update
Browse files- README.md +1402 -0
- configuration_minicpm.py +1 -0
- modeling_minicpmo.py +424 -121
- modeling_navit_siglip.py +1 -0
- processing_minicpmo.py +6 -7
- utils.py +51 -2
    	
        README.md
    ADDED
    
    | @@ -0,0 +1,1402 @@ | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | 
|  | |
| 1 | 
            +
            ---
         | 
| 2 | 
            +
            pipeline_tag: image-text-to-text
         | 
| 3 | 
            +
            datasets:
         | 
| 4 | 
            +
            - openbmb/RLAIF-V-Dataset
         | 
| 5 | 
            +
            library_name: transformers
         | 
| 6 | 
            +
            language:
         | 
| 7 | 
            +
            - multilingual
         | 
| 8 | 
            +
            tags:
         | 
| 9 | 
            +
            - minicpm-o
         | 
| 10 | 
            +
            - omni
         | 
| 11 | 
            +
            - vision
         | 
| 12 | 
            +
            - ocr
         | 
| 13 | 
            +
            - multi-image
         | 
| 14 | 
            +
            - video
         | 
| 15 | 
            +
            - custom_code
         | 
| 16 | 
            +
            ---
         | 
| 17 | 
            +
             | 
| 18 | 
            +
            <h1>A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone</h1>
         | 
| 19 | 
            +
             | 
| 20 | 
            +
            [GitHub](https://github.com/OpenBMB/MiniCPM-V) | [Online Demo](https://minicpm-omni-webdemo-us.modelbest.cn)</a> 
         | 
| 21 | 
            +
             | 
| 22 | 
            +
             | 
| 23 | 
            +
            ## MiniCPM-o 2.6
         | 
| 24 | 
            +
             | 
| 25 | 
            +
            **MiniCPM-o 2.6** is the latest and most capable model in the MiniCPM-o series. The model is built in an end-to-end fashion based on SigLip-400M, Whisper-medium-300M, ChatTTS-200M, and Qwen2.5-7B with a total of 8B parameters. It exhibits a significant performance improvement over MiniCPM-V 2.6, and introduces new features for realtime speech conversation and multimodal live streaming. Notable features of MiniCPM-o 2.6 include:
         | 
| 26 | 
            +
             | 
| 27 | 
            +
            - 🔥 **Leading Visual Capability.**
         | 
| 28 | 
            +
              MiniCPM-o 2.6 achieves an average score of 70.2 on OpenCompass, a comprehensive evaluation over 8 popular benchmarks. **With only 8B parameters, it surpasses widely used proprietary models like GPT-4o-202405, Gemini 1.5 Pro, and Claude 3.5 Sonnet** for single image understanding. It also **outperforms GPT-4V and Claude 3.5 Sonnet** in mutli-image and video understanding, and shows promising in-context learning capability.
         | 
| 29 | 
            +
             | 
| 30 | 
            +
            - 🎙 **State-of-the-art Speech Capability.** MiniCPM-o 2.6 supports **bilingual realtime speech conversation with configurable voices** in English and Chinese. It **outperforms GPT-4o-realtime on audio understanding tasks** such as ASR and STT translation, and shows **state-of-the-art performance on speech conversation in both semantic and acoustic evaluations in the open-source community**. It also allows for fun features such as emotion/speed/style control, voice cloning, role play, etc.
         | 
| 31 | 
            +
             | 
| 32 | 
            +
            - 🎬 **Strong Multimodal Live Streaming Capability.** As a new feature, MiniCPM-o 2.6 can **accept continous video and audio streams independent of user queries, and support realtime speech interaction**. It **outperforms GPT-4o-realtime and Claude 3.5 Sonnet and shows state-of-art performance in open-source community on StreamingBench**, a comprehensive benchmark for real-time video understanding, omni-source (video & audio) understanding , and multimodal contextual understanding.										
         | 
| 33 | 
            +
             | 
| 34 | 
            +
            - 💪 **Strong OCR Capability and Others.**
         | 
| 35 | 
            +
            Advancing popular visual capabilites from MiniCPM-V series, MiniCPM-o 2.6 can process images with any aspect ratio and up to 1.8 million pixels (e.g., 1344x1344). It achieves **state-of-the-art performance on OCRBench for models under 25B, surpassing proprietary models such as GPT-4o-202405**.
         | 
| 36 | 
            +
              Based on the the latest [RLAIF-V](https://github.com/RLHF-V/RLAIF-V/) and [VisCPM](https://github.com/OpenBMB/VisCPM) techniques, it features **trustworthy behaviors**, outperforming GPT-4o and Claude 3.5 Sonnet on MMHal-Bench, and supports **multilingual capabilities** on more than 30 languages.
         | 
| 37 | 
            +
             | 
| 38 | 
            +
             | 
| 39 | 
            +
            - 🚀 **Superior Efficiency.**
         | 
| 40 | 
            +
              In addition to its friendly size, MiniCPM-o 2.6 also shows **state-of-the-art token density** (i.e., number of pixels encoded into each visual token). **It produces only 640 tokens when processing a 1.8M pixel image, which is 75% fewer than most models**. This directly improves the inference speed, first-token latency, memory usage, and power consumption. As a result, MiniCPM-o 2.6 can efficiently support **multimodal live streaming** on end-side devices such as iPad.
         | 
| 41 | 
            +
             | 
| 42 | 
            +
            -  💫  **Easy Usage.**
         | 
| 43 | 
            +
            MiniCPM-o 2.6 can be easily used in various ways: (1) [llama.cpp](XXX) support for efficient CPU inference on local devices, (2) [int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4) and [GGUF](https://huggingface.co/openbmb/MiniCPM-o-2_6-gguf) format quantized models in 16 sizes, (3) [vLLM](#efficient-inference-with-llamacpp-ollama-vllm) support for high-throughput and memory-efficient inference, (4) fine-tuning on new domains and tasks with [LLaMA-Factory](./docs/llamafactory_train.md), (5) quick local WebUI demo setup with [Gradio](#chat-with-our-demo-on-gradio), and (6) online web demo on [CN](https://minicpm-omni-webdemo.modelbest.cn/ 
         | 
| 44 | 
            +
            ) server and [US](https://minicpm-omni-webdemo-us.modelbest.cn/) server.
         | 
| 45 | 
            +
             | 
| 46 | 
            +
             | 
| 47 | 
            +
            **Model Architecture.**
         | 
| 48 | 
            +
             | 
| 49 | 
            +
            - **End-to-end Omni-modal Architecture.** Different modality encoder/decoders are connected and trained in an end-to-end fashion to fully exploit rich multimodal knowledge.
         | 
| 50 | 
            +
            - **Omni-modal Live Streaming Mechanism.** (1) We change the offline modality encoder/decoders into online ones for streaminig inputs/outputs. (2) We devise a time-division multiplexing (TDM) mechanism for omni-modality streaminig processing in the LLM backbone. It divides parallel omni-modality streams into sequential info within small periodic time slices. 
         | 
| 51 | 
            +
            - **Configurable Speech Modeling Design.** We devise a multimodal system prompt, including traditional text system prompt, and a new audio system prompt to determine the assistant voice. This enables flexible voice configurations in inference time, and also facilitates voice cloning and description-based voice creation.
         | 
| 52 | 
            +
             | 
| 53 | 
            +
            <div align="center">
         | 
| 54 | 
            +
            <img src="https://github.com/yiranyyu/MiniCPM-V-private/blob/main/assets/minicpm-o-26-framework.png" , width=80%>
         | 
| 55 | 
            +
            </div>
         | 
| 56 | 
            +
             | 
| 57 | 
            +
            ### Evaluation  <!-- omit in toc -->
         | 
| 58 | 
            +
             | 
| 59 | 
            +
            <div align="center">
         | 
| 60 | 
            +
                <img src="https://github.com/OpenBMB/MiniCPM-V/raw/main/assets/radar.png" width=66% />
         | 
| 61 | 
            +
            </div>
         | 
| 62 | 
            +
             | 
| 63 | 
            +
            <details>
         | 
| 64 | 
            +
            <summary>Click to view visual understanding results.</summary>
         | 
| 65 | 
            +
             | 
| 66 | 
            +
            **Image Understanding**
         | 
| 67 | 
            +
             | 
| 68 | 
            +
            <div align="center">
         | 
| 69 | 
            +
            <table style="margin: 0px auto;">
         | 
| 70 | 
            +
                <thead>
         | 
| 71 | 
            +
                    <tr>
         | 
| 72 | 
            +
                        <th align="left">Model</th>
         | 
| 73 | 
            +
                        <th>Size</th>
         | 
| 74 | 
            +
                        <th>Token Density<sup>+</sup></th>
         | 
| 75 | 
            +
                        <th>OpenCompass</th>
         | 
| 76 | 
            +
                        <th>OCRBench</th>
         | 
| 77 | 
            +
                        <th>MathVista mini</th>
         | 
| 78 | 
            +
                        <th>ChartQA</th>
         | 
| 79 | 
            +
                        <th>MMVet</th>
         | 
| 80 | 
            +
                        <th>MMStar</th>
         | 
| 81 | 
            +
                        <th>MME</th>
         | 
| 82 | 
            +
                        <th>MMB1.1 test</th>
         | 
| 83 | 
            +
                        <th>AI2D</th>
         | 
| 84 | 
            +
                        <th>MMMU val</th>
         | 
| 85 | 
            +
                        <th>HallusionBench</th>
         | 
| 86 | 
            +
                        <th>TextVQA val</th>
         | 
| 87 | 
            +
                        <th>DocVQA test</th>
         | 
| 88 | 
            +
                        <th>MathVerse mini</th>
         | 
| 89 | 
            +
                        <th>MathVision</th>
         | 
| 90 | 
            +
                        <th>MMHal Score</th>
         | 
| 91 | 
            +
                    </tr>
         | 
| 92 | 
            +
                </thead>
         | 
| 93 | 
            +
                <tbody align="center">
         | 
| 94 | 
            +
                    <tr>
         | 
| 95 | 
            +
                        <td colspan="19" align="left"><strong>Proprietary</strong></td>
         | 
| 96 | 
            +
                    </tr>
         | 
| 97 | 
            +
                    <tr>
         | 
| 98 | 
            +
                        <td nowrap="nowrap" align="left">GPT-4o-20240513</td>
         | 
| 99 | 
            +
                        <td>-</td>
         | 
| 100 | 
            +
                        <td>1088</td>
         | 
| 101 | 
            +
                        <td><u>69.9</u></td>
         | 
| 102 | 
            +
                        <td>736</td>
         | 
| 103 | 
            +
                        <td>61.3</td>
         | 
| 104 | 
            +
                        <td>85.7</td>
         | 
| 105 | 
            +
                        <td><strong>69.1</strong></td>
         | 
| 106 | 
            +
                        <td>63.9</td>
         | 
| 107 | 
            +
                        <td>2328.7</td>
         | 
| 108 | 
            +
                        <td>82.2</td>
         | 
| 109 | 
            +
                        <td>84.6</td>
         | 
| 110 | 
            +
                        <td><strong>69.2</strong></td>
         | 
| 111 | 
            +
                        <td><strong>55.0</strong></td>
         | 
| 112 | 
            +
                        <td>-</td>
         | 
| 113 | 
            +
                        <td>92.8</td>
         | 
| 114 | 
            +
                        <td><strong>50.2</strong></td>
         | 
| 115 | 
            +
                        <td><strong>30.4</strong></td>
         | 
| 116 | 
            +
                        <td><u>3.6</u></td>
         | 
| 117 | 
            +
                    </tr>
         | 
| 118 | 
            +
                    <tr>
         | 
| 119 | 
            +
                        <td nowrap="nowrap" align="left">Claude3.5-Sonnet</td>
         | 
| 120 | 
            +
                        <td>-</td>
         | 
| 121 | 
            +
                        <td>750</td>
         | 
| 122 | 
            +
                        <td>67.9</td>
         | 
| 123 | 
            +
                        <td>788</td>
         | 
| 124 | 
            +
                        <td>61.6</td>
         | 
| 125 | 
            +
                        <td><strong>90.8</strong></td>
         | 
| 126 | 
            +
                        <td>66.0</td>
         | 
| 127 | 
            +
                        <td>62.2</td>
         | 
| 128 | 
            +
                        <td>1920.0</td>
         | 
| 129 | 
            +
                        <td>78.5</td>
         | 
| 130 | 
            +
                        <td>80.2</td>
         | 
| 131 | 
            +
                        <td><u>65.9</u></td>
         | 
| 132 | 
            +
                        <td>49.9</td>
         | 
| 133 | 
            +
                        <td>-</td>
         | 
| 134 | 
            +
                        <td><strong>95.2</strong></td>
         | 
| 135 | 
            +
                        <td>-</td>
         | 
| 136 | 
            +
                        <td>-</td>
         | 
| 137 | 
            +
                        <td>3.4</td>
         | 
| 138 | 
            +
                    </tr>
         | 
| 139 | 
            +
                    <tr>
         | 
| 140 | 
            +
                        <td nowrap="nowrap" align="left">Gemini-1.5-Pro</td>
         | 
| 141 | 
            +
                        <td>-</td>
         | 
| 142 | 
            +
                        <td>-</td>
         | 
| 143 | 
            +
                        <td>64.4</td>
         | 
| 144 | 
            +
                        <td>754</td>
         | 
| 145 | 
            +
                        <td>57.7</td>
         | 
| 146 | 
            +
                        <td>81.3</td>
         | 
| 147 | 
            +
                        <td>64.0</td>
         | 
| 148 | 
            +
                        <td>59.1</td>
         | 
| 149 | 
            +
                        <td>2110.6</td>
         | 
| 150 | 
            +
                        <td>73.9</td>
         | 
| 151 | 
            +
                        <td>79.1</td>
         | 
| 152 | 
            +
                        <td>60.6</td>
         | 
| 153 | 
            +
                        <td>45.6</td>
         | 
| 154 | 
            +
                        <td>73.5</td>
         | 
| 155 | 
            +
                        <td>86.5</td>
         | 
| 156 | 
            +
                        <td>-</td>
         | 
| 157 | 
            +
                        <td>19.2</td>
         | 
| 158 | 
            +
                        <td>-</td>
         | 
| 159 | 
            +
                    </tr>
         | 
| 160 | 
            +
                    <tr>
         | 
| 161 | 
            +
                        <td nowrap="nowrap" align="left">GPT-4o-mini-20240718</td>
         | 
| 162 | 
            +
                        <td>-</td>
         | 
| 163 | 
            +
                        <td>1088</td>
         | 
| 164 | 
            +
                        <td>64.1</td>
         | 
| 165 | 
            +
                        <td>785</td>
         | 
| 166 | 
            +
                        <td>52.4</td>
         | 
| 167 | 
            +
                        <td>-</td>
         | 
| 168 | 
            +
                        <td>66.9</td>
         | 
| 169 | 
            +
                        <td>54.8</td>
         | 
| 170 | 
            +
                        <td>2003.4</td>
         | 
| 171 | 
            +
                        <td>76.0</td>
         | 
| 172 | 
            +
                        <td>77.8</td>
         | 
| 173 | 
            +
                        <td>60.0</td>
         | 
| 174 | 
            +
                        <td>46.1</td>
         | 
| 175 | 
            +
                        <td>-</td>
         | 
| 176 | 
            +
                        <td>-</td>
         | 
| 177 | 
            +
                        <td>-</td>
         | 
| 178 | 
            +
                        <td>-</td>
         | 
| 179 | 
            +
                        <td>3.3</td>
         | 
| 180 | 
            +
                    </tr>
         | 
| 181 | 
            +
                    <tr>
         | 
| 182 | 
            +
                        <td colspan="19" align="left"><strong>Open Source</strong></td>
         | 
| 183 | 
            +
                    </tr>
         | 
| 184 | 
            +
                    <tr>
         | 
| 185 | 
            +
                        <td nowrap="nowrap" align="left">Cambrian-34B</td>
         | 
| 186 | 
            +
                        <td>34B</td>
         | 
| 187 | 
            +
                        <td><u>1820</u></td>
         | 
| 188 | 
            +
                        <td>58.3</td>
         | 
| 189 | 
            +
                        <td>591</td>
         | 
| 190 | 
            +
                        <td>50.3</td>
         | 
| 191 | 
            +
                        <td>75.6</td>
         | 
| 192 | 
            +
                        <td>53.2</td>
         | 
| 193 | 
            +
                        <td>54.2</td>
         | 
| 194 | 
            +
                        <td>2049.9</td>
         | 
| 195 | 
            +
                        <td>77.8</td>
         | 
| 196 | 
            +
                        <td>79.5</td>
         | 
| 197 | 
            +
                        <td>50.4</td>
         | 
| 198 | 
            +
                        <td>41.6</td>
         | 
| 199 | 
            +
                        <td>76.7</td>
         | 
| 200 | 
            +
                        <td>75.5</td>
         | 
| 201 | 
            +
                        <td>-</td>
         | 
| 202 | 
            +
                        <td>-</td>
         | 
| 203 | 
            +
                        <td>-</td>
         | 
| 204 | 
            +
                    </tr>
         | 
| 205 | 
            +
                    <tr>
         | 
| 206 | 
            +
                        <td nowrap="nowrap" align="left">GLM-4V-9B</td>
         | 
| 207 | 
            +
                        <td>13B</td>
         | 
| 208 | 
            +
                        <td>784</td>
         | 
| 209 | 
            +
                        <td>59.1</td>
         | 
| 210 | 
            +
                        <td>776</td>
         | 
| 211 | 
            +
                        <td>51.1</td>
         | 
| 212 | 
            +
                        <td>-</td>
         | 
| 213 | 
            +
                        <td>58.0</td>
         | 
| 214 | 
            +
                        <td>54.8</td>
         | 
| 215 | 
            +
                        <td>2018.8</td>
         | 
| 216 | 
            +
                        <td>67.9</td>
         | 
| 217 | 
            +
                        <td>71.2</td>
         | 
| 218 | 
            +
                        <td>46.9</td>
         | 
| 219 | 
            +
                        <td>45.0</td>
         | 
| 220 | 
            +
                        <td>-</td>
         | 
| 221 | 
            +
                        <td>-</td>
         | 
| 222 | 
            +
                        <td>-</td>
         | 
| 223 | 
            +
                        <td>-</td>
         | 
| 224 | 
            +
                        <td>-</td>
         | 
| 225 | 
            +
                    </tr>
         | 
| 226 | 
            +
                    <tr>
         | 
| 227 | 
            +
                        <td nowrap="nowrap" align="left">Pixtral-12B</td>
         | 
| 228 | 
            +
                        <td>12B</td>
         | 
| 229 | 
            +
                        <td>256</td>
         | 
| 230 | 
            +
                        <td>61.0</td>
         | 
| 231 | 
            +
                        <td>685</td>
         | 
| 232 | 
            +
                        <td>56.9</td>
         | 
| 233 | 
            +
                        <td>81.8</td>
         | 
| 234 | 
            +
                        <td>58.5</td>
         | 
| 235 | 
            +
                        <td>54.5</td>
         | 
| 236 | 
            +
                        <td>-</td>
         | 
| 237 | 
            +
                        <td>72.7</td>
         | 
| 238 | 
            +
                        <td>79.0</td>
         | 
| 239 | 
            +
                        <td>51.1</td>
         | 
| 240 | 
            +
                        <td>47.0</td>
         | 
| 241 | 
            +
                        <td>75.7</td>
         | 
| 242 | 
            +
                        <td>90.7</td>
         | 
| 243 | 
            +
                        <td>-</td>
         | 
| 244 | 
            +
                        <td>-</td>
         | 
| 245 | 
            +
                        <td>-</td>
         | 
| 246 | 
            +
                    </tr>
         | 
| 247 | 
            +
                    <tr>
         | 
| 248 | 
            +
                        <td nowrap="nowrap" align="left">DeepSeek-VL2-27B (4B)</td>
         | 
| 249 | 
            +
                        <td>27B</td>
         | 
| 250 | 
            +
                        <td>672</td>
         | 
| 251 | 
            +
                        <td>66.4</td>
         | 
| 252 | 
            +
                        <td>809</td>
         | 
| 253 | 
            +
                        <td>63.9</td>
         | 
| 254 | 
            +
                        <td>86.0</td>
         | 
| 255 | 
            +
                        <td>60.0</td>
         | 
| 256 | 
            +
                        <td>61.9</td>
         | 
| 257 | 
            +
                        <td>2253.0</td>
         | 
| 258 | 
            +
                        <td>81.2</td>
         | 
| 259 | 
            +
                        <td>83.8</td>
         | 
| 260 | 
            +
                        <td>54.0</td>
         | 
| 261 | 
            +
                        <td>45.3</td>
         | 
| 262 | 
            +
                        <td><u>84.2</u></td>
         | 
| 263 | 
            +
                        <td>93.3</td>
         | 
| 264 | 
            +
                        <td>-</td>
         | 
| 265 | 
            +
                        <td>-</td>
         | 
| 266 | 
            +
                        <td>3.0</td>
         | 
| 267 | 
            +
                    </tr>
         | 
| 268 | 
            +
                    <tr>
         | 
| 269 | 
            +
                        <td nowrap="nowrap" align="left">Qwen2-VL-7B</td>
         | 
| 270 | 
            +
                        <td>8B</td>
         | 
| 271 | 
            +
                        <td>784</td>
         | 
| 272 | 
            +
                        <td>67.1</td>
         | 
| 273 | 
            +
                        <td><u>866</u></td>
         | 
| 274 | 
            +
                        <td>58.2</td>
         | 
| 275 | 
            +
                        <td>83.0</td>
         | 
| 276 | 
            +
                        <td>62.0</td>
         | 
| 277 | 
            +
                        <td>60.7</td>
         | 
| 278 | 
            +
                        <td>2326.0</td>
         | 
| 279 | 
            +
                        <td>81.8</td>
         | 
| 280 | 
            +
                        <td>83.0</td>
         | 
| 281 | 
            +
                        <td>54.1</td>
         | 
| 282 | 
            +
                        <td>50.6</td>
         | 
| 283 | 
            +
                        <td><strong>84.3</strong></td>
         | 
| 284 | 
            +
                        <td><u>94.5</u></td>
         | 
| 285 | 
            +
                        <td>31.9</td>
         | 
| 286 | 
            +
                        <td>16.3</td>
         | 
| 287 | 
            +
                        <td>3.2</td>
         | 
| 288 | 
            +
                    </tr>
         | 
| 289 | 
            +
                    <tr>
         | 
| 290 | 
            +
                        <td nowrap="nowrap" align="left">LLaVA-OneVision-72B</td>
         | 
| 291 | 
            +
                        <td>72B</td>
         | 
| 292 | 
            +
                        <td>182</td>
         | 
| 293 | 
            +
                        <td>68.1</td>
         | 
| 294 | 
            +
                        <td>741</td>
         | 
| 295 | 
            +
                        <td>67.5</td>
         | 
| 296 | 
            +
                        <td>83.7</td>
         | 
| 297 | 
            +
                        <td>60.6</td>
         | 
| 298 | 
            +
                        <td><strong>65.8</strong></td>
         | 
| 299 | 
            +
                        <td>2261.0</td>
         | 
| 300 | 
            +
                        <td><strong>85.0</strong></td>
         | 
| 301 | 
            +
                        <td><u>85.6</u></td>
         | 
| 302 | 
            +
                        <td>56.8</td>
         | 
| 303 | 
            +
                        <td>49.0</td>
         | 
| 304 | 
            +
                        <td>80.5</td>
         | 
| 305 | 
            +
                        <td>91.3</td>
         | 
| 306 | 
            +
                        <td>39.1</td>
         | 
| 307 | 
            +
                        <td>-</td>
         | 
| 308 | 
            +
                        <td>3.5</td>
         | 
| 309 | 
            +
                    </tr>
         | 
| 310 | 
            +
                    <tr>
         | 
| 311 | 
            +
                        <td nowrap="nowrap" align="left">InternVL-2.5-8B</td>
         | 
| 312 | 
            +
                        <td>8B</td>
         | 
| 313 | 
            +
                        <td>706</td>
         | 
| 314 | 
            +
                        <td>68.3</td>
         | 
| 315 | 
            +
                        <td>822</td>
         | 
| 316 | 
            +
                        <td><u>64.4</u></td>
         | 
| 317 | 
            +
                        <td>84.8</td>
         | 
| 318 | 
            +
                        <td>62.8</td>
         | 
| 319 | 
            +
                        <td>62.8</td>
         | 
| 320 | 
            +
                        <td>2344.0</td>
         | 
| 321 | 
            +
                        <td><u>83.6</u></td>
         | 
| 322 | 
            +
                        <td>84.5</td>
         | 
| 323 | 
            +
                        <td>56.0</td>
         | 
| 324 | 
            +
                        <td>50.1</td>
         | 
| 325 | 
            +
                        <td>79.1</td>
         | 
| 326 | 
            +
                        <td>93.0</td>
         | 
| 327 | 
            +
                        <td>39.5</td>
         | 
| 328 | 
            +
                        <td>19.7</td>
         | 
| 329 | 
            +
                        <td>3.4</td>
         | 
| 330 | 
            +
                    </tr>
         | 
| 331 | 
            +
                    <tr>
         | 
| 332 | 
            +
                        <td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
         | 
| 333 | 
            +
                        <td>8B</td>
         | 
| 334 | 
            +
                        <td><strong>2822</strong></td>
         | 
| 335 | 
            +
                        <td>65.2</td>
         | 
| 336 | 
            +
                        <td>852*</td>
         | 
| 337 | 
            +
                        <td>60.6</td>
         | 
| 338 | 
            +
                        <td>79.4</td>
         | 
| 339 | 
            +
                        <td>60.0</td>
         | 
| 340 | 
            +
                        <td>57.5</td>
         | 
| 341 | 
            +
                        <td><u>2348.4*</u></td>
         | 
| 342 | 
            +
                        <td>78.0</td>
         | 
| 343 | 
            +
                        <td>82.1</td>
         | 
| 344 | 
            +
                        <td>49.8*</td>
         | 
| 345 | 
            +
                        <td>48.1*</td>
         | 
| 346 | 
            +
                        <td>80.1</td>
         | 
| 347 | 
            +
                        <td>90.8</td>
         | 
| 348 | 
            +
                        <td>25.7</td>
         | 
| 349 | 
            +
                        <td>18.3</td>
         | 
| 350 | 
            +
                        <td>3.6</td>
         | 
| 351 | 
            +
                    </tr>
         | 
| 352 | 
            +
                    <tr>
         | 
| 353 | 
            +
                        <td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
         | 
| 354 | 
            +
                        <td>8B</td>
         | 
| 355 | 
            +
                        <td><strong>2822</strong></td>
         | 
| 356 | 
            +
                        <td><strong>70.2</strong></td>
         | 
| 357 | 
            +
                        <td><strong>897*</strong></td>
         | 
| 358 | 
            +
                        <td><strong>71.9*</strong></td>
         | 
| 359 | 
            +
                        <td><u>86.9*</u></td>
         | 
| 360 | 
            +
                        <td><u>67.5</u></td>
         | 
| 361 | 
            +
                        <td><u>64.0</u></td>
         | 
| 362 | 
            +
                        <td><strong>2372.0*</strong></td>
         | 
| 363 | 
            +
                        <td>80.5</td>
         | 
| 364 | 
            +
                        <td><strong>85.8</strong></td>
         | 
| 365 | 
            +
                        <td>50.4*</td>
         | 
| 366 | 
            +
                        <td><u>51.9</u></td>
         | 
| 367 | 
            +
                        <td>82.0</td>
         | 
| 368 | 
            +
                        <td>93.5</td>
         | 
| 369 | 
            +
                        <td><u>41.4*</u></td>
         | 
| 370 | 
            +
                        <td><u>23.1*</u></td>
         | 
| 371 | 
            +
                        <td><strong>3.8</strong></td>
         | 
| 372 | 
            +
                    </tr>
         | 
| 373 | 
            +
                </tbody>
         | 
| 374 | 
            +
            </table>
         | 
| 375 | 
            +
            </div>
         | 
| 376 | 
            +
            * We evaluate this benchmark using chain-of-thought prompting. Specifically, for MME, we used this technique only for the Cognition set.
         | 
| 377 | 
            +
             | 
| 378 | 
            +
             | 
| 379 | 
            +
            <sup>+</sup> Token Density: number of pixels encoded into each visual token at maximum resolution, i.e., # pixels at maximum resolution / # visual tokens.
         | 
| 380 | 
            +
             | 
| 381 | 
            +
            Note: For proprietary models, we calculate token density based on the image encoding charging strategy defined in the official API documentation, which provides an upper-bound estimation.
         | 
| 382 | 
            +
             | 
| 383 | 
            +
             | 
| 384 | 
            +
            **Multi-image and Video Understanding**
         | 
| 385 | 
            +
             | 
| 386 | 
            +
            <div align="center">
         | 
| 387 | 
            +
             
