate these abilities in isolation, lack realistic streaming scenarios, or support only short-term tasks. We introduce TeleEgo, a long-duration, streaming, omni-modal benchmark for evaluating egocentric AI assistants in realistic daily contexts. The dataset features over 14 hours per participant of synchronized egocentric video, audio, and text across four domains: work \& study, lifestyle \& routines, social activities, and outings \& culture. All data is aligned on a unified global timeline and includes high-quality visual narrations and speech transcripts, curated through human refinement.TeleEgo defines 12 diagnostic subtasks across three core capabilities: Memory (recalling past events), Understanding (interpreting the current moment), and Cross-Memory Reasoning (linking distant events). It contains 3,291 human-verified QA items spanning multiple question formats (single-choice, binary, multi-choice, and open-ended), evaluated strictly in a streaming setting. We propose two key metrics -- Real-Time Accuracy and Memory Persistence Time -- to jointly assess correctness, temporal responsiveness, and long-term retention. TeleEgo provides a realistic and comprehensive evaluation to advance the development of practical AI assistants.

Community

Sign up or log in to comment

Models citing this paper 0

No model linking this paper

Cite arxiv.org/abs/2510.23981 in a model README.md to link it from this page.

Datasets citing this paper 1

Spaces citing this paper 0

No Space linking this paper

Cite arxiv.org/abs/2510.23981 in a Space README.md to link it from this page.

Collections including this paper 0

No Collection including this paper

Add this paper to a collection to link it from this page.