Update README.md (#1)
Browse files- Update README.md (0c9bf070a2b7c24a74adb70946958169ff6ea8ba)
README.md
CHANGED
|
@@ -88,7 +88,7 @@ sparse_vector = get_sparse_vector(feature, output)
|
|
| 88 |
|
| 89 |
# get similarity score
|
| 90 |
sim_score = torch.matmul(sparse_vector[0],sparse_vector[1])
|
| 91 |
-
print(sim_score) # tensor(
|
| 92 |
|
| 93 |
|
| 94 |
query_token_weight, document_query_token_weight = transform_sparse_vector_to_dict(sparse_vector)
|
|
@@ -99,27 +99,55 @@ for token in sorted(query_token_weight, key=lambda x:query_token_weight[x], reve
|
|
| 99 |
|
| 100 |
|
| 101 |
# result:
|
| 102 |
-
# score in query: 2.
|
| 103 |
-
# score in query: 2.
|
| 104 |
-
# score in query: 2.
|
| 105 |
-
# score in query:
|
| 106 |
-
# score in query: 1.
|
| 107 |
-
# score in query:
|
| 108 |
-
# score in query:
|
| 109 |
-
# score in query:
|
| 110 |
-
# score in query:
|
| 111 |
-
# score in query:
|
| 112 |
-
# score in query:
|
| 113 |
-
# score in query:
|
| 114 |
-
# score in query: 0.
|
| 115 |
-
# score in query: 0.
|
| 116 |
-
# score in query: 0.
|
| 117 |
-
# score in query: 0.
|
| 118 |
-
# score in query: 0.
|
| 119 |
-
# score in query: 0.
|
| 120 |
-
# score in query: 0.
|
| 121 |
-
# score in query: 0.
|
| 122 |
-
# score in query: 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
```
|
| 124 |
|
| 125 |
The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match.
|
|
|
|
| 88 |
|
| 89 |
# get similarity score
|
| 90 |
sim_score = torch.matmul(sparse_vector[0],sparse_vector[1])
|
| 91 |
+
print(sim_score) # tensor(38.6112, grad_fn=<DotBackward0>)
|
| 92 |
|
| 93 |
|
| 94 |
query_token_weight, document_query_token_weight = transform_sparse_vector_to_dict(sparse_vector)
|
|
|
|
| 99 |
|
| 100 |
|
| 101 |
# result:
|
| 102 |
+
# score in query: 2.7273, score in document: 2.9088, token: york
|
| 103 |
+
# score in query: 2.5734, score in document: 0.9208, token: now
|
| 104 |
+
# score in query: 2.3895, score in document: 1.7237, token: ny
|
| 105 |
+
# score in query: 2.2184, score in document: 1.2368, token: weather
|
| 106 |
+
# score in query: 1.8693, score in document: 1.4146, token: current
|
| 107 |
+
# score in query: 1.5887, score in document: 0.7450, token: today
|
| 108 |
+
# score in query: 1.4704, score in document: 0.9247, token: sunny
|
| 109 |
+
# score in query: 1.4374, score in document: 1.9737, token: nyc
|
| 110 |
+
# score in query: 1.4347, score in document: 1.6019, token: currently
|
| 111 |
+
# score in query: 1.1605, score in document: 0.9794, token: climate
|
| 112 |
+
# score in query: 1.0944, score in document: 0.7141, token: upstate
|
| 113 |
+
# score in query: 1.0471, score in document: 0.5519, token: forecast
|
| 114 |
+
# score in query: 0.9268, score in document: 0.6692, token: verve
|
| 115 |
+
# score in query: 0.9126, score in document: 0.4486, token: huh
|
| 116 |
+
# score in query: 0.8960, score in document: 0.7706, token: greene
|
| 117 |
+
# score in query: 0.8779, score in document: 0.7120, token: picturesque
|
| 118 |
+
# score in query: 0.8471, score in document: 0.4183, token: pleasantly
|
| 119 |
+
# score in query: 0.8079, score in document: 0.2140, token: windy
|
| 120 |
+
# score in query: 0.7537, score in document: 0.4925, token: favorable
|
| 121 |
+
# score in query: 0.7519, score in document: 2.1456, token: rain
|
| 122 |
+
# score in query: 0.7277, score in document: 0.3818, token: skies
|
| 123 |
+
# score in query: 0.6995, score in document: 0.8593, token: lena
|
| 124 |
+
# score in query: 0.6895, score in document: 0.2410, token: sunshine
|
| 125 |
+
# score in query: 0.6621, score in document: 0.3016, token: johnny
|
| 126 |
+
# score in query: 0.6604, score in document: 0.1933, token: skyline
|
| 127 |
+
# score in query: 0.6117, score in document: 0.2197, token: sasha
|
| 128 |
+
# score in query: 0.5962, score in document: 0.0414, token: vibe
|
| 129 |
+
# score in query: 0.5381, score in document: 0.7560, token: hardly
|
| 130 |
+
# score in query: 0.4582, score in document: 0.4243, token: prevailing
|
| 131 |
+
# score in query: 0.4539, score in document: 0.5073, token: unpredictable
|
| 132 |
+
# score in query: 0.4350, score in document: 0.8463, token: presently
|
| 133 |
+
# score in query: 0.3674, score in document: 0.2496, token: hail
|
| 134 |
+
# score in query: 0.3324, score in document: 0.5506, token: shivered
|
| 135 |
+
# score in query: 0.3281, score in document: 0.1964, token: wind
|
| 136 |
+
# score in query: 0.3052, score in document: 0.5785, token: rudy
|
| 137 |
+
# score in query: 0.2797, score in document: 0.0357, token: looming
|
| 138 |
+
# score in query: 0.2712, score in document: 0.0870, token: atmospheric
|
| 139 |
+
# score in query: 0.2471, score in document: 0.3490, token: vicky
|
| 140 |
+
# score in query: 0.2247, score in document: 0.2383, token: sandy
|
| 141 |
+
# score in query: 0.2154, score in document: 0.5737, token: crowded
|
| 142 |
+
# score in query: 0.1723, score in document: 0.1857, token: chilly
|
| 143 |
+
# score in query: 0.1700, score in document: 0.4110, token: blizzard
|
| 144 |
+
# score in query: 0.1183, score in document: 0.0613, token: ##cken
|
| 145 |
+
# score in query: 0.0923, score in document: 0.6363, token: unrest
|
| 146 |
+
# score in query: 0.0624, score in document: 0.2127, token: russ
|
| 147 |
+
# score in query: 0.0558, score in document: 0.5542, token: blackout
|
| 148 |
+
# score in query: 0.0549, score in document: 0.1589, token: kahn
|
| 149 |
+
# score in query: 0.0160, score in document: 0.0566, token: 2020
|
| 150 |
+
# score in query: 0.0125, score in document: 0.3753, token: nighttime
|
| 151 |
```
|
| 152 |
|
| 153 |
The above code sample shows an example of neural sparse search. Although there is no overlap token in original query and document, but this model performs a good match.
|