         | 
| 388 | 
            +
            <table style="margin: 0px auto;">
         | 
| 389 | 
            +
                <thead>
         | 
| 390 | 
            +
                    <tr>
         | 
| 391 | 
            +
                        <th align="left">Model</th>
         | 
| 392 | 
            +
                        <th>Size</th>
         | 
| 393 | 
            +
                        <th>BLINK-val</th>
         | 
| 394 | 
            +
                        <th>Mantis-Eval</th>
         | 
| 395 | 
            +
                        <th>MIRB</th>
         | 
| 396 | 
            +
                        <th>Video-MME (wo / w subs)</th>
         | 
| 397 | 
            +
                    </tr>
         | 
| 398 | 
            +
                </thead>
         | 
| 399 | 
            +
                <tbody align="center">
         | 
| 400 | 
            +
                    <tr>
         | 
| 401 | 
            +
                        <td colspan="6" align="left"><strong>Proprietary</strong></td>
         | 
| 402 | 
            +
                    </tr>
         | 
| 403 | 
            +
                    <tr>
         | 
| 404 | 
            +
                        <td nowrap="nowrap" align="left">GPT-4o-20240513</td>
         | 
| 405 | 
            +
                        <td>-</td>
         | 
| 406 | 
            +
                        <td><strong>68</strong></td>
         | 
| 407 | 
            +
                        <td>-</td>
         | 
| 408 | 
            +
                        <td>-</td>
         | 
| 409 | 
            +
                        <td><strong>71.9/77.2<strong></td>
         | 
| 410 | 
            +
                    </tr>
         | 
| 411 | 
            +
                    <tr>
         | 
| 412 | 
            +
                        <td nowrap="nowrap" align="left">GPT4V</td>
         | 
| 413 | 
            +
                        <td>-</td>
         | 
| 414 | 
            +
                        <td>54.6</td>
         | 
| 415 | 
            +
                        <td>62.7</td>
         | 
| 416 | 
            +
                        <td>53.1</td>
         | 
| 417 | 
            +
                        <td>59.9/63.3</td>
         | 
| 418 | 
            +
                    </tr>
         | 
| 419 | 
            +
                    <tr>
         | 
| 420 | 
            +
                        <td colspan="6" align="left"><strong>Open-source</strong></td>
         | 
| 421 | 
            +
                    </tr>
         | 
| 422 | 
            +
                    <tr>
         | 
| 423 | 
            +
                        <td nowrap="nowrap" align="left">LLaVA-NeXT-Interleave 14B</td>
         | 
| 424 | 
            +
                        <td>14B</td>
         | 
| 425 | 
            +
                        <td>52.6</td>
         | 
| 426 | 
            +
                        <td>66.4</td>
         | 
| 427 | 
            +
                        <td>30.2</td>
         | 
| 428 | 
            +
                        <td>-</td>
         | 
| 429 | 
            +
                    </tr>
         | 
| 430 | 
            +
                    <tr>
         | 
| 431 | 
            +
                        <td nowrap="nowrap" align="left">LLaVA-One-Vision-72B</td>
         | 
| 432 | 
            +
                        <td>72B</td>
         | 
| 433 | 
            +
                        <td>55.4</td>
         | 
| 434 | 
            +
                        <td><strong>77.6</strong></td>
         | 
| 435 | 
            +
                        <td>-</td>
         | 
| 436 | 
            +
                        <td><u>66.2/69.5</u></td>
         | 
| 437 | 
            +
                    </tr>
         | 
| 438 | 
            +
                    <tr>
         | 
| 439 | 
            +
                        <td nowrap="nowrap" align="left">MANTIS 8B</td>
         | 
| 440 | 
            +
                        <td>8B</td>
         | 
| 441 | 
            +
                        <td>49.1</td>
         | 
| 442 | 
            +
                        <td>59.5</td>
         | 
| 443 | 
            +
                        <td>34.8</td>
         | 
| 444 | 
            +
                        <td>-</td>
         | 
| 445 | 
            +
                    </tr>
         | 
| 446 | 
            +
                    <tr>
         | 
| 447 | 
            +
                        <td nowrap="nowrap" align="left">Qwen2-VL-7B</td>
         | 
| 448 | 
            +
                        <td>8B</td>
         | 
| 449 | 
            +
                        <td>53.2</td>
         | 
| 450 | 
            +
                        <td>69.6*</td>
         | 
| 451 | 
            +
                        <td><strong>67.6*</strong></td>
         | 
| 452 | 
            +
                        <td>63.3/69.0</td>
         | 
| 453 | 
            +
                    </tr>
         | 
| 454 | 
            +
                    <tr>
         | 
| 455 | 
            +
                        <td nowrap="nowrap" align="left">InternVL-2.5-8B</td>
         | 
| 456 | 
            +
                        <td>8B</td>
         | 
| 457 | 
            +
                        <td>54.8</td>
         | 
| 458 | 
            +
                        <td>67.7</td>
         | 
| 459 | 
            +
                        <td>52.5</td>
         | 
| 460 | 
            +
                        <td>64.2/66.9</td>
         | 
| 461 | 
            +
                    </tr>
         | 
| 462 | 
            +
                    <tr>
         | 
| 463 | 
            +
                        <td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
         | 
| 464 | 
            +
                        <td>8B</td>
         | 
| 465 | 
            +
                        <td>53</td>
         | 
| 466 | 
            +
                        <td>69.1</td>
         | 
| 467 | 
            +
                        <td>53.8</td>
         | 
| 468 | 
            +
                        <td>60.9/63.6</td>
         | 
| 469 | 
            +
                    </tr>
         | 
| 470 | 
            +
                    <tr>
         | 
| 471 | 
            +
                        <td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
         | 
| 472 | 
            +
                        <td>8B</td>
         | 
| 473 | 
            +
                        <td><u>56.7</u></td>
         | 
| 474 | 
            +
                        <td><u>71.9</u></td>
         | 
| 475 | 
            +
                        <td><u>58.6</u></td>
         | 
| 476 | 
            +
                        <td>63.9/67.9</td>
         | 
| 477 | 
            +
                    </tr>
         | 
| 478 | 
            +
                </tbody>
         | 
| 479 | 
            +
            </table>
         | 
| 480 | 
            +
             | 
| 481 | 
            +
            </div>
         | 
| 482 | 
            +
            * We evaluate officially released checkpoints by ourselves.
         | 
| 483 | 
            +
             | 
| 484 | 
            +
            </details>
         | 
| 485 | 
            +
             | 
| 486 | 
            +
             | 
| 487 | 
            +
            <details>
         | 
| 488 | 
            +
            <summary>Click to view audio understanding and speech conversation results.</summary>
         | 
| 489 | 
            +
             | 
| 490 | 
            +
            **Audio Understanding**
         | 
| 491 | 
            +
             | 
| 492 | 
            +
            <div align="center">
         | 
| 493 | 
            +
            <table style="margin: 0px auto;">
         | 
| 494 | 
            +
                <thead>
         | 
| 495 | 
            +
                    <tr>
         | 
| 496 | 
            +
                        <th align="left">Task</th>
         | 
| 497 | 
            +
                        <th>Size</th>
         | 
| 498 | 
            +
                        <th colspan="3">ASR (zh)</th>
         | 
| 499 | 
            +
                        <th colspan="3">ASR (en)</th>
         | 
| 500 | 
            +
                        <th colspan="2">ASR</th>
         | 
| 501 | 
            +
                        <th>Emotion</th>
         | 
| 502 | 
            +
                    </tr>
         | 
| 503 | 
            +
                    <tr>
         | 
| 504 | 
            +
                        <th align="left">Metric</th>
         | 
| 505 | 
            +
                        <td></td>
         | 
| 506 | 
            +
                        <th colspan="3">CER↓</th>
         | 
| 507 | 
            +
                        <th colspan="3">WER↓</th>
         | 
| 508 | 
            +
                        <th colspan="2">BLEU↑</th>
         | 
| 509 | 
            +
                        <th>ACC↑</th>
         | 
| 510 | 
            +
                    </tr>
         | 
| 511 | 
            +
                    <tr>
         | 
| 512 | 
            +
                        <th align="left">Dataset</th>
         | 
| 513 | 
            +
                        <td></td>
         | 
| 514 | 
            +
                        <th>AISHELL-1</th>
         | 
| 515 | 
            +
                        <th>Fleurs zh</th>
         | 
| 516 | 
            +
                        <th>WenetSpeech test-net</th>
         | 
| 517 | 
            +
                        <th>LibriSpeech test-clean</th>
         | 
| 518 | 
            +
                        <th>GigaSpeech</th>
         | 
| 519 | 
            +
                        <th>TED-LIUM</th>
         | 
| 520 | 
            +
                        <th>CoVoST en2zh</th>
         | 
| 521 | 
            +
                        <th>CoVoST zh2en</th>
         | 
| 522 | 
            +
                        <th>MELD emotion</th>
         | 
| 523 | 
            +
                    </tr>
         | 
| 524 | 
            +
                </thead>
         | 
| 525 | 
            +
                <tbody align="center">
         | 
| 526 | 
            +
                    <tr>
         | 
| 527 | 
            +
                        <td colspan="11" align="left"><strong>Proprietary</strong></td>
         | 
| 528 | 
            +
                    </tr>
         | 
| 529 | 
            +
                    <tr>
         | 
| 530 | 
            +
                        <td nowrap="nowrap" align="left">GPT-4o-Realtime</td>
         | 
| 531 | 
            +
                        <td>-</td>
         | 
| 532 | 
            +
                        <td>7.3*</td>
         | 
| 533 | 
            +
                        <td><u>5.4*</u></td>
         | 
| 534 | 
            +
                        <td>28.9*</td>
         | 
| 535 | 
            +
                        <td>2.6*</td>
         | 
| 536 | 
            +
                        <td>12.9*</td>
         | 
| 537 | 
            +
                        <td>4.8*</td>
         | 
| 538 | 
            +
                        <td>37.1*</td>
         | 
| 539 | 
            +
                        <td>15.7*</td>
         | 
| 540 | 
            +
                        <td>33.2*</td>
         | 
| 541 | 
            +
                    </tr>
         | 
| 542 | 
            +
                    <tr>
         | 
| 543 | 
            +
                        <td nowrap="nowrap" align="left">Gemini-1.5-Pro</td>
         | 
| 544 | 
            +
                        <td>-</td>
         | 
| 545 | 
            +
                        <td>4.5*</td>
         | 
| 546 | 
            +
                        <td>5.9*</td>
         | 
| 547 | 
            +
                        <td>14.3*</td>
         | 
| 548 | 
            +
                        <td>2.9*</td>
         | 
| 549 | 
            +
                        <td>10.6*</td>
         | 
| 550 | 
            +
                        <td><strong>3.0*</strong></td>
         | 
| 551 | 
            +
                        <td><u>47.3*</u></td>
         | 
| 552 | 
            +
                        <td>22.6*</td>
         | 
| 553 | 
            +
                        <td>48.4*</td>
         | 
| 554 | 
            +
                    </tr>
         | 
| 555 | 
            +
                    <tr>
         | 
| 556 | 
            +
                        <td colspan="11" align="left"><strong>Open-Source</strong></td>
         | 
| 557 | 
            +
                    </tr>
         | 
| 558 | 
            +
                    <tr>
         | 
| 559 | 
            +
                        <td nowrap="nowrap" align="left">Qwen2-Audio</td>
         | 
| 560 | 
            +
                        <td>8B</td>
         | 
| 561 | 
            +
                        <td>-</td>
         | 
| 562 | 
            +
                        <td>7.5</td>
         | 
| 563 | 
            +
                        <td>-</td>
         | 
| 564 | 
            +
                        <td><strong>1.6</strong></td>
         | 
| 565 | 
            +
                        <td>-</td>
         | 
| 566 | 
            +
                        <td>-</td>
         | 
| 567 | 
            +
                        <td>45.2</td>
         | 
| 568 | 
            +
                        <td><u>24.4</u></td>
         | 
| 569 | 
            +
                        <td><strong>55.3</strong></td>
         | 
| 570 | 
            +
                    </tr>
         | 
| 571 | 
            +
                    <tr>
         | 
| 572 | 
            +
                        <td nowrap="nowrap" align="left">Qwen2-Audio-Instruction</td>
         | 
| 573 | 
            +
                        <td>8B</td>
         | 
| 574 | 
            +
                        <td>2.6*</td>
         | 
| 575 | 
            +
                        <td>6.9*</td>
         | 
| 576 | 
            +
                        <td><u>10.3*</u></td>
         | 
| 577 | 
            +
                        <td>3.1*</td>
         | 
| 578 | 
            +
                        <td><u>9.7</u>*</td>
         | 
| 579 | 
            +
                        <td>5.9*</td>
         | 
| 580 | 
            +
                        <td>39.5*</td>
         | 
| 581 | 
            +
                        <td>22.9*</td>
         | 
| 582 | 
            +
                        <td>17.4*</td>
         | 
| 583 | 
            +
                    </tr>
         | 
| 584 | 
            +
                    <tr>
         | 
| 585 | 
            +
                        <td nowrap="nowrap" align="left">GLM-4-Voice-Base</td>
         | 
| 586 | 
            +
                        <td>9B</td>
         | 
| 587 | 
            +
                        <td><u>2.5</u></td>
         | 
| 588 | 
            +
                        <td>-</td>
         | 
| 589 | 
            +
                        <td>-</td>
         | 
| 590 | 
            +
                        <td>2.8</td>
         | 
| 591 | 
            +
                        <td>-</td>
         | 
| 592 | 
            +
                        <td>-</td>
         | 
| 593 | 
            +
                        <td>-</td>
         | 
| 594 | 
            +
                        <td>-</td>
         | 
| 595 | 
            +
                    </tr>
         | 
| 596 | 
            +
                    <tr style="background-color: #e6f2ff;">
         | 
| 597 | 
            +
                        <td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
         | 
| 598 | 
            +
                        <td>8B</td>
         | 
| 599 | 
            +
                        <td><strong>1.6</strong></td>
         | 
| 600 | 
            +
                        <td><strong>4.4</strong></td>
         | 
| 601 | 
            +
                        <td><strong>6.9</strong></td>
         | 
| 602 | 
            +
                        <td><u>1.7</u></td>
         | 
| 603 | 
            +
                        <td><strong>8.7</strong></td>
         | 
| 604 | 
            +
                        <td><strong>3.0</strong></td>
         | 
| 605 | 
            +
                        <td><strong>48.2</strong></td>
         | 
| 606 | 
            +
                        <td><strong>27.2</strong></td>
         | 
| 607 | 
            +
                        <td><u>52.4</u></td>
         | 
| 608 | 
            +
                    </tr>
         | 
| 609 | 
            +
                </tbody>
         | 
| 610 | 
            +
            </table>
         | 
| 611 | 
            +
            </div>
         | 
| 612 | 
            +
            * We evaluate officially released checkpoints by ourselves.<br><br>
         | 
| 613 | 
            +
             | 
| 614 | 
            +
            **Speech Generation**
         | 
| 615 | 
            +
             | 
| 616 | 
            +
            <div align="center">
         | 
| 617 | 
            +
            <table style="margin: 0px auto;">
         | 
| 618 | 
            +
                <thead>
         | 
| 619 | 
            +
                    <tr>
         | 
| 620 | 
            +
                        <th align="left">Task</th>
         | 
| 621 | 
            +
                        <th>Size</th>
         | 
| 622 | 
            +
                        <th colspan="9">SpeechQA</th>
         | 
| 623 | 
            +
                    </tr>
         | 
| 624 | 
            +
                    <tr>
         | 
| 625 | 
            +
                        <th align="left">Metric</th>
         | 
| 626 | 
            +
                        <th></th>
         | 
| 627 | 
            +
                        <th colspan="3">ACC↑</th>
         | 
| 628 | 
            +
                        <th>G-Eval (10 point)↑</th>
         | 
| 629 | 
            +
                        <th>Semantic ELO score↑</th>
         | 
| 630 | 
            +
                        <th>Acoustic ELO score↑</th>
         | 
| 631 | 
            +
                        <th>Overall ELO score↑</th>
         | 
| 632 | 
            +
                        <th>UTMOS↑</th>
         | 
| 633 | 
            +
                        <th>ASR-WER↓</th>
         | 
| 634 | 
            +
                    </tr>
         | 
| 635 | 
            +
                    <tr>
         | 
| 636 | 
            +
                        <th align="left">Dataset</th>
         | 
| 637 | 
            +
                        <th></th>
         | 
| 638 | 
            +
                        <th>Speech Llama Q.</th>
         | 
| 639 | 
            +
                        <th>Speech Web Q.</th>
         | 
| 640 | 
            +
                        <th>Speech Trivia QA</th>
         | 
| 641 | 
            +
                        <th>Speech AlpacaEval</th>
         | 
| 642 | 
            +
                        <th colspan="5">AudioArena</th>
         | 
| 643 | 
            +
                    </tr>
         | 
| 644 | 
            +
                </thead>
         | 
| 645 | 
            +
                <tbody align="center">
         | 
| 646 | 
            +
                    <tr>
         | 
| 647 | 
            +
                        <td colspan="11" align="left"><strong>Proprietary</strong></td>
         | 
| 648 | 
            +
                    </tr>
         | 
| 649 | 
            +
                    <tr>
         | 
| 650 | 
            +
                        <td nowrap="nowrap" align="left">GPT-4o-Realtime</td>
         | 
| 651 | 
            +
                        <td></td>
         | 
| 652 | 
            +
                        <td><strong>71.7</strong></td>
         | 
| 653 | 
            +
                        <td><strong>51.6</strong></td>
         | 
| 654 | 
            +
                        <td><strong>69.7</strong></td>
         | 
| 655 | 
            +
                        <td><strong>7.4</strong></td>
         | 
| 656 | 
            +
                        <td><strong>1157</strong></td>
         | 
| 657 | 
            +
                        <td><strong>1203</strong></td>
         | 
| 658 | 
            +
                        <td><strong>1200</strong></td>
         | 
| 659 | 
            +
                        <td><strong>4.2</strong></td>
         | 
| 660 | 
            +
                        <td><strong>2.3</strong></td>
         | 
| 661 | 
            +
                    </tr>
         | 
| 662 | 
            +
                    <tr>
         | 
| 663 | 
            +
                        <td colspan="11" align="left"><strong>Open-Source</strong></td>
         | 
| 664 | 
            +
                    </tr>
         | 
| 665 | 
            +
                    <tr>
         | 
| 666 | 
            +
                        <td nowrap="nowrap" align="left">GLM-4-Voice</td>
         | 
| 667 | 
            +
                        <td>9B</td>
         | 
| 668 | 
            +
                        <td>50.0</td>
         | 
| 669 | 
            +
                        <td>32.0</td>
         | 
| 670 | 
            +
                        <td>36.4</td>
         | 
| 671 | 
            +
                        <td><u>5.1</u></td>
         | 
| 672 | 
            +
                        <td>999</td>
         | 
| 673 | 
            +
                        <td>1147</td>
         | 
| 674 | 
            +
                        <td>1035</td>
         | 
| 675 | 
            +
                        <td><u>4.1</u></td>
         | 
| 676 | 
            +
                        <td><u>11.7</u></td>
         | 
| 677 | 
            +
                    </tr>
         | 
| 678 | 
            +
                    <tr>
         | 
| 679 | 
            +
                        <td nowrap="nowrap" align="left">Llama-Omni</td>
         | 
| 680 | 
            +
                        <td>8B</td>
         | 
| 681 | 
            +
                        <td>45.3</td>
         | 
| 682 | 
            +
                        <td>22.9</td>
         | 
| 683 | 
            +
                        <td>10.7</td>
         | 
| 684 | 
            +
                        <td>3.9</td>
         | 
| 685 | 
            +
                        <td>960</td>
         | 
| 686 | 
            +
                        <td>878</td>
         | 
| 687 | 
            +
                        <td>897</td>
         | 
| 688 | 
            +
                        <td>3.2</td>
         | 
| 689 | 
            +
                        <td>24.3</td>
         | 
| 690 | 
            +
                    </tr>
         | 
| 691 | 
            +
                    <tr>
         | 
| 692 | 
            +
                        <td nowrap="nowrap" align="left">Moshi</td>
         | 
| 693 | 
            +
                        <td>7B</td>
         | 
| 694 | 
            +
                        <td>43.7</td>
         | 
| 695 | 
            +
                        <td>23.8</td>
         | 
| 696 | 
            +
                        <td>16.7</td>
         | 
| 697 | 
            +
                        <td>2.4</td>
         | 
| 698 | 
            +
                        <td>871</td>
         | 
| 699 | 
            +
                        <td>808</td>
         | 
| 700 | 
            +
                        <td>875</td>
         | 
| 701 | 
            +
                        <td>2.8</td>
         | 
| 702 | 
            +
                        <td>8.2</td>
         | 
| 703 | 
            +
                    </tr>
         | 
| 704 | 
            +
                    <tr>
         | 
| 705 | 
            +
                        <td nowrap="nowrap" align="left">Mini-Omni</td>
         | 
| 706 | 
            +
                        <td>1B</td>
         | 
| 707 | 
            +
                        <td>22.0</td>
         | 
| 708 | 
            +
                        <td>12.8</td>
         | 
| 709 | 
            +
                        <td>6.9</td>
         | 
| 710 | 
            +
                        <td>2.5</td>
         | 
| 711 | 
            +
                        <td>926</td>
         | 
| 712 | 
            +
                        <td>803</td>
         | 
| 713 | 
            +
                        <td>865</td>
         | 
| 714 | 
            +
                        <td>3.4</td>
         | 
| 715 | 
            +
                        <td>10.0</td>
         | 
| 716 | 
            +
                    </tr>
         | 
| 717 | 
            +
                    <tr style="background-color: #e6f2ff;">
         | 
| 718 | 
            +
                        <td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
         | 
| 719 | 
            +
                        <td>8B</td>
         | 
| 720 | 
            +
                        <td><u>61.0</u></td>
         | 
| 721 | 
            +
                        <td><u>40.0</u></td>
         | 
| 722 | 
            +
                        <td><u>40.2</u></td>
         | 
| 723 | 
            +
                        <td><u>5.1</u></td>
         | 
| 724 | 
            +
                        <td><u>1088</u></td>
         | 
| 725 | 
            +
                        <td><u>1163</u></td>
         | 
| 726 | 
            +
                        <td><u>1131</u></td>
         | 
| 727 | 
            +
                        <td><strong>4.2</strong></td>
         | 
| 728 | 
            +
                        <td>9.8</td>
         | 
| 729 | 
            +
                    </tr>
         | 
| 730 | 
            +
                </tbody>
         | 
| 731 | 
            +
            </table>
         | 
| 732 | 
            +
            </div>
         | 
| 733 | 
            +
            All results are from AudioEvals, and the evaluation methods along with further details can be found in <a href="https://github.com/OpenBMB/UltraEval-Audio" target="_blank">AudioEvals</a>.<br><br>
         | 
| 734 | 
            +
             | 
| 735 | 
            +
            **Voice Cloning**
         | 
| 736 | 
            +
             | 
| 737 | 
            +
            <div align="center">
         | 
| 738 | 
            +
            <table style="margin: 0px auto;">
         | 
| 739 | 
            +
                <thead>
         | 
| 740 | 
            +
                    <tr>
         | 
| 741 | 
            +
                        <th align="left">Task</th>
         | 
| 742 | 
            +
                        <th colspan="2">Voice cloning</th>
         | 
| 743 | 
            +
                    </tr>
         | 
| 744 | 
            +
                    <tr>
         | 
| 745 | 
            +
                        <th align="left">Metric</th>
         | 
| 746 | 
            +
                        <th>SIMO↑</th>
         | 
| 747 | 
            +
                        <th>SIMO↑</th>
         | 
| 748 | 
            +
                    </tr>
         | 
| 749 | 
            +
                    <tr>
         | 
| 750 | 
            +
                        <th align="left">Dataset</th>
         | 
| 751 | 
            +
                        <th>Seed-TTS test-zh</th>
         | 
| 752 | 
            +
                        <th>Seed-TTS test-en</th>
         | 
| 753 | 
            +
                    </tr>
         | 
| 754 | 
            +
                </thead>
         | 
| 755 | 
            +
                <tbody align="center">
         | 
| 756 | 
            +
                    <tr>
         | 
| 757 | 
            +
                        <td nowrap="nowrap" align="left">F5-TTS</td>
         | 
| 758 | 
            +
                        <td><strong>76</strong></td>
         | 
| 759 | 
            +
                        <td><strong>67</strong></td>
         | 
| 760 | 
            +
                    </tr>
         | 
| 761 | 
            +
                    <tr>
         | 
| 762 | 
            +
                        <td nowrap="nowrap" align="left">CosyVoice</td>
         | 
| 763 | 
            +
                        <td><u>75</u></td>
         | 
| 764 | 
            +
                        <td><u>64</u></td>
         | 
| 765 | 
            +
                    </tr>
         | 
| 766 | 
            +
                    <tr>
         | 
| 767 | 
            +
                        <td nowrap="nowrap" align="left">FireRedTTS</td>
         | 
| 768 | 
            +
                        <td>63</td>
         | 
| 769 | 
            +
                        <td>46</td>
         | 
| 770 | 
            +
                    </tr>
         | 
| 771 | 
            +
                    <tr style="background-color: #e6f2ff;">
         | 
| 772 | 
            +
                        <td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
         | 
| 773 | 
            +
                        <td>57</td>
         | 
| 774 | 
            +
                        <td>47</td>
         | 
| 775 | 
            +
                    </tr>
         | 
| 776 | 
            +
                </tbody>
         | 
| 777 | 
            +
            </table>
         | 
| 778 | 
            +
            </div>
         | 
| 779 | 
            +
            Note: Mimick Task: Takes audio input, and outputs both an ASR transcription and a voice imitation (TTS)
         | 
| 780 | 
            +
             | 
| 781 | 
            +
            </details>
         | 
| 782 | 
            +
             | 
| 783 | 
            +
            <details>
         | 
| 784 | 
            +
            <summary>Click to view multimodal live streaming results.</summary>
         | 
| 785 | 
            +
              
         | 
| 786 | 
            +
            **Multimodal Live Streaming**: results on StreamingBench
         | 
| 787 | 
            +
             | 
| 788 | 
            +
            <table style="margin: 0px auto;">
         | 
| 789 | 
            +
                <thead>
         | 
| 790 | 
            +
                    <tr>
         | 
| 791 | 
            +
                        <th align="left">Model</th>
         | 
| 792 | 
            +
                        <th>Size</th>
         | 
| 793 | 
            +
                        <th>Real-Time Video Understanding</th>
         | 
| 794 | 
            +
                        <th>Omni-Source Understanding</th>
         | 
| 795 | 
            +
                        <th>Contextual Understanding</th>
         | 
| 796 | 
            +
                        <th>Overall</th>
         | 
| 797 | 
            +
                    </tr>
         | 
| 798 | 
            +
                </thead>
         | 
| 799 | 
            +
                <tbody align="center">
         | 
| 800 | 
            +
                    <tr>
         | 
| 801 | 
            +
                        <td colspan="7" align="left"><strong>Proprietary</strong></td>
         | 
| 802 | 
            +
                    </tr>
         | 
| 803 | 
            +
                    <tr>
         | 
| 804 | 
            +
                        <td nowrap="nowrap" align="left">Gemini 1.5 Pro</td>
         | 
| 805 | 
            +
                        <td>-</td>
         | 
| 806 | 
            +
                        <td><u>77.4</u></td>
         | 
| 807 | 
            +
                        <td><strong>67.8</strong></td>
         | 
| 808 | 
            +
                        <td><strong>51.1</strong></td>
         | 
| 809 | 
            +
                        <td><strong>70.3</strong></td>
         | 
| 810 | 
            +
                    </tr>
         | 
| 811 | 
            +
                    <tr>
         | 
| 812 | 
            +
                        <td nowrap="nowrap" align="left">GPT-4o</td>
         | 
| 813 | 
            +
                        <td>-</td>
         | 
| 814 | 
            +
                        <td>74.5</td>
         | 
| 815 | 
            +
                        <td>51.0</td>
         | 
| 816 | 
            +
                        <td><u>48.0</u></td>
         | 
| 817 | 
            +
                        <td>64.1</td>
         | 
| 818 | 
            +
                    </tr>
         | 
| 819 | 
            +
                    <tr>
         | 
| 820 | 
            +
                        <td nowrap="nowrap" align="left">Claude-3.5-Sonnet</td>
         | 
| 821 | 
            +
                        <td>-</td>
         | 
| 822 | 
            +
                        <td>74.0</td>
         | 
| 823 | 
            +
                        <td>41.4</td>
         | 
| 824 | 
            +
                        <td>37.8</td>
         | 
| 825 | 
            +
                        <td>59.7</td>
         | 
| 826 | 
            +
                    </tr>
         | 
| 827 | 
            +
                    <tr>
         | 
| 828 | 
            +
                        <td colspan="9" align="left"><strong>Open-source</strong></td>
         | 
| 829 | 
            +
                    </tr>
         | 
| 830 | 
            +
                    <tr>
         | 
| 831 | 
            +
                        <td nowrap="nowrap" align="left">VILA-1.5</td>
         | 
| 832 | 
            +
                        <td>8B</td>
         | 
| 833 | 
            +
                        <td>61.5</td>
         | 
| 834 | 
            +
                        <td>37.5</td>
         | 
| 835 | 
            +
                        <td>26.7</td>
         | 
| 836 | 
            +
                        <td>49.5</td>
         | 
| 837 | 
            +
                    </tr>
         | 
| 838 | 
            +
                    <tr>
         | 
| 839 | 
            +
                        <td nowrap="nowrap" align="left">LongVA</td>
         | 
| 840 | 
            +
                        <td>7B</td>
         | 
| 841 | 
            +
                        <td>63.1</td>
         | 
| 842 | 
            +
                        <td>35.9</td>
         | 
| 843 | 
            +
                        <td>30.2</td>
         | 
| 844 | 
            +
                        <td>50.7</td>
         | 
| 845 | 
            +
                    </tr>
         | 
| 846 | 
            +
                    <tr>
         | 
| 847 | 
            +
                        <td nowrap="nowrap" align="left">LLaVA-Next-Video-34B</td>
         | 
| 848 | 
            +
                        <td>34B</td>
         | 
| 849 | 
            +
                        <td>69.8</td>
         | 
| 850 | 
            +
                        <td>41.7</td>
         | 
| 851 | 
            +
                        <td>34.3</td>
         | 
| 852 | 
            +
                        <td>56.7</td>
         | 
| 853 | 
            +
                    </tr>
         | 
| 854 | 
            +
                    <tr>
         | 
| 855 | 
            +
                        <td nowrap="nowrap" align="left">Qwen2-VL-7B</td>
         | 
| 856 | 
            +
                        <td>8B</td>
         | 
| 857 | 
            +
                        <td>71.2</td>
         | 
| 858 | 
            +
                        <td>40.7</td>
         | 
| 859 | 
            +
                        <td>33.1</td>
         | 
| 860 | 
            +
                        <td>57.0</td>
         | 
| 861 | 
            +
                    </tr>
         | 
| 862 | 
            +
                    <tr>
         | 
| 863 | 
            +
                        <td nowrap="nowrap" align="left">InternVL2-8B</td>
         | 
| 864 | 
            +
                        <td>8B</td>
         | 
| 865 | 
            +
                        <td>70.1</td>
         | 
| 866 | 
            +
                        <td>42.7</td>
         | 
| 867 | 
            +
                        <td>34.1</td>
         | 
| 868 | 
            +
                        <td>57.0</td>
         | 
| 869 | 
            +
                    </tr>
         | 
| 870 | 
            +
                    <tr>
         | 
| 871 | 
            +
                        <td nowrap="nowrap" align="left">VITA-1.5</td>
         | 
| 872 | 
            +
                        <td>8B</td>
         | 
| 873 | 
            +
                        <td>70.9</td>
         | 
| 874 | 
            +
                        <td>40.8</td>
         | 
| 875 | 
            +
                        <td>35.8</td>
         | 
| 876 | 
            +
                        <td>57.4</td>
         | 
| 877 | 
            +
                    </tr>
         | 
| 878 | 
            +
                    <tr>
         | 
| 879 | 
            +
                        <td nowrap="nowrap" align="left">LLaVA-OneVision-7B</td>
         | 
| 880 | 
            +
                        <td>8B</td>
         | 
| 881 | 
            +
                        <td>74.3</td>
         | 
| 882 | 
            +
                        <td>40.8</td>
         | 
| 883 | 
            +
                        <td>31.0</td>
         | 
| 884 | 
            +
                        <td>58.4</td>
         | 
| 885 | 
            +
                    </tr>
         | 
| 886 | 
            +
                    <tr>
         | 
| 887 | 
            +
                        <td nowrap="nowrap" align="left">InternLM-XC2.5-OL-7B</td>
         | 
| 888 | 
            +
                        <td>8B</td>
         | 
| 889 | 
            +
                        <td>75.4</td>
         | 
| 890 | 
            +
                        <td>46.2</td>
         | 
| 891 | 
            +
                        <td>33.6</td>
         | 
| 892 | 
            +
                        <td>60.8</td>
         | 
| 893 | 
            +
                    </tr>
         | 
| 894 | 
            +
                    <tr>
         | 
| 895 | 
            +
                        <td nowrap="nowrap" align="left">MiniCPM-V 2.6</td>
         | 
| 896 | 
            +
                        <td>8B</td>
         | 
| 897 | 
            +
                        <td>72.4</td>
         | 
| 898 | 
            +
                        <td>40.2</td>
         | 
| 899 | 
            +
                        <td>33.4</td>
         | 
| 900 | 
            +
                        <td>57.7</td>
         | 
| 901 | 
            +
                    </tr>
         | 
| 902 | 
            +
                    <tr style="background-color: #e6f2ff;">
         | 
| 903 | 
            +
                        <td nowrap="nowrap" align="left">MiniCPM-o 2.6</td>
         | 
| 904 | 
            +
                        <td>8B</td>
         | 
| 905 | 
            +
                        <td><strong>79.9</strong></td>
         | 
| 906 | 
            +
                        <td><u>53.4</u></td>
         | 
| 907 | 
            +
                        <td>38.5</td>
         | 
| 908 | 
            +
                        <td><u>66.0</u></td>
         | 
| 909 | 
            +
                    </tr>
         | 
| 910 | 
            +
                </tbody>
         | 
| 911 | 
            +
            </table>
         | 
| 912 | 
            +
             | 
| 913 | 
            +
            </details>
         | 
| 914 | 
            +
             | 
| 915 | 
            +
             | 
| 916 | 
            +
            ### Examples <!-- omit in toc -->
         | 
| 917 | 
            +
             | 
| 918 | 
            +
            We deploy MiniCPM-o 2.6 on end devices. The demo video is the raw screen recording on a iPad Pro without edition.
         | 
| 919 | 
            +
             | 
| 920 | 
            +
             | 
| 921 | 
            +
            <div style="display: flex; flex-direction: column; align-items: center;">
         | 
| 922 | 
            +
              <img src="https://github.com/yiranyyu/MiniCPM-V-private/blob/main/assets/minicpmo2_6/minicpmo2_6_math_intersect.png" alt="math" style="margin-bottom: 5px;">
         | 
| 923 | 
            +
              <img src="https://github.com/yiranyyu/MiniCPM-V-private/blob/main/assets/minicpmo2_6/minicpmo2_6_diagram_train_NN.png" alt="diagram" style="margin-bottom: 5px;">
         | 
| 924 | 
            +
              <img src="https://github.com/yiranyyu/MiniCPM-V-private/blob/main/assets/minicpmo2_6/minicpmo2_6_multi-image_bike.png" alt="bike" style="margin-bottom: 5px;">
         | 
| 925 | 
            +
            </div>
         | 
| 926 | 
            +
             | 
| 927 | 
            +
             | 
| 928 | 
            +
             | 
| 929 | 
            +
             | 
| 930 | 
            +
            ## Online Demo
         | 
| 931 | 
            +
            Click here to try the online demo of **MiniCPM-o 2.6** on [CN](https://minicpm-omni-webdemo.modelbest.cn/) server and [US](https://minicpm-omni-webdemo-us.modelbest.cn) server.
         | 
| 932 | 
            +
             | 
| 933 | 
            +
             | 
| 934 | 
            +
            ## Usage
         | 
| 935 | 
            +
            Inference using Huggingface transformers on NVIDIA GPUs. Requirements tested on python 3.10:
         | 
| 936 | 
            +
            ```
         | 
| 937 | 
            +
            Pillow==10.1.0
         | 
| 938 | 
            +
            torch==2.2.0
         | 
| 939 | 
            +
            torchaudio==2.2.0
         | 
| 940 | 
            +
            torchvision==0.17.0
         | 
| 941 | 
            +
            transformers==4.44.2
         | 
| 942 | 
            +
            librosa==0.9.0
         | 
| 943 | 
            +
            soundfile==0.12.1
         | 
| 944 | 
            +
            vector-quantize-pytorch==1.18.5
         | 
| 945 | 
            +
            vocos==0.1.0
         | 
| 946 | 
            +
            decord
         | 
| 947 | 
            +
            moviepy
         | 
| 948 | 
            +
            ```
         | 
| 949 | 
            +
             | 
| 950 | 
            +
             | 
| 951 | 
            +
            ### Model initialization
         | 
| 952 | 
            +
            ```python
         | 
| 953 | 
            +
             | 
| 954 | 
            +
            import torch
         | 
| 955 | 
            +
            from PIL import Image
         | 
| 956 | 
            +
            from transformers import AutoModel, AutoTokenizer
         | 
| 957 | 
            +
             | 
| 958 | 
            +
            # load omni model default, the default init_vision/init_audio/init_tts is True
         | 
| 959 | 
            +
            # if load vision-only model, please set init_audio=False and init_tts=False
         | 
| 960 | 
            +
            # if load audio-only model, please set init_vision=False
         | 
| 961 | 
            +
            model = AutoModel.from_pretrained(
         | 
| 962 | 
            +
                'openbmb/MiniCPM-o-2_6',
         | 
| 963 | 
            +
                trust_remote_code=True,
         | 
| 964 | 
            +
                attn_implementation='sdpa', # sdpa or flash_attention_2
         | 
| 965 | 
            +
                torch_dtype=torch.bfloat16,
         | 
| 966 | 
            +
                init_vision=True,
         | 
| 967 | 
            +
                init_audio=True,
         | 
| 968 | 
            +
                init_tts=True
         | 
| 969 | 
            +
            )
         | 
| 970 | 
            +
             | 
| 971 | 
            +
             | 
| 972 | 
            +
            model = model.eval().cuda()
         | 
| 973 | 
            +
            tokenizer = AutoTokenizer.from_pretrained('openbmb/MiniCPM-o-2_6', trust_remote_code=True)
         | 
| 974 | 
            +
             | 
| 975 | 
            +
            # In addition to vision-only mode, tts processor and vocos also needs to be initialized
         | 
| 976 | 
            +
            model.init_tts()
         | 
| 977 | 
            +
            model.tts.float()
         | 
| 978 | 
            +
            ```
         | 
| 979 | 
            +
            ### Omni mode
         | 
| 980 | 
            +
            we provide two inference modes: chat and streaming
         | 
| 981 | 
            +
             | 
| 982 | 
            +
            #### chat inference
         | 
| 983 | 
            +
            ```python
         | 
| 984 | 
            +
            import math
         | 
| 985 | 
            +
            import numpy as np
         | 
| 986 | 
            +
            from PIL import Image
         | 
| 987 | 
            +
            from moviepy.editor import VideoFileClip
         | 
| 988 | 
            +
            import tempfile
         | 
| 989 | 
            +
            import librosa
         | 
| 990 | 
            +
            import soundfile as sf
         | 
| 991 | 
            +
             | 
| 992 | 
            +
            def get_video_chunk_content(video_path, flatten=True):
         | 
| 993 | 
            +
                video = VideoFileClip(video_path)
         | 
| 994 | 
            +
                print('video_duration:', video.duration)
         | 
| 995 | 
            +
                
         | 
| 996 | 
            +
                with tempfile.NamedTemporaryFile(suffix=".wav", delete=True) as temp_audio_file:
         | 
| 997 | 
            +
                    temp_audio_file_path = temp_audio_file.name
         | 
| 998 | 
            +
                    video.audio.write_audiofile(temp_audio_file_path, codec="pcm_s16le", fps=16000)
         | 
| 999 | 
            +
                    audio_np, sr = librosa.load(temp_audio_file_path, sr=16000, mono=True)
         | 
| 1000 | 
            +
                num_units = math.ceil(video.duration)
         | 
| 1001 | 
            +
                
         | 
| 1002 | 
            +
                # 1 frame + 1s audio chunk
         | 
| 1003 | 
            +
                contents= []
         | 
| 1004 | 
            +
                for i in range(num_units):
         | 
| 1005 | 
            +
                    frame = video.get_frame(i+1)
         | 
| 1006 | 
            +
                    image = Image.fromarray((frame).astype(np.uint8))
         | 
| 1007 | 
            +
                    audio = audio_np[sr*i:sr*(i+1)]
         | 
| 1008 | 
            +
                    if flatten:
         | 
| 1009 | 
            +
                        contents.extend(["<unit>", image, audio])
         | 
| 1010 | 
            +
                    else:
         | 
| 1011 | 
            +
                        contents.append(["<unit>", image, audio])
         | 
| 1012 | 
            +
                
         | 
| 1013 | 
            +
                return contents
         | 
| 1014 | 
            +
             | 
| 1015 | 
            +
            video_path="/path/to/video"
         | 
| 1016 | 
            +
            sys_msg = model.get_sys_prompt(mode='omni', language='en')
         | 
| 1017 | 
            +
            # if use voice clone prompt, please set ref_audio
         | 
| 1018 | 
            +
            # ref_audio_path = '/path/to/ref_audio'
         | 
| 1019 | 
            +
            # ref_audio, _ = librosa.load(ref_audio_path, sr=16000, mono=True)
         | 
| 1020 | 
            +
            # sys_msg = model.get_sys_prompt(ref_audio=ref_audio, mode='omni', language='en')
         | 
| 1021 | 
            +
             | 
| 1022 | 
            +
            contents = get_video_chunk_content(video_path)
         | 
| 1023 | 
            +
            msg = {"role":"user", "content": contents}
         | 
| 1024 | 
            +
            msgs = [sys_msg, msg]
         | 
| 1025 | 
            +
             | 
| 1026 | 
            +
            # please set generate_audio=True and output_audio_path to save the tts result
         | 
| 1027 | 
            +
            generate_audio = True
         | 
| 1028 | 
            +
            output_audio_path = 'output.wav'
         | 
| 1029 | 
            +
             | 
| 1030 | 
            +
            res = model.chat(
         | 
| 1031 | 
            +
                msgs=msgs,
         | 
| 1032 | 
            +
                tokenizer=tokenizer,
         | 
| 1033 | 
            +
                sampling=True,
         | 
| 1034 | 
            +
                temperature=0.5,
         | 
| 1035 | 
            +
                max_new_tokens=4096,
         | 
| 1036 | 
            +
                omni_input=True, # please set omni_input=True when omni inference
         | 
| 1037 | 
            +
                use_tts_template=True,
         | 
| 1038 | 
            +
                generate_audio=generate_audio,
         | 
| 1039 | 
            +
                output_audio_path=output_audio_path,
         | 
| 1040 | 
            +
                max_slice_nums=1,
         | 
| 1041 | 
            +
                use_image_id=False,
         | 
| 1042 | 
            +
                return_dict=True
         | 
| 1043 | 
            +
            )
         | 
| 1044 | 
            +
            print(res)
         | 
| 1045 | 
            +
            ```
         | 
| 1046 | 
            +
            #### streaming inference
         | 
| 1047 | 
            +
            ```python
         | 
| 1048 | 
            +
            # a new conversation need reset session first, it will reset the kv-cache
         | 
| 1049 | 
            +
            model.reset_session()
         | 
| 1050 | 
            +
             | 
| 1051 | 
            +
            contents = get_video_chunk_content(video_path, flatten=False)
         | 
| 1052 | 
            +
            session_id = '123'
         | 
| 1053 | 
            +
            generate_audio = True
         | 
| 1054 | 
            +
             | 
| 1055 | 
            +
            # 1. prefill system prompt
         | 
| 1056 | 
            +
            res = model.streaming_prefill(
         | 
| 1057 | 
            +
                session_id=session_id,
         | 
| 1058 | 
            +
                msgs=[sys_msg], 
         | 
| 1059 | 
            +
                tokenizer=tokenizer
         | 
| 1060 | 
            +
            )
         | 
| 1061 | 
            +
             | 
| 1062 | 
            +
            # 2. prefill video/audio chunks
         | 
| 1063 | 
            +
            for content in contents:
         | 
| 1064 | 
            +
                msgs = [{"role":"user", "content": content}]
         | 
| 1065 | 
            +
                res = model.streaming_prefill(
         | 
| 1066 | 
            +
                    session_id=session_id,
         | 
| 1067 | 
            +
                    msgs=msgs, 
         | 
| 1068 | 
            +
                    tokenizer=tokenizer
         | 
| 1069 | 
            +
                )
         | 
| 1070 | 
            +
             | 
| 1071 | 
            +
            # 3. generate
         | 
| 1072 | 
            +
            res = model.streaming_generate(
         | 
| 1073 | 
            +
                session_id=session_id,
         | 
| 1074 | 
            +
                tokenizer=tokenizer,
         | 
| 1075 | 
            +
                temperature=0.5,
         | 
| 1076 | 
            +
                generate_audio=generate_audio
         | 
| 1077 | 
            +
            )
         | 
| 1078 | 
            +
             | 
| 1079 | 
            +
            audios = []
         | 
| 1080 | 
            +
            text = ""
         | 
| 1081 | 
            +
             | 
| 1082 | 
            +
            if generate_audio:
         | 
| 1083 | 
            +
                for r in res:
         | 
| 1084 | 
            +
                    audio_wav = r.audio_wav
         | 
| 1085 | 
            +
                    sampling_rate = r.sampling_rate
         | 
| 1086 | 
            +
                    txt = r.text
         | 
| 1087 | 
            +
             | 
| 1088 | 
            +
                    audios.append(audio_wav)
         | 
| 1089 | 
            +
                    text += txt
         | 
| 1090 | 
            +
                    
         | 
| 1091 | 
            +
                res = np.concatenate(audios)
         | 
| 1092 | 
            +
                sf.write("output.wav", res, samplerate=sampling_rate)
         | 
| 1093 | 
            +
                print("text:", text)
         | 
| 1094 | 
            +
                print("audio saved to output.wav")
         | 
| 1095 | 
            +
            else:
         | 
| 1096 | 
            +
                for r in res:
         | 
| 1097 | 
            +
                    text += r['text']
         | 
| 1098 | 
            +
                print("text:", text)
         | 
| 1099 | 
            +
             | 
| 1100 | 
            +
            ```
         | 
| 1101 | 
            +
             | 
| 1102 | 
            +
            ### Audio-Only mode
         | 
| 1103 | 
            +
            #### Mimick
         | 
| 1104 | 
            +
            ```python
         | 
| 1105 | 
            +
            mimick_prompt = "Please repeat each user's speech, including voice style and speech content."
         | 
| 1106 | 
            +
            audio_input, _ = librosa.load('xxx.wav', sr=16000, mono=True)
         | 
| 1107 | 
            +
            msgs = [{'role': 'user', 'content': [mimick_prompt,audio_input]}]
         | 
| 1108 | 
            +
             | 
| 1109 | 
            +
            res = model.chat(
         | 
| 1110 | 
            +
                msgs=msgs,
         | 
| 1111 | 
            +
                tokenizer=tokenizer,
         | 
| 1112 | 
            +
                sampling=True,
         | 
| 1113 | 
            +
                max_new_tokens=128,
         | 
| 1114 | 
            +
                use_tts_template=True,
         | 
| 1115 | 
            +
                temperature=0.3,
         | 
| 1116 | 
            +
                generate_audio=True,
         | 
| 1117 | 
            +
                output_audio_path='output.wav', # save the tts result to output_audio_path
         | 
| 1118 | 
            +
            )
         | 
| 1119 | 
            +
            ```
         | 
| 1120 | 
            +
             | 
| 1121 | 
            +
            #### General Speech Conversation with Configurable Voices
         | 
| 1122 | 
            +
            <details> <summary>Click to view the Python code for enabling MiniCPM-o 2.6 to interact with you in a specified voice.</summary>
         | 
| 1123 | 
            +
             | 
| 1124 | 
            +
            ```python
         | 
| 1125 | 
            +
            ref_audio, _ = librosa.load('./assert/voice_01.wav', sr=16000, mono=True) # load the reference audio
         | 
| 1126 | 
            +
             | 
| 1127 | 
            +
            # Audio RolePlay:  # With this mode, model will role-play the character based on the audio prompt.
         | 
| 1128 | 
            +
            sys_prompt = model.get_sys_prompt(ref_audio=ref_audio, mode='audio_roleplay', language='en')
         | 
| 1129 | 
            +
            user_question = {'role': 'user', 'content': [librosa.load('xxx.wav', sr=16000, mono=True)[0]]}
         | 
| 1130 | 
            +
             | 
| 1131 | 
            +
            # Audio Assistant: # With this mode, model will speak with the voice in ref_audio as a AI assistant.
         | 
| 1132 | 
            +
            # sys_prompt = model.get_sys_prompt(ref_audio=ref_audio, mode='audio_assistant', language='en') 
         | 
| 1133 | 
            +
            # user_question = {'role': 'user', 'content': [librosa.load('xxx.wav', sr=16000, mono=True)[0]]} # Try to ask something!
         | 
| 1134 | 
            +
            ```
         | 
| 1135 | 
            +
            ```python
         | 
| 1136 | 
            +
            msgs = [sys_prompt, user_question]
         | 
| 1137 | 
            +
            res = model.chat(
         | 
| 1138 | 
            +
                image=None,
         | 
| 1139 | 
            +
                msgs=msgs,
         | 
| 1140 | 
            +
                context=None,
         | 
| 1141 | 
            +
                tokenizer=tokenizer,
         | 
| 1142 | 
            +
                sampling=True,
         | 
| 1143 | 
            +
                max_new_tokens=128,
         | 
| 1144 | 
            +
                stream=False,
         | 
| 1145 | 
            +
                stream_input=True,
         | 
| 1146 | 
            +
                use_tts_template=True,
         | 
| 1147 | 
            +
                generate_audio=True,
         | 
| 1148 | 
            +
                temperature=0.3,
         | 
| 1149 | 
            +
                output_audio_path='result.wav',
         | 
| 1150 | 
            +
            )
         | 
| 1151 | 
            +
             | 
| 1152 | 
            +
            # round two
         | 
| 1153 | 
            +
            history = msgs.append({'role': 'assistant', 'content': res})
         | 
| 1154 | 
            +
            user_question = {'role': 'user', 'content': [librosa.load('xxx.wav', sr=16000, mono=True)[0]]}
         | 
| 1155 | 
            +
            msgs = history.append(user_question)
         | 
| 1156 | 
            +
            res = model.chat(
         | 
| 1157 | 
            +
                image=None,
         | 
| 1158 | 
            +
                msgs=msgs,
         | 
| 1159 | 
            +
                context=None,
         | 
| 1160 | 
            +
                tokenizer=tokenizer,
         | 
| 1161 | 
            +
                sampling=True,
         | 
| 1162 | 
            +
                max_new_tokens=128,
         | 
| 1163 | 
            +
                stream=False,
         | 
| 1164 | 
            +
                stream_input=True,
         | 
| 1165 | 
            +
                use_tts_template=True,
         | 
| 1166 | 
            +
                generate_audio=True,
         | 
| 1167 | 
            +
                temperature=0.3,
         | 
| 1168 | 
            +
                output_audio_path='result_round_2.wav',
         | 
| 1169 | 
            +
            )
         | 
| 1170 | 
            +
            print(res)
         | 
| 1171 | 
            +
            ```
         | 
| 1172 | 
            +
             | 
| 1173 | 
            +
            </details>
         | 
| 1174 | 
            +
             | 
| 1175 | 
            +
            #### Addressing various audio tasks
         | 
| 1176 | 
            +
            <details>
         | 
| 1177 | 
            +
            <summary> Click to show Python code running MiniCPM-o 2.6 with specific audioQA task. </summary>
         | 
| 1178 | 
            +
             | 
| 1179 | 
            +
            ```python
         | 
| 1180 | 
            +
            '''
         | 
| 1181 | 
            +
            Audio Understanding Task Prompt:
         | 
| 1182 | 
            +
            Speech:
         | 
| 1183 | 
            +
                ASR with ZH(same as AST en2zh): 请仔细听这段音频片段,并将其内容逐字记录。
         | 
| 1184 | 
            +
                ASR with EN(same as AST zh2en): Please listen to the audio snippet carefully and transcribe the content.
         | 
| 1185 | 
            +
                Speaker Analysis: Based on the speaker's content, speculate on their gender, condition, age range, and health status.
         | 
| 1186 | 
            +
            General Audio:
         | 
| 1187 | 
            +
                Audio Caption: Summarize the main content of the audio.
         | 
| 1188 | 
            +
                Sound Scene Tagging: Utilize one keyword to convey the audio's content or the associated scene.
         | 
| 1189 | 
            +
            '''
         | 
| 1190 | 
            +
            task_prompt = "\n"
         | 
| 1191 | 
            +
            audio_input, _ = librosa.load('xxx.wav', sr=16000, mono=True)
         | 
| 1192 | 
            +
             | 
| 1193 | 
            +
            msgs = [{'role': 'user', 'content': [task_prompt,audio_input]}]
         | 
| 1194 | 
            +
             | 
| 1195 | 
            +
            res = model.chat(
         | 
| 1196 | 
            +
                image=None,
         | 
| 1197 | 
            +
                msgs=msgs,
         | 
| 1198 | 
            +
                context=None,
         | 
| 1199 | 
            +
                tokenizer=tokenizer,
         | 
| 1200 | 
            +
                sampling=True,
         | 
| 1201 | 
            +
                max_new_tokens=128,
         | 
| 1202 | 
            +
                stream=False,
         | 
| 1203 | 
            +
                stream_input=True,
         | 
| 1204 | 
            +
                use_tts_template=True,
         | 
| 1205 | 
            +
                generate_audio=True,
         | 
| 1206 | 
            +
                temperature=0.3,
         | 
| 1207 | 
            +
                output_audio_path='result.wav',
         | 
| 1208 | 
            +
            )
         | 
| 1209 | 
            +
            print(res)
         | 
| 1210 | 
            +
            ```
         | 
| 1211 | 
            +
            ```python
         | 
| 1212 | 
            +
            '''
         | 
| 1213 | 
            +
            Speech Generation Task Prompt:
         | 
| 1214 | 
            +
                Human Instruction-to-Speech: see https://voxinstruct.github.io/VoxInstruct/
         | 
| 1215 | 
            +
                Example:
         | 
| 1216 | 
            +
                    # 在新闻中,一个年轻男性兴致勃勃地说:“祝福亲爱的祖国母亲美丽富强!”他用低音调和低音量,慢慢地说出了这句话。
         | 
| 1217 | 
            +
                    # Delighting in a surprised tone, an adult male with low pitch and low volume comments:"One even gave my little dog a biscuit" This dialogue takes place at a leisurely pace, delivering a sense of excitement and surprise in the context. 
         | 
| 1218 | 
            +
             | 
| 1219 | 
            +
                Voice Cloning or Voice Creation: With this mode, model will act like a TTS model. 
         | 
| 1220 | 
            +
            '''
         | 
| 1221 | 
            +
            # Human Instruction-to-Speech:
         | 
| 1222 | 
            +
            task_prompt = '' #Try to make some Human Instruction-to-Speech prompt
         | 
| 1223 | 
            +
            msgs = [{'role': 'user', 'content': [task_prompt]}] # you can try to use the same audio question
         | 
| 1224 | 
            +
             | 
| 1225 | 
            +
            # Voice Cloning mode: With this mode, model will act like a TTS model. 
         | 
| 1226 | 
            +
            # sys_prompt = model.get_sys_prompt(ref_audio=ref_audio, mode='voice_cloning', language='en')
         | 
| 1227 | 
            +
            # text_prompt = f"Please read the text below."
         | 
| 1228 | 
            +
            # user_question = {'role': 'user', 'content': [text_prompt, "content that you want to read"]} # using same voice in sys_prompt to read the text. (Voice Cloning)
         | 
| 1229 | 
            +
            # user_question = {'role': 'user', 'content': [text_prompt, librosa.load('xxx.wav', sr=16000, mono=True)[0]]} # using same voice in sys_prompt to read 'xxx.wav'. (Voice Creation)
         | 
| 1230 | 
            +
             | 
| 1231 | 
            +
            msgs = [sys_prompt, user_question]
         | 
| 1232 | 
            +
            res = model.chat(
         | 
| 1233 | 
            +
                image=None,
         | 
| 1234 | 
            +
                msgs=msgs,
         | 
| 1235 | 
            +
                context=None,
         | 
| 1236 | 
            +
                tokenizer=tokenizer,
         | 
| 1237 | 
            +
                sampling=True,
         | 
| 1238 | 
            +
                max_new_tokens=128,
         | 
| 1239 | 
            +
                stream=False,
         | 
| 1240 | 
            +
                stream_input=True,
         | 
| 1241 | 
            +
                use_tts_template=True,
         | 
| 1242 | 
            +
                generate_audio=True,
         | 
| 1243 | 
            +
                temperature=0.3,
         | 
| 1244 | 
            +
                output_audio_path='result.wav',
         | 
| 1245 | 
            +
            )
         | 
| 1246 | 
            +
             | 
| 1247 | 
            +
             | 
| 1248 | 
            +
            ```
         | 
| 1249 | 
            +
             | 
| 1250 | 
            +
            </details>
         | 
| 1251 | 
            +
             | 
| 1252 | 
            +
            ### Vision-Only mode
         | 
| 1253 | 
            +
             | 
| 1254 | 
            +
            `MiniCPM-o-2_6` has the same inference methods as `MiniCPM-V-2_6`
         | 
| 1255 | 
            +
             | 
| 1256 | 
            +
            #### chat with single image
         | 
| 1257 | 
            +
            ```python
         | 
| 1258 | 
            +
            # test.py
         | 
| 1259 | 
            +
            image = Image.open('xx.jpg').convert('RGB')
         | 
| 1260 | 
            +
            question = 'What is in the image?'
         | 
| 1261 | 
            +
            msgs = [{'role': 'user', 'content': [image, question]}]
         | 
| 1262 | 
            +
            res = model.chat(
         | 
| 1263 | 
            +
                image=None,
         | 
| 1264 | 
            +
                msgs=msgs,
         | 
| 1265 | 
            +
                tokenizer=tokenizer
         | 
| 1266 | 
            +
            )
         | 
| 1267 | 
            +
            print(res)
         | 
| 1268 | 
            +
             | 
| 1269 | 
            +
            ## if you want to use streaming, please make sure sampling=True and stream=True
         | 
| 1270 | 
            +
            ## the model.chat will return a generator
         | 
| 1271 | 
            +
            res = model.chat(
         | 
| 1272 | 
            +
                msgs=msgs,
         | 
| 1273 | 
            +
                tokenizer=tokenizer,
         | 
| 1274 | 
            +
                sampling=True,
         | 
| 1275 | 
            +
                stream=True
         | 
| 1276 | 
            +
            )
         | 
| 1277 | 
            +
            generated_text = ""
         | 
| 1278 | 
            +
            for new_text in res:
         | 
| 1279 | 
            +
                generated_text += new_text
         | 
| 1280 | 
            +
                print(new_text, flush=True, end='')
         | 
| 1281 | 
            +
            ```
         | 
| 1282 | 
            +
             | 
| 1283 | 
            +
            #### Chat with multiple images
         | 
| 1284 | 
            +
            <details>
         | 
| 1285 | 
            +
            <summary> Click to show Python code running MiniCPM-o 2.6 with multiple images input. </summary>
         | 
| 1286 | 
            +
              
         | 
| 1287 | 
            +
            ```python
         | 
| 1288 | 
            +
            image1 = Image.open('image1.jpg').convert('RGB')
         | 
| 1289 | 
            +
            image2 = Image.open('image2.jpg').convert('RGB')
         | 
| 1290 | 
            +
            question = 'Compare image 1 and image 2, tell me about the differences between image 1 and image 2.'
         | 
| 1291 | 
            +
            msgs = [{'role': 'user', 'content': [image1, image2, question]}]
         | 
| 1292 | 
            +
            answer = model.chat(
         | 
| 1293 | 
            +
                msgs=msgs,
         | 
| 1294 | 
            +
                tokenizer=tokenizer
         | 
| 1295 | 
            +
            )
         | 
| 1296 | 
            +
            print(answer)
         | 
| 1297 | 
            +
            ```
         | 
| 1298 | 
            +
            </details>
         | 
| 1299 | 
            +
             | 
| 1300 | 
            +
            #### In-context few-shot learning
         | 
| 1301 | 
            +
            <details>
         | 
| 1302 | 
            +
            <summary> Click to view Python code running MiniCPM-o 2.6 with few-shot input. </summary>
         | 
| 1303 | 
            +
             | 
| 1304 | 
            +
            ```python
         | 
| 1305 | 
            +
            question = "production date" 
         | 
| 1306 | 
            +
            image1 = Image.open('example1.jpg').convert('RGB')
         | 
| 1307 | 
            +
            answer1 = "2023.08.04"
         | 
| 1308 | 
            +
            image2 = Image.open('example2.jpg').convert('RGB')
         | 
| 1309 | 
            +
            answer2 = "2007.04.24"
         | 
| 1310 | 
            +
            image_test = Image.open('test.jpg').convert('RGB')
         | 
| 1311 | 
            +
            msgs = [
         | 
| 1312 | 
            +
                {'role': 'user', 'content': [image1, question]}, {'role': 'assistant', 'content': [answer1]},
         | 
| 1313 | 
            +
                {'role': 'user', 'content': [image2, question]}, {'role': 'assistant', 'content': [answer2]},
         | 
| 1314 | 
            +
                {'role': 'user', 'content': [image_test, question]}
         | 
| 1315 | 
            +
            ]
         | 
| 1316 | 
            +
            answer = model.chat(
         | 
| 1317 | 
            +
                msgs=msgs,
         | 
| 1318 | 
            +
                tokenizer=tokenizer
         | 
| 1319 | 
            +
            )
         | 
| 1320 | 
            +
            print(answer)
         | 
| 1321 | 
            +
            ```
         | 
| 1322 | 
            +
            </details>
         | 
| 1323 | 
            +
             | 
| 1324 | 
            +
            #### Chat with video
         | 
| 1325 | 
            +
            <details>
         | 
| 1326 | 
            +
            <summary> Click to view Python code running MiniCPM-o 2.6 with video input. </summary>
         | 
| 1327 | 
            +
             | 
| 1328 | 
            +
            ```python
         | 
| 1329 | 
            +
            MAX_NUM_FRAMES=64 # if cuda OOM set a smaller number
         | 
| 1330 | 
            +
            def encode_video(video_path):
         | 
| 1331 | 
            +
                def uniform_sample(l, n):
         | 
| 1332 | 
            +
                    gap = len(l) / n
         | 
| 1333 | 
            +
                    idxs = [int(i * gap + gap / 2) for i in range(n)]
         | 
| 1334 | 
            +
                    return [l[i] for i in idxs]
         | 
| 1335 | 
            +
                vr = VideoReader(video_path, ctx=cpu(0))
         | 
| 1336 | 
            +
                sample_fps = round(vr.get_avg_fps() / 1)  # FPS
         | 
| 1337 | 
            +
                frame_idx = [i for i in range(0, len(vr), sample_fps)]
         | 
| 1338 | 
            +
                if len(frame_idx) > MAX_NUM_FRAMES:
         | 
| 1339 | 
            +
                    frame_idx = uniform_sample(frame_idx, MAX_NUM_FRAMES)
         | 
| 1340 | 
            +
                frames = vr.get_batch(frame_idx).asnumpy()
         | 
| 1341 | 
            +
                frames = [Image.fromarray(v.astype('uint8')) for v in frames]
         | 
| 1342 | 
            +
                print('num frames:', len(frames))
         | 
| 1343 | 
            +
                return frames
         | 
| 1344 | 
            +
            video_path ="video_test.mp4"
         | 
| 1345 | 
            +
            frames = encode_video(video_path)
         | 
| 1346 | 
            +
            question = "Describe the video"
         | 
| 1347 | 
            +
            msgs = [
         | 
| 1348 | 
            +
                {'role': 'user', 'content': frames + [question]}, 
         | 
| 1349 | 
            +
            ]
         | 
| 1350 | 
            +
            # Set decode params for video
         | 
| 1351 | 
            +
            params={}
         | 
| 1352 | 
            +
            params["use_image_id"] = False
         | 
| 1353 | 
            +
            params["max_slice_nums"] = 2 # use 1 if cuda OOM and video resolution >  448*448
         | 
| 1354 | 
            +
            answer = model.chat(
         | 
| 1355 | 
            +
                msgs=msgs,
         | 
| 1356 | 
            +
                tokenizer=tokenizer,
         | 
| 1357 | 
            +
                **params
         | 
| 1358 | 
            +
            )
         | 
| 1359 | 
            +
            print(answer)
         | 
| 1360 | 
            +
            ```
         | 
| 1361 | 
            +
            </details>
         | 
| 1362 | 
            +
             | 
| 1363 | 
            +
            Please look at [GitHub](https://github.com/OpenBMB/MiniCPM-V) for more detail about usage.
         | 
| 1364 | 
            +
             | 
| 1365 | 
            +
             | 
| 1366 | 
            +
            ## Inference with llama.cpp<a id="llamacpp"></a>
         | 
| 1367 | 
            +
            MiniCPM-o 2.6 can run with llama.cpp. See our fork of [llama.cpp](https://github.com/OpenBMB/llama.cpp/tree/minicpm-v2.5/examples/minicpmv) for more detail.
         | 
| 1368 | 
            +
             | 
| 1369 | 
            +
             | 
| 1370 | 
            +
            ## Int4 quantized version
         | 
| 1371 | 
            +
            Download the int4 quantized version for lower GPU memory (7GB) usage:  [MiniCPM-o-2_6-int4](https://huggingface.co/openbmb/MiniCPM-o-2_6-int4).
         | 
| 1372 | 
            +
             | 
| 1373 | 
            +
             | 
| 1374 | 
            +
            ## License
         | 
| 1375 | 
            +
            #### Model License
         | 
| 1376 | 
            +
            * The code in this repo is released under the [Apache-2.0](https://github.com/OpenBMB/MiniCPM/blob/main/LICENSE) License. 
         | 
| 1377 | 
            +
            * The usage of MiniCPM-o and MiniCPM-V series model weights must strictly follow [MiniCPM Model License.md](https://github.com/OpenBMB/MiniCPM/blob/main/MiniCPM%20Model%20License.md).
         | 
| 1378 | 
            +
            * The models and weights of MiniCPM are completely free for academic research. After filling out a ["questionnaire"](https://modelbest.feishu.cn/share/base/form/shrcnpV5ZT9EJ6xYjh3Kx0J6v8g) for registration, MiniCPM-o 2.6 weights are also available for free commercial use.
         | 
| 1379 | 
            +
             | 
| 1380 | 
            +
             | 
| 1381 | 
            +
            #### Statement
         | 
| 1382 | 
            +
            * As an LMM, MiniCPM-o 2.6 generates contents by learning a large mount of multimodal corpora, but it cannot comprehend, express personal opinions or make value judgement. Anything generated by MiniCPM-o 2.6 does not represent the views and positions of the model developers
         | 
| 1383 | 
            +
            * We will not be liable for any problems arising from the use of the MinCPM-V models, including but not limited to data security issues, risk of public opinion, or any risks and problems arising from the misdirection, misuse, dissemination or misuse of the model.
         | 
| 1384 | 
            +
             | 
| 1385 | 
            +
            ## Key Techniques and Other Multimodal Projects
         | 
| 1386 | 
            +
             | 
| 1387 | 
            +
            👏 Welcome to explore key techniques of MiniCPM-o 2.6 and other multimodal projects of our team:
         | 
| 1388 | 
            +
             | 
| 1389 | 
            +
            [VisCPM](https://github.com/OpenBMB/VisCPM/tree/main) | [RLHF-V](https://github.com/RLHF-V/RLHF-V) | [LLaVA-UHD](https://github.com/thunlp/LLaVA-UHD)  | [RLAIF-V](https://github.com/RLHF-V/RLAIF-V)
         | 
| 1390 | 
            +
             | 
| 1391 | 
            +
            ## Citation
         | 
| 1392 | 
            +
             | 
| 1393 | 
            +
            If you find our work helpful, please consider citing our papers 📝 and liking this project ❤️!
         | 
| 1394 | 
            +
             | 
| 1395 | 
            +
            ```bib
         | 
| 1396 | 
            +
            @article{yao2024minicpm,
         | 
| 1397 | 
            +
              title={MiniCPM-V: A GPT-4V Level MLLM on Your Phone},
         | 
| 1398 | 
            +
              author={Yao, Yuan and Yu, Tianyu and Zhang, Ao and Wang, Chongyi and Cui, Junbo and Zhu, Hongji and Cai, Tianchi and Li, Haoyu and Zhao, Weilin and He, Zhihui and others},
         | 
| 1399 | 
            +
              journal={arXiv preprint arXiv:2408.01800},
         | 
| 1400 | 
            +
              year={2024}
         | 
| 1401 | 
            +
            }
         | 
| 1402 | 
            +
            ```
         | 
    	
        configuration_minicpm.py
    CHANGED
    
    | @@ -190,6 +190,7 @@ class MiniCPMOConfig(Qwen2Config): | |
| 190 | 
             
                    elif isinstance(vision_config, SiglipVisionConfig):
         | 
| 191 | 
             
                        self.vision_config = vision_config
         | 
| 192 |  | 
|  | |
| 193 | 
             
                    if audio_config is None:
         | 
| 194 | 
             
                        self.audio_config = WhisperConfig()
         | 
| 195 | 
             
                    elif isinstance(audio_config, dict):
         | 
|  | |
| 190 | 
             
                    elif isinstance(vision_config, SiglipVisionConfig):
         | 
| 191 | 
             
                        self.vision_config = vision_config
         | 
| 192 |  | 
| 193 | 
            +
                    # same as openai/whisper-medium add use_cache
         | 
| 194 | 
             
                    if audio_config is None:
         | 
| 195 | 
             
                        self.audio_config = WhisperConfig()
         | 
| 196 | 
             
                    elif isinstance(audio_config, dict):
         | 
    	
        modeling_minicpmo.py
    CHANGED
    
    | @@ -121,19 +121,21 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 121 |  | 
| 122 | 
             
                    self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
         | 
| 123 |  | 
| 124 | 
            -
                    self.terminators = [ | 
| 125 |  | 
| 126 | 
             
                    self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
         | 
| 127 | 
             
                    self.force_no_stop = False
         | 
| 128 |  | 
| 129 | 
             
                    # for stream api
         | 
|  | |
|  | |
|  | |
| 130 | 
             
                    self.session_id = None
         | 
| 131 | 
             
                    self.new_user_msg = True
         | 
| 132 | 
             
                    self.llm_generated = False
         | 
| 133 | 
             
                    self.llm_generate_completed = False
         | 
| 134 | 
             
                    self.llm_past_key_values = None
         | 
| 135 | 
             
                    self.audio_past_key_values = None  # apm kv cache
         | 
| 136 | 
            -
                    self.speak_score = [0.0]
         | 
| 137 |  | 
| 138 | 
             
                def init_tts(
         | 
| 139 | 
             
                    self,
         | 
| @@ -401,6 +403,21 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 401 | 
             
                    return vllm_embedding, vision_hidden_states
         | 
| 402 |  | 
| 403 | 
             
                def get_audio_embedding_streaming(self, data):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 404 | 
             
                    wavforms = data.get("audio_features", [])  # (bs, 80, frames) or [], multi audios need filled in advance
         | 
| 405 | 
             
                    audio_feature_lens_raw = data.get("audio_feature_lens", [])  # list, [[x1, x2], [y1], [z1]]
         | 
| 406 |  | 
| @@ -447,15 +464,24 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 447 | 
             
                        return []
         | 
| 448 |  | 
| 449 | 
             
                def get_audio_embedding(self, data, chunk_length=-1):
         | 
| 450 | 
            -
                    """
         | 
| 451 | 
            -
                     | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 452 | 
             
                    Args:
         | 
| 453 | 
            -
                        data:
         | 
| 454 | 
            -
             | 
| 455 | 
            -
             | 
|  | |
|  | |
|  | |
| 456 | 
             
                    Returns:
         | 
| 457 | 
            -
                        audio embeddings
         | 
| 458 | 
             
                    """
         | 
|  | |
| 459 | 
             
                    wavforms = data.get("audio_features", [])  # (bs, 80, frames) or [], multi audios need filled in advance
         | 
| 460 | 
             
                    audio_feature_lens_raw = data.get("audio_feature_lens", [])  # list, [[x1, x2], [y1], [z1]]
         | 
| 461 |  | 
| @@ -520,7 +546,6 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 520 |  | 
| 521 | 
             
                def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
         | 
| 522 | 
             
                    """
         | 
| 523 | 
            -
             | 
| 524 | 
             
                    Args:
         | 
| 525 | 
             
                        data:
         | 
| 526 | 
             
                        input_embeddings:
         | 
| @@ -576,14 +601,21 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 576 |  | 
| 577 | 
             
                def forward(self, data, **kwargs):
         | 
| 578 | 
             
                    vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
         | 
| 579 | 
            -
             | 
| 580 | 
            -
             | 
| 581 | 
            -
             | 
|  | |
|  | |
| 582 |  | 
| 583 | 
             
                    position_ids = data["position_ids"]
         | 
| 584 | 
             
                    if position_ids.dtype != torch.int64:
         | 
| 585 | 
             
                        position_ids = position_ids.long()
         | 
| 586 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 587 | 
             
                    return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)
         | 
| 588 |  | 
| 589 | 
             
                def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
         | 
| @@ -627,6 +659,93 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 627 | 
             
                        result_text.append(tokenizer.decode(result))
         | 
| 628 | 
             
                    return result_text
         | 
| 629 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 630 | 
             
                def generate(
         | 
| 631 | 
             
                    self,
         | 
| 632 | 
             
                    input_ids=None,
         | 
| @@ -697,7 +816,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 697 | 
             
                    omni_input=False,
         | 
| 698 | 
             
                    max_slice_nums=None,
         | 
| 699 | 
             
                    use_image_id=None,
         | 
| 700 | 
            -
                     | 
| 701 | 
             
                    generate_audio=False,
         | 
| 702 | 
             
                    return_spk_embed=False,
         | 
| 703 | 
             
                    return_dict=False,
         | 
| @@ -721,7 +840,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 721 | 
             
                        omni_input: determine whether it is omni mode
         | 
| 722 | 
             
                        max_slice_nums: control the maximum number of image slices
         | 
| 723 | 
             
                        use_image_id: for video understanding or omni understanding, use_image_id should be False
         | 
| 724 | 
            -
                         | 
| 725 | 
             
                        generate_audio: whether to generate audio output, only used when return_dict=True
         | 
| 726 | 
             
                        return_spk_embed: whether to return spk embedding, only used when return_dict=True
         | 
| 727 | 
             
                        return_dict: whether to return dict
         | 
| @@ -798,12 +917,12 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 798 | 
             
                            for c in content:
         | 
| 799 | 
             
                                if isinstance(c, Image.Image):
         | 
| 800 | 
             
                                    images.append(c)
         | 
| 801 | 
            -
                                    cur_msgs.append("<image>./</image>")
         | 
| 802 | 
             
                                elif isinstance(c, np.ndarray):  # audio
         | 
| 803 | 
             
                                    audios.append(c)
         | 
| 804 | 
             
                                    audio_parts.append(i)
         | 
| 805 | 
            -
                                    cur_msgs.append("<audio>./</audio>")
         | 
| 806 | 
            -
                                     | 
| 807 | 
             
                                elif isinstance(c, str):
         | 
| 808 | 
             
                                    cur_msgs.append(c)
         | 
| 809 | 
             
                            if omni_input:
         | 
| @@ -816,7 +935,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 816 | 
             
                                copy_msgs,
         | 
| 817 | 
             
                                tokenize=False,
         | 
| 818 | 
             
                                add_generation_prompt=True,
         | 
| 819 | 
            -
                                chat_template=self.default_tts_chat_template if  | 
| 820 | 
             
                            )
         | 
| 821 | 
             
                        )
         | 
| 822 | 
             
                        input_images_list.append(images)
         | 
| @@ -886,13 +1005,18 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 886 | 
             
                        else:
         | 
| 887 | 
             
                            answer = res[0]
         | 
| 888 |  | 
| 889 | 
            -
                            if  | 
| 890 | 
             
                                mel_spec = self._generate_mel_spec(inputs, outputs, answer)
         | 
| 891 | 
             
                                wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)
         | 
| 892 |  | 
| 893 | 
             
                        if return_spk_embed:
         | 
| 894 | 
             
                            spk_embeds = self._get_last_spk_embeds(inputs, outputs)
         | 
| 895 |  | 
|  | |
|  | |
|  | |
|  | |
|  | |
| 896 | 
             
                        if return_dict:
         | 
| 897 | 
             
                            return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
         | 
| 898 | 
             
                        else:
         | 
| @@ -904,6 +1028,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 904 | 
             
                    session_id,
         | 
| 905 | 
             
                    msgs,
         | 
| 906 | 
             
                    tokenizer,
         | 
|  | |
| 907 | 
             
                    max_slice_nums=None,
         | 
| 908 | 
             
                    ls_temperature=1.0,
         | 
| 909 | 
             
                    **kwargs,
         | 
| @@ -933,26 +1058,27 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 933 | 
             
                    for j, c in enumerate(content):
         | 
| 934 | 
             
                        if isinstance(c, Image.Image):
         | 
| 935 | 
             
                            images.append(c)
         | 
| 936 | 
            -
                            cur_msgs.append("<image>./</image>")
         | 
| 937 | 
             
                        elif isinstance(c, np.ndarray):  # audio
         | 
| 938 | 
             
                            audios.append(c)
         | 
| 939 | 
            -
                            cur_msgs.append("<audio>./</audio>")
         | 
| 940 | 
             
                        elif isinstance(c, str):
         | 
| 941 | 
             
                            cur_msgs.append(c)
         | 
| 942 | 
             
                        else:
         | 
| 943 | 
             
                            logger.error("Invalid content type:", c)
         | 
| 944 |  | 
|  | |
| 945 | 
             
                    if not self.is_first and self.new_user_msg and msg["role"] == "user":  # new user add im_start
         | 
| 946 | 
             
                        if self.llm_generated:
         | 
| 947 | 
             
                            if self.llm_generate_completed:
         | 
| 948 | 
            -
                                msg["content"] = "<|im_end|>\n<|im_start|>user\n" +  | 
| 949 | 
             
                            else:  # break llm gen, add tts_eos
         | 
| 950 | 
            -
                                msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" +  | 
| 951 | 
             
                        else:
         | 
| 952 | 
            -
                            msg["content"] = "<|im_start|>user\n" +  | 
| 953 | 
             
                        self.new_user_msg = False
         | 
| 954 | 
             
                    else:
         | 
| 955 | 
            -
                        msg["content"] =  | 
| 956 |  | 
| 957 | 
             
                    if msg["role"] in ["system", "assistant"]:
         | 
| 958 | 
             
                        self.new_user_msg = True
         | 
| @@ -960,11 +1086,9 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 960 |  | 
| 961 | 
             
                    if self.is_first:
         | 
| 962 | 
             
                        # init pask_key_values
         | 
| 963 | 
            -
                        logger. | 
|  | |
| 964 | 
             
                        self.session_id = session_id
         | 
| 965 | 
            -
                        self.llm_past_key_values = None  # llm kv cache
         | 
| 966 | 
            -
                        self.new_user_msg = True
         | 
| 967 | 
            -
                        self.audio_past_key_values = None  # apm kv cache
         | 
| 968 |  | 
| 969 | 
             
                        prompt = tokenizer.apply_chat_template(
         | 
| 970 | 
             
                            copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
         | 
| @@ -1015,14 +1139,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1015 | 
             
                        return_dict=True,
         | 
| 1016 | 
             
                    )
         | 
| 1017 | 
             
                    self.llm_past_key_values = outputs["past_key_values"]
         | 
| 1018 | 
            -
             | 
| 1019 | 
            -
                    listen_id = tokenizer.convert_tokens_to_ids("<|listen|>")
         | 
| 1020 | 
            -
                    speak_id = tokenizer.convert_tokens_to_ids("<|speak|>")
         | 
| 1021 | 
            -
                    listen_speak_score = torch.Tensor([outputs["logits"][0, -1, listen_id], outputs["logits"][0, -1, speak_id]])
         | 
| 1022 | 
            -
                    listen_speak_score = F.softmax(listen_speak_score / ls_temperature, dim=0).numpy()
         | 
| 1023 | 
            -
                    self.speak_score = [float(listen_speak_score[1])]
         | 
| 1024 | 
            -
             | 
| 1025 | 
            -
                    return self.speak_score
         | 
| 1026 |  | 
| 1027 | 
             
                @torch.inference_mode()
         | 
| 1028 | 
             
                def streaming_generate(
         | 
| @@ -1032,7 +1149,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1032 | 
             
                    max_new_tokens=512,
         | 
| 1033 | 
             
                    min_new_tokens=0,
         | 
| 1034 | 
             
                    sampling=True,
         | 
| 1035 | 
            -
                     | 
| 1036 | 
             
                    enable_regenerate=False,
         | 
| 1037 | 
             
                    **kwargs,
         | 
| 1038 | 
             
                ):
         | 
| @@ -1079,7 +1196,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1079 | 
             
                    generation_config["max_new_tokens"] = max_new_tokens
         | 
| 1080 | 
             
                    streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)
         | 
| 1081 |  | 
| 1082 | 
            -
                    if  | 
| 1083 | 
             
                        result = self._generate_mel_spec_audio_streaming(
         | 
| 1084 | 
             
                            spk_bounds, streamer, output_chunk_size=25, enable_regenerate=enable_regenerate
         | 
| 1085 | 
             
                        )
         | 
| @@ -1323,6 +1440,10 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1323 | 
             
                    return mel_spec
         | 
| 1324 |  | 
| 1325 | 
             
                def _linear_overlap_add2_wav(self, frames: List[torch.Tensor], overlap: int):
         | 
|  | |
|  | |
|  | |
|  | |
| 1326 | 
             
                    assert len(frames) == 2
         | 
| 1327 | 
             
                    device = frames[0].device
         | 
| 1328 | 
             
                    dtype = frames[0].dtype
         | 
| @@ -1569,7 +1690,8 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1569 | 
             
                                    prev_wav = wav_np[len(prev_wav) :]
         | 
| 1570 | 
             
                                    cur_text = gen_text_raw[prev_text_len:]
         | 
| 1571 | 
             
                                    prev_text_len = len(gen_text_raw)
         | 
| 1572 | 
            -
                                    yield wav_y, sr | 
|  | |
| 1573 | 
             
                                else:
         | 
| 1574 | 
             
                                    prev_wav = wav_np
         | 
| 1575 | 
             
                            else:
         | 
| @@ -1580,7 +1702,8 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1580 | 
             
                                    )  # tts_hop256*2
         | 
| 1581 | 
             
                                    cur_text = gen_text_raw[prev_text_len:]
         | 
| 1582 | 
             
                                    prev_text_len = len(gen_text_raw)
         | 
| 1583 | 
            -
                                    yield wav_np, sr | 
|  | |
| 1584 | 
             
                                else:
         | 
| 1585 | 
             
                                    prev_wav = wav_np
         | 
| 1586 |  | 
| @@ -1678,7 +1801,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1678 | 
             
                                    prev_wav = wav_np[len(prev_wav) :]
         | 
| 1679 | 
             
                                    cur_text = gen_text_raw[prev_text_len:]
         | 
| 1680 | 
             
                                    prev_text_len = len(gen_text_raw)
         | 
| 1681 | 
            -
                                    yield wav_y, sr | 
| 1682 | 
             
                                else:
         | 
| 1683 | 
             
                                    prev_wav = wav_np
         | 
| 1684 | 
             
                            else:
         | 
| @@ -1689,7 +1812,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1689 | 
             
                                    )  # tts_hop256*2
         | 
| 1690 | 
             
                                    cur_text = gen_text_raw[prev_text_len:]
         | 
| 1691 | 
             
                                    prev_text_len = len(gen_text_raw)
         | 
| 1692 | 
            -
                                    yield wav_np, sr | 
| 1693 | 
             
                                else:
         | 
| 1694 | 
             
                                    prev_wav = wav_np
         | 
| 1695 |  | 
| @@ -1703,7 +1826,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1703 |  | 
| 1704 | 
             
                    if prev_wav is not None:
         | 
| 1705 | 
             
                        cur_text = gen_text_raw[prev_text_len:]
         | 
| 1706 | 
            -
                        yield prev_wav, sr | 
| 1707 |  | 
| 1708 | 
             
                    if new_segment_gen and not stop:
         | 
| 1709 | 
             
                        logger.debug(
         | 
| @@ -1737,6 +1860,7 @@ class MiniCPMO(MiniCPMOPreTrainedModel): | |
| 1737 | 
             
                    return wav_numpy, sr
         | 
| 1738 |  | 
| 1739 |  | 
|  | |
| 1740 | 
             
            class MiniCPMWhisperEncoderLayer(nn.Module):
         | 
| 1741 | 
             
                def __init__(self, config: WhisperConfig, layer_idx: int = None):
         | 
| 1742 | 
             
                    super().__init__()
         | 
| @@ -1765,6 +1889,24 @@ class MiniCPMWhisperEncoderLayer(nn.Module): | |
| 1765 | 
             
                    past_key_values: Optional[EncoderDecoderCache] = None,
         | 
| 1766 | 
             
                    use_cache: Optional[bool] = False,
         | 
| 1767 | 
             
                ) -> torch.Tensor:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1768 | 
             
                    residual = hidden_states
         | 
| 1769 | 
             
                    hidden_states = self.self_attn_layer_norm(hidden_states)
         | 
| 1770 | 
             
                    hidden_states, attn_weights, past_key_values = self.self_attn(
         | 
| @@ -1802,6 +1944,7 @@ class MiniCPMWhisperEncoderLayer(nn.Module): | |
| 1802 | 
             
                    return outputs
         | 
| 1803 |  | 
| 1804 |  | 
|  | |
| 1805 | 
             
            class MiniCPMWhisperEncoder(WhisperEncoder):
         | 
| 1806 |  | 
| 1807 | 
             
                def __init__(self, config: WhisperConfig):
         | 
| @@ -1821,6 +1964,107 @@ class MiniCPMWhisperEncoder(WhisperEncoder): | |
| 1821 | 
             
                    past_key_values: Optional[EncoderDecoderCache] = None,
         | 
| 1822 | 
             
                    use_cache: Optional[bool] = None,
         | 
| 1823 | 
             
                ):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1824 | 
             
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 1825 | 
             
                    output_hidden_states = (
         | 
| 1826 | 
             
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
| @@ -1935,7 +2179,7 @@ class MiniCPMWhisperEncoder(WhisperEncoder): | |
| 1935 | 
             
                    )
         | 
| 1936 |  | 
| 1937 |  | 
| 1938 | 
            -
            # dvae | 
| 1939 | 
             
            class ConvNeXtBlock(nn.Module):
         | 
| 1940 | 
             
                def __init__(
         | 
| 1941 | 
             
                    self,
         | 
| @@ -1989,6 +2233,7 @@ class ConvNeXtBlock(nn.Module): | |
| 1989 | 
             
                    return x
         | 
| 1990 |  | 
| 1991 |  | 
|  | |
| 1992 | 
             
            class GFSQ(nn.Module):
         | 
| 1993 | 
             
                def __init__(
         | 
| 1994 | 
             
                    self,
         | 
| @@ -2031,6 +2276,7 @@ class GFSQ(nn.Module): | |
| 2031 | 
             
                    return ind.transpose_(1, 2) if self.transpose else ind
         | 
| 2032 |  | 
| 2033 |  | 
|  | |
| 2034 | 
             
            class DVAEDecoder(nn.Module):
         | 
| 2035 | 
             
                def __init__(
         | 
| 2036 | 
             
                    self,
         | 
| @@ -2075,6 +2321,7 @@ class DVAEDecoder(nn.Module): | |
| 2075 | 
             
                    return x
         | 
| 2076 |  | 
| 2077 |  | 
|  | |
| 2078 | 
             
            class DVAE(nn.Module):
         | 
| 2079 | 
             
                def __init__(
         | 
| 2080 | 
             
                    self,
         | 
| @@ -2153,7 +2400,6 @@ class DVAE(nn.Module): | |
| 2153 | 
             
                    return torch.mul(dec_out, self.coef, out=dec_out)
         | 
| 2154 |  | 
| 2155 |  | 
| 2156 | 
            -
            # tts module
         | 
| 2157 | 
             
            def apply_spk_emb(
         | 
| 2158 | 
             
                input_ids: torch.Tensor = None,
         | 
| 2159 | 
             
                spk_emb: torch.Tensor = None,
         | 
| @@ -2162,7 +2408,7 @@ def apply_spk_emb( | |
| 2162 | 
             
                num_spk_embs: int = 1,
         | 
| 2163 | 
             
            ):
         | 
| 2164 | 
             
                """
         | 
| 2165 | 
            -
                Replace consecutive speaker embedding placeholders in input_embeds with pre-prepared speaker embeddings. This is an in-place replacement, no new tensor is created, so no value is returned.
         | 
| 2166 |  | 
| 2167 | 
             
                Args:
         | 
| 2168 | 
             
                    input_ids (torch.Tensor): Input ID tensor, shape [batch_size, seq_len_max]
         | 
| @@ -2201,7 +2447,7 @@ def make_streaming_chunk_mask_generation( | |
| 2201 | 
             
                use_spk_emb: bool = True,
         | 
| 2202 | 
             
            ) -> torch.Tensor:
         | 
| 2203 | 
             
                """
         | 
| 2204 | 
            -
                 | 
| 2205 |  | 
| 2206 | 
             
                This function creates a mask that allows the model to attend to a specific chunk of text
         | 
| 2207 | 
             
                tokens when generating each chunk of audio tokens, enabling streaming TTS generation.
         | 
| @@ -2258,6 +2504,7 @@ def make_streaming_chunk_mask_generation( | |
| 2258 | 
             
                return causal_mask
         | 
| 2259 |  | 
| 2260 |  | 
|  | |
| 2261 | 
             
            class CustomRepetitionPenaltyLogitsProcessorRepeat:
         | 
| 2262 | 
             
                def __init__(self, penalty: float, max_input_ids: int, past_window: int):
         | 
| 2263 | 
             
                    if not isinstance(penalty, float) or not (penalty > 0):
         | 
| @@ -2316,6 +2563,97 @@ class MultiModalProjector(nn.Module): | |
| 2316 |  | 
| 2317 |  | 
| 2318 | 
             
            class ConditionalChatTTS(PreTrainedModel):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 2319 | 
             
                config_class = ConditionalChatTTSConfig
         | 
| 2320 |  | 
| 2321 | 
             
                def __init__(self, config: ConditionalChatTTSConfig):
         | 
| @@ -2373,19 +2711,16 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2373 | 
             
                    self.model = model
         | 
| 2374 |  | 
| 2375 | 
             
                @torch.inference_mode()
         | 
| 2376 | 
            -
                def  | 
| 2377 | 
             
                    self,
         | 
| 2378 | 
             
                    input_ids: torch.Tensor,
         | 
| 2379 | 
             
                    lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
         | 
| 2380 | 
            -
                    lm_last_hidden_states: Optional[torch.Tensor] = None,
         | 
| 2381 | 
             
                ):
         | 
| 2382 | 
            -
                    """ | 
| 2383 | 
            -
                    encode input_ids to embeddings, then merge lm_spk_emb_last_hidden_states, and lm_last_hidden_states.
         | 
| 2384 |  | 
| 2385 | 
             
                    Args:
         | 
| 2386 | 
             
                        input_ids (torch.Tensor): Input token IDs.
         | 
| 2387 | 
             
                        lm_spk_emb_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states of speaker embeddings from the language model. Defaults to None.
         | 
| 2388 | 
            -
                        lm_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states from the language model. Defaults to None.
         | 
| 2389 |  | 
| 2390 | 
             
                    Raises:
         | 
| 2391 | 
             
                        NotImplementedError: If speaker embedding is not used and language model hidden states are not implemented.
         | 
| @@ -2415,8 +2750,6 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2415 | 
             
                                num_spk_embs=self.num_spk_embs,
         | 
| 2416 | 
             
                            )
         | 
| 2417 | 
             
                    else:
         | 
| 2418 | 
            -
                        assert lm_last_hidden_states is not None
         | 
| 2419 | 
            -
                        # TODO: Add projected language model hidden states to tts embedding space
         | 
| 2420 | 
             
                        raise NotImplementedError
         | 
| 2421 |  | 
| 2422 | 
             
                    return inputs_embeds
         | 
| @@ -2428,10 +2761,9 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2428 | 
             
                    position_ids: torch.LongTensor,
         | 
| 2429 | 
             
                    past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
         | 
| 2430 | 
             
                    lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
         | 
| 2431 | 
            -
                    lm_last_hidden_states: Optional[torch.Tensor] = None,
         | 
| 2432 | 
             
                ):
         | 
| 2433 | 
             
                    """Prefill a chunk of new text tokens in streaming setting.
         | 
| 2434 | 
            -
                    Specifically speaking, update `past_key_values` using new text tokens.
         | 
| 2435 |  | 
| 2436 | 
             
                    Args:
         | 
| 2437 | 
             
                        input_ids (Tensor): Tensor of shape [batch_size, seq_len]
         | 
| @@ -2445,11 +2777,10 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2445 | 
             
                    assert input_ids.shape[0] == 1
         | 
| 2446 | 
             
                    assert past_key_values is not None
         | 
| 2447 |  | 
| 2448 | 
            -
                    # Merge text and embeddings | 
| 2449 | 
            -
                    inputs_embeds = self. | 
| 2450 | 
             
                        input_ids=input_ids,
         | 
| 2451 | 
             
                        lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
         | 
| 2452 | 
            -
                        lm_last_hidden_states=lm_last_hidden_states,
         | 
| 2453 | 
             
                    )
         | 
| 2454 |  | 
| 2455 | 
             
                    # Clone KV Cache
         | 
| @@ -2476,7 +2807,7 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2476 | 
             
                    # Get model updated KV Cache
         | 
| 2477 | 
             
                    past_key_values_for_prefill_updated = outputs_prefill.past_key_values
         | 
| 2478 |  | 
| 2479 | 
            -
                    # Update generated KV Cache to input past_key_values
         | 
| 2480 | 
             
                    for layer_idx in range(len(past_key_values)):
         | 
| 2481 | 
             
                        # Update keys
         | 
| 2482 | 
             
                        past_key_values[layer_idx][0][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
         | 
| @@ -2504,7 +2835,9 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2504 | 
             
                    streaming_tts_text_mask=None,
         | 
| 2505 | 
             
                    add_audio_bos: bool = True,
         | 
| 2506 | 
             
                ):
         | 
| 2507 | 
            -
                    """
         | 
|  | |
|  | |
| 2508 | 
             
                    Args:
         | 
| 2509 | 
             
                        input_ids (torch.Tensor): (1, seq_len, num_vq) Audio input token ids.
         | 
| 2510 | 
             
                        past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
         | 
| @@ -2534,7 +2867,7 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2534 | 
             
                        streaming_tts_text_mask=streaming_tts_text_mask,
         | 
| 2535 | 
             
                        streaming_reserved_length=self.streaming_text_reserved_len,
         | 
| 2536 | 
             
                        streaming_text_chunk_size=self.streaming_text_chunk_size,
         | 
| 2537 | 
            -
                    )  # [1, 1, 1, | 
| 2538 |  | 
| 2539 | 
             
                    # Model forward
         | 
| 2540 | 
             
                    outputs: BaseModelOutputWithPast = self.model(
         | 
| @@ -2564,57 +2897,12 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2564 | 
             
                    logits_processors: List[CustomRepetitionPenaltyLogitsProcessorRepeat] = [],
         | 
| 2565 | 
             
                    show_tqdm=False,
         | 
| 2566 | 
             
                ):
         | 
| 2567 | 
            -
                    """Generate audio codes in streaming setting.
         | 
| 2568 | 
             
                    Specifically speaking, generate audio codes when not all text tokens are prefilled.
         | 
| 2569 |  | 
| 2570 | 
            -
                     | 
| 2571 | 
            -
                        Always pass an non-empty `past_key_values` to the function. The function does not do `prefill` by itself. It relies on `prefill_text` method to provide a valid `past_key_values`.
         | 
| 2572 |  | 
| 2573 | 
            -
             | 
| 2574 | 
            -
                        ```python
         | 
| 2575 | 
            -
                        initial_kv_cache_length = 1 + self.num_spk_embs + self.streaming_text_reserved_len
         | 
| 2576 | 
            -
                        dtype = model.emb_text.weight.dtype
         | 
| 2577 | 
            -
                        device = model.emb_text.weight.device
         | 
| 2578 | 
            -
                        past_key_values = [
         | 
| 2579 | 
            -
                            (
         | 
| 2580 | 
            -
                                torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device),
         | 
| 2581 | 
            -
                                torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device)
         | 
| 2582 | 
            -
                            )
         | 
| 2583 | 
            -
                            for _ in range(model.config.num_hidden_layers)
         | 
| 2584 | 
            -
                        ]
         | 
| 2585 | 
            -
             | 
| 2586 | 
            -
                        2. Prefill some text tokens using `prefill_text` method.
         | 
| 2587 | 
            -
                        ```python
         | 
| 2588 | 
            -
                        outputs = llm.generate(**kwargs)
         | 
| 2589 | 
            -
                        lm_spk_emb_last_hidden_states or lm_last_hidden_states = extract(outputs.last_hidden_states)
         | 
| 2590 | 
            -
                        input_ids = tts_tokenizer.encode(llm_tokenizer.decode(llm_tokens))
         | 
| 2591 | 
            -
                        position_ids = torch.arange(begin, end, dtype=torch.long, device=device)
         | 
| 2592 | 
            -
                        past_key_values = self.prefill_text(
         | 
| 2593 | 
            -
                            input_ids=input_ids,
         | 
| 2594 | 
            -
                            position_ids=position_ids,
         | 
| 2595 | 
            -
                            past_key_values=past_key_values,
         | 
| 2596 | 
            -
                            lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
         | 
| 2597 | 
            -
                            lm_last_hidden_states=lm_last_hidden_states,
         | 
| 2598 | 
            -
                        )
         | 
| 2599 | 
            -
                        ```
         | 
| 2600 | 
            -
             | 
| 2601 | 
            -
                        3. Generate audio codes using `generate` method.
         | 
| 2602 | 
            -
                        ```python
         | 
| 2603 | 
            -
                        # initialize input_ids, this should be only done `once`
         | 
| 2604 | 
            -
                        condition_length = 1 + model.num_spk_embs * model.use_speaker_embedding + model.streaming_text_reserved_len + 1
         | 
| 2605 | 
            -
                        input_ids = torch.zeros(batch_size=1, condition_length, self.num_vq)
         | 
| 2606 | 
            -
             | 
| 2607 | 
            -
                        outputs = self.generate(
         | 
| 2608 | 
            -
                            input_ids=input_ids,
         | 
| 2609 | 
            -
                            past_key_values=past_key_values,
         | 
| 2610 | 
            -
                        )
         | 
| 2611 | 
            -
             | 
| 2612 | 
            -
                        # update past_key_values and input_ids
         | 
| 2613 | 
            -
                        past_key_values = outputs.past_key_values
         | 
| 2614 | 
            -
                        input_ids = outputs.input_ids
         | 
| 2615 | 
            -
                        ```
         | 
| 2616 | 
            -
             | 
| 2617 | 
            -
                        4. Repeat step 2 and 3.
         | 
| 2618 |  | 
| 2619 | 
             
                    Args:
         | 
| 2620 | 
             
                        input_ids (torch.Tensor): Input token ids.
         | 
| @@ -2626,8 +2914,7 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2626 | 
             
                        logits_warpers (List[LogitsWarper], optional): List of logits warpers. Defaults to [].
         | 
| 2627 | 
             
                        logits_processors (List[CustomRepetitionPenaltyLogitsProcessorRepeat], optional): List of logits processors. Defaults to [].
         | 
| 2628 | 
             
                        show_tqdm (bool, optional): Whether to show progress bar. Defaults to True.
         | 
| 2629 | 
            -
             | 
| 2630 | 
            -
                        NotImplementedError: _description_
         | 
| 2631 | 
             
                    Returns:
         | 
| 2632 | 
             
                        GenerationOutputs: Generation outputs.
         | 
| 2633 | 
             
                    """
         | 
| @@ -2655,7 +2942,7 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2655 | 
             
                        device=input_ids.device,
         | 
| 2656 | 
             
                    )
         | 
| 2657 |  | 
| 2658 | 
            -
                    # Copy existing input_ids to input_ids_buf
         | 
| 2659 | 
             
                    input_ids_buf.narrow(1, 0, progress).copy_(input_ids)
         | 
| 2660 |  | 
| 2661 | 
             
                    del input_ids
         | 
| @@ -2674,19 +2961,22 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2674 | 
             
                    for i in range(max_new_token):
         | 
| 2675 | 
             
                        # Prepare generation inputs
         | 
| 2676 | 
             
                        audio_bos = False
         | 
| 2677 | 
            -
             | 
|  | |
| 2678 | 
             
                        if progress == condition_length:
         | 
| 2679 | 
             
                            audio_bos = True
         | 
| 2680 |  | 
|  | |
|  | |
|  | |
|  | |
| 2681 | 
             
                        if audio_bos:
         | 
| 2682 | 
            -
                            # Generate the first token, activate the model with `self.audio_bos_token_id`, the model will predict a new audio token.
         | 
| 2683 | 
            -
                            assert progress == (past_key_values[0][0].shape[2] + 1)
         | 
| 2684 | 
             
                            narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
         | 
| 2685 | 
             
                            inputs_embeds = self.emb_text(narrowed_input_ids)
         | 
| 2686 | 
             
                            del narrowed_input_ids
         | 
| 2687 | 
             
                        else:
         | 
| 2688 | 
            -
                            # Generate the following audio tokens, it is applicable to all other cases, including second and the following calling of `generate | 
| 2689 | 
            -
                            assert progress == (past_key_values[0][0].shape[2] + 1)
         | 
| 2690 | 
             
                            narrowed_input_ids = input_ids.narrow(dim=1, start=input_ids.shape[1] - 1, length=1)
         | 
| 2691 | 
             
                            code_emb = [self.emb_code[i](narrowed_input_ids[:, :, i]) for i in range(self.num_vq)]
         | 
| 2692 | 
             
                            inputs_embeds = torch.stack(code_emb, 3).sum(3)
         | 
| @@ -2696,6 +2986,8 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2696 | 
             
                        ).unsqueeze(0)
         | 
| 2697 |  | 
| 2698 | 
             
                        cache_position = position_ids.clone()
         | 
|  | |
|  | |
| 2699 | 
             
                        causal_mask = make_streaming_chunk_mask_generation(
         | 
| 2700 | 
             
                            inputs_embeds=inputs_embeds,
         | 
| 2701 | 
             
                            past_seen_tokens=past_key_values[0][0].shape[2],
         | 
| @@ -2787,7 +3079,7 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2787 | 
             
                        finish.logical_or_(finish_or)
         | 
| 2788 |  | 
| 2789 | 
             
                        del finish_or
         | 
| 2790 | 
            -
                        #  | 
| 2791 | 
             
                        input_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1))
         | 
| 2792 |  | 
| 2793 | 
             
                        if i == 0 and finish.any():
         | 
| @@ -2831,8 +3123,18 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2831 | 
             
                def decode_to_mel_specs(
         | 
| 2832 | 
             
                    self,
         | 
| 2833 | 
             
                    result_list: List[torch.Tensor],
         | 
| 2834 | 
            -
                    use_decoder: bool = False,
         | 
| 2835 | 
             
                ):
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 2836 | 
             
                    decoder = self.dvae
         | 
| 2837 | 
             
                    max_x_len = -1
         | 
| 2838 | 
             
                    if len(result_list) == 0:
         | 
| @@ -2855,6 +3157,7 @@ class ConditionalChatTTS(PreTrainedModel): | |
| 2855 | 
             
                    return mel_specs
         | 
| 2856 |  | 
| 2857 |  | 
|  | |
| 2858 | 
             
            def gen_logits(
         | 
| 2859 | 
             
                num_code: int,
         | 
| 2860 | 
             
                top_P=0.7,
         | 
|  | |
| 121 |  | 
| 122 | 
             
                    self.processor = AutoProcessor.from_pretrained(self.config._name_or_path, trust_remote_code=True)
         | 
| 123 |  | 
| 124 | 
            +
                    self.terminators = ["<|im_end|>", "<|endoftext|>"]
         | 
| 125 |  | 
| 126 | 
             
                    self.default_tts_chat_template = "{% for message in messages %}{{'<|im_start|>' + message['role'] + '\n' + message['content'] + '<|im_end|>' + '\n'}}{% endfor %}{% if add_generation_prompt %}{{ '<|im_start|>assistant\n<|spk_bos|><|spk|><|spk_eos|><|tts_bos|>' }}{% endif %}"
         | 
| 127 | 
             
                    self.force_no_stop = False
         | 
| 128 |  | 
| 129 | 
             
                    # for stream api
         | 
| 130 | 
            +
                    self.reset_session()
         | 
| 131 | 
            +
             | 
| 132 | 
            +
                def reset_session(self):
         | 
| 133 | 
             
                    self.session_id = None
         | 
| 134 | 
             
                    self.new_user_msg = True
         | 
| 135 | 
             
                    self.llm_generated = False
         | 
| 136 | 
             
                    self.llm_generate_completed = False
         | 
| 137 | 
             
                    self.llm_past_key_values = None
         | 
| 138 | 
             
                    self.audio_past_key_values = None  # apm kv cache
         | 
|  | |
| 139 |  | 
| 140 | 
             
                def init_tts(
         | 
| 141 | 
             
                    self,
         | 
|  | |
| 403 | 
             
                    return vllm_embedding, vision_hidden_states
         | 
| 404 |  | 
| 405 | 
             
                def get_audio_embedding_streaming(self, data):
         | 
| 406 | 
            +
                    r"""
         | 
| 407 | 
            +
                    Extract audio embeddings in a streaming manner using cached key-value pairs.
         | 
| 408 | 
            +
             | 
| 409 | 
            +
                    This method processes incoming audio features incrementally and stores/updates `past_key_values`
         | 
| 410 | 
            +
                    for faster inference on subsequent audio frames. It only supports batch_size=1 and is intended
         | 
| 411 | 
            +
                    for streaming scenarios.
         | 
| 412 | 
            +
             | 
| 413 | 
            +
                    Args:
         | 
| 414 | 
            +
                        data (dict):
         | 
| 415 | 
            +
                            - **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
         | 
| 416 | 
            +
                            - **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
         | 
| 417 | 
            +
             | 
| 418 | 
            +
                    Returns:
         | 
| 419 | 
            +
                        List[List[torch.Tensor]]: audio embeddings
         | 
| 420 | 
            +
                    """
         | 
| 421 | 
             
                    wavforms = data.get("audio_features", [])  # (bs, 80, frames) or [], multi audios need filled in advance
         | 
| 422 | 
             
                    audio_feature_lens_raw = data.get("audio_feature_lens", [])  # list, [[x1, x2], [y1], [z1]]
         | 
| 423 |  | 
|  | |
| 464 | 
             
                        return []
         | 
| 465 |  | 
| 466 | 
             
                def get_audio_embedding(self, data, chunk_length=-1):
         | 
| 467 | 
            +
                    r"""
         | 
| 468 | 
            +
                    Extract full audio embeddings with optional chunk-based attention.
         | 
| 469 | 
            +
             | 
| 470 | 
            +
                    This method computes embeddings for all audio frames at once, either using full attention (when
         | 
| 471 | 
            +
                    `chunk_length` is -1) or chunk-based attention (when `chunk_length` is a positive number). It does
         | 
| 472 | 
            +
                    not use key-value caching and is suitable for non-streaming inference.
         | 
| 473 | 
            +
             | 
| 474 | 
             
                    Args:
         | 
| 475 | 
            +
                        data (dict):
         | 
| 476 | 
            +
                            - **"audio_features"** (`torch.FloatTensor`): Input mel-spectrograms of shape `(batch_size, 80, frames)`.
         | 
| 477 | 
            +
                            - **"audio_feature_lens"** (List[List[int]]): Lengths of each audio segment for each item in the batch.
         | 
| 478 | 
            +
                        chunk_length (int, optional): Determines whether to use full attention (-1) or chunk-based
         | 
| 479 | 
            +
                            attention (>0) during embedding computation.
         | 
| 480 | 
            +
             | 
| 481 | 
             
                    Returns:
         | 
| 482 | 
            +
                        List[List[torch.Tensor]]: audio embeddings
         | 
| 483 | 
             
                    """
         | 
| 484 | 
            +
             | 
| 485 | 
             
                    wavforms = data.get("audio_features", [])  # (bs, 80, frames) or [], multi audios need filled in advance
         | 
| 486 | 
             
                    audio_feature_lens_raw = data.get("audio_feature_lens", [])  # list, [[x1, x2], [y1], [z1]]
         | 
| 487 |  | 
|  | |
| 546 |  | 
| 547 | 
             
                def get_omni_embedding(self, data, input_embeddings, chunk_length=-1, stream_input=False):
         | 
| 548 | 
             
                    """
         | 
|  | |
| 549 | 
             
                    Args:
         | 
| 550 | 
             
                        data:
         | 
| 551 | 
             
                        input_embeddings:
         | 
|  | |
| 601 |  | 
| 602 | 
             
                def forward(self, data, **kwargs):
         | 
| 603 | 
             
                    vllm_embedding, vision_hidden_states = self.get_vllm_embedding(data)
         | 
| 604 | 
            +
             | 
| 605 | 
            +
                    if self.config.init_audio:
         | 
| 606 | 
            +
                        vllm_embedding = self.get_omni_embedding(
         | 
| 607 | 
            +
                            data, input_embeddings=vllm_embedding, chunk_length=self.config.audio_chunk_length
         | 
| 608 | 
            +
                        )
         | 
| 609 |  | 
| 610 | 
             
                    position_ids = data["position_ids"]
         | 
| 611 | 
             
                    if position_ids.dtype != torch.int64:
         | 
| 612 | 
             
                        position_ids = position_ids.long()
         | 
| 613 |  | 
| 614 | 
            +
                    # compatible with llama factory
         | 
| 615 | 
            +
                    for key in ["input_ids", "inputs_embeds", "position_ids"]:
         | 
| 616 | 
            +
                        if key in kwargs:
         | 
| 617 | 
            +
                            del kwargs[key]
         | 
| 618 | 
            +
             | 
| 619 | 
             
                    return self.llm(input_ids=None, position_ids=position_ids, inputs_embeds=vllm_embedding, **kwargs)
         | 
| 620 |  | 
| 621 | 
             
                def _decode(self, inputs_embeds, tokenizer, attention_mask, **kwargs):
         | 
|  | |
| 659 | 
             
                        result_text.append(tokenizer.decode(result))
         | 
| 660 | 
             
                    return result_text
         | 
| 661 |  | 
| 662 | 
            +
                def get_sys_prompt(self, ref_audio=None, mode="default", language="zh"):
         | 
| 663 | 
            +
                    """
         | 
| 664 | 
            +
                    Choose different system prompts according to different tasks
         | 
| 665 | 
            +
                    Args:
         | 
| 666 | 
            +
                        ref_audio: if ref_audio is not None, will use the voice cloning prompts, and the voice
         | 
| 667 | 
            +
                                   generated by the model will refer to the timbre of ref audio
         | 
| 668 | 
            +
                        mode:
         | 
| 669 | 
            +
                            "default": default system prompt and not refer to any task
         | 
| 670 | 
            +
                            "omni": input video and audio simultaneously
         | 
| 671 | 
            +
                            "audio_assistant": Default voice-only mode, the model will use the ref_audio's voice to reply user as a helpful assistant.
         | 
| 672 | 
            +
                            "audio_roleplay": Roleplay voice-only model, the model will use the ref_audio's voice to reply, and also role-play the character based on the audio prompt.
         | 
| 673 | 
            +
                            "voice_cloning": TTS mode, the model will clone the voice of ref_audio
         | 
| 674 | 
            +
                        language: prompts language, the model has the ability to automatically select the response language
         | 
| 675 | 
            +
                                based on the question language
         | 
| 676 | 
            +
                    Returns:
         | 
| 677 | 
            +
             | 
| 678 | 
            +
                    """
         | 
| 679 | 
            +
                    if ref_audio is not None:
         | 
| 680 | 
            +
                        assert isinstance(ref_audio, np.ndarray), "ref_audio error"
         | 
| 681 | 
            +
                    if mode == "omni":
         | 
| 682 | 
            +
                        if language == "zh":
         | 
| 683 | 
            +
                            sys_prompt = "你是一个AI助手。你能接受视频,音频和文本输入并输出语音和文本。"
         | 
| 684 | 
            +
                            vc_prompt_prefix = sys_prompt + "模仿输入音频中的声音特征。"
         | 
| 685 | 
            +
                            vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
         | 
| 686 | 
            +
                        else:
         | 
| 687 | 
            +
                            sys_prompt = "You are a helpful assistant. You can accept video, audio and text input and output voice and text. "
         | 
| 688 | 
            +
                            vc_prompt_prefix = sys_prompt + "Clone the voice in the provided audio prompt."
         | 
| 689 | 
            +
                            vc_prompt_suffix = "As an assistant, you will speak using this voice style."
         | 
| 690 | 
            +
             | 
| 691 | 
            +
                        if ref_audio is not None:
         | 
| 692 | 
            +
                            sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
         | 
| 693 | 
            +
             | 
| 694 | 
            +
                        else:
         | 
| 695 | 
            +
                            sys_msgs = {"role": "user", "content": [sys_prompt]}
         | 
| 696 | 
            +
             | 
| 697 | 
            +
                        return sys_msgs
         | 
| 698 | 
            +
                    elif mode == "audio_assistant":
         | 
| 699 | 
            +
                        if language == "zh":
         | 
| 700 | 
            +
                            vc_prompt_prefix = "模仿输入音频中的声音特征。"
         | 
| 701 | 
            +
                            vc_prompt_suffix = "作为助手,你将使用这种声音风格说话。"
         | 
| 702 | 
            +
                        else:
         | 
| 703 | 
            +
                            vc_prompt_prefix = "Clone the voice in the provided audio prompt."
         | 
| 704 | 
            +
                            vc_prompt_suffix = "As an assistant, you will speak using this voice style."
         | 
| 705 | 
            +
             | 
| 706 | 
            +
                        if ref_audio is not None:
         | 
| 707 | 
            +
                            sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
         | 
| 708 | 
            +
             | 
| 709 | 
            +
                        else:
         | 
| 710 | 
            +
                            logger.warning(
         | 
| 711 | 
            +
                                "Warning: ref_audio is None, speech generation will be performed based on the default voice."
         | 
| 712 | 
            +
                            )
         | 
| 713 | 
            +
                            sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
         | 
| 714 | 
            +
             | 
| 715 | 
            +
                        return sys_msgs
         | 
| 716 | 
            +
                    elif mode == "audio_roleplay":
         | 
| 717 | 
            +
                        if language == "zh":
         | 
| 718 | 
            +
                            vc_prompt_prefix = "模仿输入音频中的声音特征。"
         | 
| 719 | 
            +
                            vc_prompt_suffix = "假装你是上述音频中的人物,与我进行对话。"
         | 
| 720 | 
            +
                        else:
         | 
| 721 | 
            +
                            vc_prompt_prefix = "Clone the voice in the provided audio prompt."
         | 
| 722 | 
            +
                            vc_prompt_suffix = "Try to role-play the character based on the audio prompt above."
         | 
| 723 | 
            +
             | 
| 724 | 
            +
                        if ref_audio is not None:
         | 
| 725 | 
            +
                            sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio, vc_prompt_suffix]}
         | 
| 726 | 
            +
                        else:
         | 
| 727 | 
            +
                            print("Warning: ref_audio is None, speech generation will be performed based on the default voice.")
         | 
| 728 | 
            +
                            sys_msgs = {"role": "user", "content": ["Use the <reserved_53> voice.", vc_prompt_suffix]}
         | 
| 729 | 
            +
             | 
| 730 | 
            +
                        return sys_msgs
         | 
| 731 | 
            +
                    elif mode == "voice_cloning":
         | 
| 732 | 
            +
                        if language == "zh":
         | 
| 733 | 
            +
                            vc_prompt_prefix = "模仿输入音频中的声音特征。"
         | 
| 734 | 
            +
                        else:
         | 
| 735 | 
            +
                            vc_prompt_prefix = "Clone the voice in the provided audio prompt."
         | 
| 736 | 
            +
             | 
| 737 | 
            +
                        if ref_audio is not None:
         | 
| 738 | 
            +
                            sys_msgs = {"role": "user", "content": [vc_prompt_prefix, ref_audio]}
         | 
| 739 | 
            +
                        else:
         | 
| 740 | 
            +
                            raise ValueError("ref_audio con't be None in voice_cloning mode.")
         | 
| 741 | 
            +
             | 
| 742 | 
            +
                        return sys_msgs
         | 
| 743 | 
            +
                    else:
         | 
| 744 | 
            +
                        sys_prompt = "You are a helpful assistant. You can accept audio and text input and output voice and text."
         | 
| 745 | 
            +
                        sys_msgs = {"role": "user", "content": [sys_prompt]}
         | 
| 746 | 
            +
             | 
| 747 | 
            +
                        return sys_msgs
         | 
| 748 | 
            +
             | 
| 749 | 
             
                def generate(
         | 
| 750 | 
             
                    self,
         | 
| 751 | 
             
                    input_ids=None,
         | 
|  | |
| 816 | 
             
                    omni_input=False,
         | 
| 817 | 
             
                    max_slice_nums=None,
         | 
| 818 | 
             
                    use_image_id=None,
         | 
| 819 | 
            +
                    use_tts_template=False,
         | 
| 820 | 
             
                    generate_audio=False,
         | 
| 821 | 
             
                    return_spk_embed=False,
         | 
| 822 | 
             
                    return_dict=False,
         | 
|  | |
| 840 | 
             
                        omni_input: determine whether it is omni mode
         | 
| 841 | 
             
                        max_slice_nums: control the maximum number of image slices
         | 
| 842 | 
             
                        use_image_id: for video understanding or omni understanding, use_image_id should be False
         | 
| 843 | 
            +
                        use_tts_template: if the msgs contain audio, use_tts_template should be True
         | 
| 844 | 
             
                        generate_audio: whether to generate audio output, only used when return_dict=True
         | 
| 845 | 
             
                        return_spk_embed: whether to return spk embedding, only used when return_dict=True
         | 
| 846 | 
             
                        return_dict: whether to return dict
         | 
|  | |
| 917 | 
             
                            for c in content:
         | 
| 918 | 
             
                                if isinstance(c, Image.Image):
         | 
| 919 | 
             
                                    images.append(c)
         | 
| 920 | 
            +
                                    cur_msgs.append("(<image>./</image>)")
         | 
| 921 | 
             
                                elif isinstance(c, np.ndarray):  # audio
         | 
| 922 | 
             
                                    audios.append(c)
         | 
| 923 | 
             
                                    audio_parts.append(i)
         | 
| 924 | 
            +
                                    cur_msgs.append("(<audio>./</audio>)")
         | 
| 925 | 
            +
                                    use_tts_template = True
         | 
| 926 | 
             
                                elif isinstance(c, str):
         | 
| 927 | 
             
                                    cur_msgs.append(c)
         | 
| 928 | 
             
                            if omni_input:
         | 
|  | |
| 935 | 
             
                                copy_msgs,
         | 
| 936 | 
             
                                tokenize=False,
         | 
| 937 | 
             
                                add_generation_prompt=True,
         | 
| 938 | 
            +
                                chat_template=self.default_tts_chat_template if use_tts_template else None,
         | 
| 939 | 
             
                            )
         | 
| 940 | 
             
                        )
         | 
| 941 | 
             
                        input_images_list.append(images)
         | 
|  | |
| 1005 | 
             
                        else:
         | 
| 1006 | 
             
                            answer = res[0]
         | 
| 1007 |  | 
| 1008 | 
            +
                            if use_tts_template and generate_audio:
         | 
| 1009 | 
             
                                mel_spec = self._generate_mel_spec(inputs, outputs, answer)
         | 
| 1010 | 
             
                                wav_numpy, sr = self.decode_mel_to_audio(mel_spec, output_audio_path)
         | 
| 1011 |  | 
| 1012 | 
             
                        if return_spk_embed:
         | 
| 1013 | 
             
                            spk_embeds = self._get_last_spk_embeds(inputs, outputs)
         | 
| 1014 |  | 
| 1015 | 
            +
                        if isinstance(answer, list):
         | 
| 1016 | 
            +
                            answer = [i.replace(tokenizer.tts_end, "") for i in answer]
         | 
| 1017 | 
            +
                        else:
         | 
| 1018 | 
            +
                            answer = answer.replace(tokenizer.tts_end, "")
         | 
| 1019 | 
            +
             | 
| 1020 | 
             
                        if return_dict:
         | 
| 1021 | 
             
                            return OmniOutput(text=answer, spk_embeds=spk_embeds, audio_wav=wav_numpy, sampling_rate=sr)
         | 
| 1022 | 
             
                        else:
         | 
|  | |
| 1028 | 
             
                    session_id,
         | 
| 1029 | 
             
                    msgs,
         | 
| 1030 | 
             
                    tokenizer,
         | 
| 1031 | 
            +
                    omni_input=True,
         | 
| 1032 | 
             
                    max_slice_nums=None,
         | 
| 1033 | 
             
                    ls_temperature=1.0,
         | 
| 1034 | 
             
                    **kwargs,
         | 
|  | |
| 1058 | 
             
                    for j, c in enumerate(content):
         | 
| 1059 | 
             
                        if isinstance(c, Image.Image):
         | 
| 1060 | 
             
                            images.append(c)
         | 
| 1061 | 
            +
                            cur_msgs.append("(<image>./</image>)")
         | 
| 1062 | 
             
                        elif isinstance(c, np.ndarray):  # audio
         | 
| 1063 | 
             
                            audios.append(c)
         | 
| 1064 | 
            +
                            cur_msgs.append("(<audio>./</audio>)")
         | 
| 1065 | 
             
                        elif isinstance(c, str):
         | 
| 1066 | 
             
                            cur_msgs.append(c)
         | 
| 1067 | 
             
                        else:
         | 
| 1068 | 
             
                            logger.error("Invalid content type:", c)
         | 
| 1069 |  | 
| 1070 | 
            +
                    cur_contents = "".join(cur_msgs) if omni_input else "\n".join(omni_input)
         | 
| 1071 | 
             
                    if not self.is_first and self.new_user_msg and msg["role"] == "user":  # new user add im_start
         | 
| 1072 | 
             
                        if self.llm_generated:
         | 
| 1073 | 
             
                            if self.llm_generate_completed:
         | 
| 1074 | 
            +
                                msg["content"] = "<|im_end|>\n<|im_start|>user\n" + cur_contents
         | 
| 1075 | 
             
                            else:  # break llm gen, add tts_eos
         | 
| 1076 | 
            +
                                msg["content"] = "<|tts_eos|><|im_end|>\n<|im_start|>user\n" + cur_contents
         | 
| 1077 | 
             
                        else:
         | 
| 1078 | 
            +
                            msg["content"] = "<|im_start|>user\n" + cur_contents
         | 
| 1079 | 
             
                        self.new_user_msg = False
         | 
| 1080 | 
             
                    else:
         | 
| 1081 | 
            +
                        msg["content"] = cur_contents
         | 
| 1082 |  | 
| 1083 | 
             
                    if msg["role"] in ["system", "assistant"]:
         | 
| 1084 | 
             
                        self.new_user_msg = True
         | 
|  | |
| 1086 |  | 
| 1087 | 
             
                    if self.is_first:
         | 
| 1088 | 
             
                        # init pask_key_values
         | 
| 1089 | 
            +
                        logger.info(f"new session_id: {session_id}, reset kv cache")
         | 
| 1090 | 
            +
                        self.reset_session()
         | 
| 1091 | 
             
                        self.session_id = session_id
         | 
|  | |
|  | |
|  | |
| 1092 |  | 
| 1093 | 
             
                        prompt = tokenizer.apply_chat_template(
         | 
| 1094 | 
             
                            copy_msgs, tokenize=False, add_generation_prompt=False, chat_template=self.default_tts_chat_template
         | 
|  | |
| 1139 | 
             
                        return_dict=True,
         | 
| 1140 | 
             
                    )
         | 
| 1141 | 
             
                    self.llm_past_key_values = outputs["past_key_values"]
         | 
| 1142 | 
            +
                    return
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 1143 |  | 
| 1144 | 
             
                @torch.inference_mode()
         | 
| 1145 | 
             
                def streaming_generate(
         | 
|  | |
| 1149 | 
             
                    max_new_tokens=512,
         | 
| 1150 | 
             
                    min_new_tokens=0,
         | 
| 1151 | 
             
                    sampling=True,
         | 
| 1152 | 
            +
                    generate_audio=True,
         | 
| 1153 | 
             
                    enable_regenerate=False,
         | 
| 1154 | 
             
                    **kwargs,
         | 
| 1155 | 
             
                ):
         | 
|  | |
| 1196 | 
             
                    generation_config["max_new_tokens"] = max_new_tokens
         | 
| 1197 | 
             
                    streamer = self.llm_generate_chunk(input_ids, attention_mask, tokenizer, terminators, generation_config)
         | 
| 1198 |  | 
| 1199 | 
            +
                    if generate_audio:
         | 
| 1200 | 
             
                        result = self._generate_mel_spec_audio_streaming(
         | 
| 1201 | 
             
                            spk_bounds, streamer, output_chunk_size=25, enable_regenerate=enable_regenerate
         | 
| 1202 | 
             
                        )
         | 
|  | |
| 1440 | 
             
                    return mel_spec
         | 
| 1441 |  | 
| 1442 | 
             
                def _linear_overlap_add2_wav(self, frames: List[torch.Tensor], overlap: int):
         | 
| 1443 | 
            +
                    """
         | 
| 1444 | 
            +
                    Merge two audio waveforms with smooth in streaming audio generation.
         | 
| 1445 | 
            +
                    Borrowed some codes from `https://github.com/huggingface/transformers/blob/main/src/transformers/models/encodec/modeling_encodec.py`
         | 
| 1446 | 
            +
                    """
         | 
| 1447 | 
             
                    assert len(frames) == 2
         | 
| 1448 | 
             
                    device = frames[0].device
         | 
| 1449 | 
             
                    dtype = frames[0].dtype
         | 
|  | |
| 1690 | 
             
                                    prev_wav = wav_np[len(prev_wav) :]
         | 
| 1691 | 
             
                                    cur_text = gen_text_raw[prev_text_len:]
         | 
| 1692 | 
             
                                    prev_text_len = len(gen_text_raw)
         | 
| 1693 | 
            +
                                    yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)
         | 
| 1694 | 
            +
             | 
| 1695 | 
             
                                else:
         | 
| 1696 | 
             
                                    prev_wav = wav_np
         | 
| 1697 | 
             
                            else:
         | 
|  | |
| 1702 | 
             
                                    )  # tts_hop256*2
         | 
| 1703 | 
             
                                    cur_text = gen_text_raw[prev_text_len:]
         | 
| 1704 | 
             
                                    prev_text_len = len(gen_text_raw)
         | 
| 1705 | 
            +
                                    yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)
         | 
| 1706 | 
            +
             | 
| 1707 | 
             
                                else:
         | 
| 1708 | 
             
                                    prev_wav = wav_np
         | 
| 1709 |  | 
|  | |
| 1801 | 
             
                                    prev_wav = wav_np[len(prev_wav) :]
         | 
| 1802 | 
             
                                    cur_text = gen_text_raw[prev_text_len:]
         | 
| 1803 | 
             
                                    prev_text_len = len(gen_text_raw)
         | 
| 1804 | 
            +
                                    yield OmniOutput(text=cur_text, audio_wav=wav_y, sampling_rate=sr)
         | 
| 1805 | 
             
                                else:
         | 
| 1806 | 
             
                                    prev_wav = wav_np
         | 
| 1807 | 
             
                            else:
         | 
|  | |
| 1812 | 
             
                                    )  # tts_hop256*2
         | 
| 1813 | 
             
                                    cur_text = gen_text_raw[prev_text_len:]
         | 
| 1814 | 
             
                                    prev_text_len = len(gen_text_raw)
         | 
| 1815 | 
            +
                                    yield OmniOutput(text=cur_text, audio_wav=wav_np, sampling_rate=sr)
         | 
| 1816 | 
             
                                else:
         | 
| 1817 | 
             
                                    prev_wav = wav_np
         | 
| 1818 |  | 
|  | |
| 1826 |  | 
| 1827 | 
             
                    if prev_wav is not None:
         | 
| 1828 | 
             
                        cur_text = gen_text_raw[prev_text_len:]
         | 
| 1829 | 
            +
                        yield OmniOutput(text=cur_text, audio_wav=prev_wav, sampling_rate=sr)  # yield last chunk wav without smooth
         | 
| 1830 |  | 
| 1831 | 
             
                    if new_segment_gen and not stop:
         | 
| 1832 | 
             
                        logger.debug(
         | 
|  | |
| 1860 | 
             
                    return wav_numpy, sr
         | 
| 1861 |  | 
| 1862 |  | 
| 1863 | 
            +
            # Copied from transformers.models.whisper.modeling_whisper.WhisperEncoderLayer and add use_cache for streaming inference
         | 
| 1864 | 
             
            class MiniCPMWhisperEncoderLayer(nn.Module):
         | 
| 1865 | 
             
                def __init__(self, config: WhisperConfig, layer_idx: int = None):
         | 
| 1866 | 
             
                    super().__init__()
         | 
|  | |
| 1889 | 
             
                    past_key_values: Optional[EncoderDecoderCache] = None,
         | 
| 1890 | 
             
                    use_cache: Optional[bool] = False,
         | 
| 1891 | 
             
                ) -> torch.Tensor:
         | 
| 1892 | 
            +
                    r"""
         | 
| 1893 | 
            +
                    Args:
         | 
| 1894 | 
            +
                        hidden_states (`torch.FloatTensor` of shape `(batch_size, seq_len, embed_dim)`):
         | 
| 1895 | 
            +
                            Hidden states to be fed into the encoder layer.
         | 
| 1896 | 
            +
                        attention_mask (`torch.FloatTensor` of shape `(batch_size, 1, tgt_len, src_len)`):
         | 
| 1897 | 
            +
                            Attention mask where padding elements are indicated by large negative values.
         | 
| 1898 | 
            +
                        layer_head_mask (`torch.FloatTensor` of shape `(encoder_attention_heads,)`):
         | 
| 1899 | 
            +
                            Mask to nullify selected heads of the attention modules.
         | 
| 1900 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 1901 | 
            +
                            Whether or not to return the attention weights.
         | 
| 1902 | 
            +
                        past_key_values (`EncoderDecoderCache`, *optional*):
         | 
| 1903 | 
            +
                            Past key-value pairs used for incremental decoding.
         | 
| 1904 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 1905 | 
            +
                            Whether or not to return updated `past_key_values` for caching.
         | 
| 1906 | 
            +
             | 
| 1907 | 
            +
                    Returns:
         | 
| 1908 | 
            +
                        A tuple of shape `(hidden_states, optional(attn_weights), optional(past_key_values))`.
         | 
| 1909 | 
            +
                    """
         | 
| 1910 | 
             
                    residual = hidden_states
         | 
| 1911 | 
             
                    hidden_states = self.self_attn_layer_norm(hidden_states)
         | 
| 1912 | 
             
                    hidden_states, attn_weights, past_key_values = self.self_attn(
         | 
|  | |
| 1944 | 
             
                    return outputs
         | 
| 1945 |  | 
| 1946 |  | 
| 1947 | 
            +
            # Copied from from transformers.models.whisper.modeling_whisper.WhisperEncoder and add use_cache for streaming inference
         | 
| 1948 | 
             
            class MiniCPMWhisperEncoder(WhisperEncoder):
         | 
| 1949 |  | 
| 1950 | 
             
                def __init__(self, config: WhisperConfig):
         | 
|  | |
| 1964 | 
             
                    past_key_values: Optional[EncoderDecoderCache] = None,
         | 
| 1965 | 
             
                    use_cache: Optional[bool] = None,
         | 
| 1966 | 
             
                ):
         | 
| 1967 | 
            +
                    r"""
         | 
| 1968 | 
            +
                    Forward pass of the Whisper encoder.
         | 
| 1969 | 
            +
             | 
| 1970 | 
            +
                    Args:
         | 
| 1971 | 
            +
                        input_features (`torch.FloatTensor` of shape `(batch_size, feature_size, sequence_length)`):
         | 
| 1972 | 
            +
                            Float values of log-mel features extracted from the raw audio waveform. Typically generated
         | 
| 1973 | 
            +
                            by a feature extractor (e.g., `WhisperFeatureExtractor`) that processes `.flac` or `.wav`
         | 
| 1974 | 
            +
                            files into padded 2D mel spectrogram frames. These features are projected via convolution layers
         | 
| 1975 | 
            +
                            (`conv1` and `conv2`) and then transformed into embeddings for the encoder.
         | 
| 1976 | 
            +
             | 
| 1977 | 
            +
                        attention_mask (`torch.Tensor`, *optional*):
         | 
| 1978 | 
            +
                            Not used by Whisper for masking `input_features`, but included for API compatibility with
         | 
| 1979 | 
            +
                            other models. If provided, it is simply ignored within the model. By default, Whisper
         | 
| 1980 | 
            +
                            effectively ignores silence in the input log-mel spectrogram.
         | 
| 1981 | 
            +
             | 
| 1982 | 
            +
                        head_mask (`torch.Tensor` of shape `(encoder_layers, encoder_attention_heads)`, *optional*):
         | 
| 1983 | 
            +
                            Mask to nullify selected attention heads. The elements should be either 1 or 0, where:
         | 
| 1984 | 
            +
                            - 1 indicates the head is **not masked**,
         | 
| 1985 | 
            +
                            - 0 indicates the head is **masked** (i.e., the attention head is dropped).
         | 
| 1986 | 
            +
             | 
| 1987 | 
            +
                        output_attentions (`bool`, *optional*):
         | 
| 1988 | 
            +
                            Whether or not to return the attention tensors of all encoder layers. If set to `True`, the
         | 
| 1989 | 
            +
                            returned tuple (or `BaseModelOutputWithPast`) will contain an additional element with
         | 
| 1990 | 
            +
                            attention weights for each encoder layer.
         | 
| 1991 | 
            +
             | 
| 1992 | 
            +
                        output_hidden_states (`bool`, *optional*):
         | 
| 1993 | 
            +
                            Whether or not to return the hidden states of all layers. If set to `True`, the returned
         | 
| 1994 | 
            +
                            tuple (or `BaseModelOutputWithPast`) will contain a tuple of hidden states, including the
         | 
| 1995 | 
            +
                            initial embedding output as well as the outputs of each layer.
         | 
| 1996 | 
            +
             | 
| 1997 | 
            +
                        return_dict (`bool`, *optional*):
         | 
| 1998 | 
            +
                            Whether or not to return a `BaseModelOutputWithPast` (a subclass of `ModelOutput`) instead
         | 
| 1999 | 
            +
                            of a plain tuple. If set to `True`, the output will be a `BaseModelOutputWithPast` object,
         | 
| 2000 | 
            +
                            otherwise it will be a tuple.
         | 
| 2001 | 
            +
             | 
| 2002 | 
            +
                        past_key_values (`EncoderDecoderCache`, *optional*):
         | 
| 2003 | 
            +
                            When using caching for faster inference, this is an object that stores the key-value pairs
         | 
| 2004 | 
            +
                            for attention states. If provided, the model will append new states to the existing cache
         | 
| 2005 | 
            +
                            and return the updated cache. This speeds up sequential decoding or chunked inference.
         | 
| 2006 | 
            +
             | 
| 2007 | 
            +
                            - If `past_key_values` is `None`, no past states are used or returned.
         | 
| 2008 | 
            +
                            - If `past_key_values` is not `None` and `use_cache=True`, the model will use the provided
         | 
| 2009 | 
            +
                            cache and return the updated cache (as `next_encoder_cache`).
         | 
| 2010 | 
            +
             | 
| 2011 | 
            +
                        use_cache (`bool`, *optional*):
         | 
| 2012 | 
            +
                            Whether or not the model should use caching (`past_key_values`) to speed up processing
         | 
| 2013 | 
            +
                            during inference. When set to `True`, the model will:
         | 
| 2014 | 
            +
                            - Inspect and use `past_key_values` if provided.
         | 
| 2015 | 
            +
                            - Return updated `past_key_values` (under the name `next_encoder_cache` in
         | 
| 2016 | 
            +
                                `BaseModelOutputWithPast`).
         | 
| 2017 | 
            +
             | 
| 2018 | 
            +
                    Returns:
         | 
| 2019 | 
            +
                        `BaseModelOutputWithPast` or `tuple` (depending on `return_dict`):
         | 
| 2020 | 
            +
                            If `return_dict=True`, a `BaseModelOutputWithPast` is returned, which contains:
         | 
| 2021 | 
            +
                            - **last_hidden_state** (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`):
         | 
| 2022 | 
            +
                            The output of the final encoder layer.
         | 
| 2023 | 
            +
                            - **hidden_states** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_hidden_states=True`):
         | 
| 2024 | 
            +
                            Hidden states of the model at each layer (including the initial projection).
         | 
| 2025 | 
            +
                            - **attentions** (`tuple(torch.FloatTensor)`, *optional*, returned if `output_attentions=True`):
         | 
| 2026 | 
            +
                            Attention weights from each encoder layer.
         | 
| 2027 | 
            +
                            - **past_key_values** (an object of type `EncoderDecoderCache` or `None`, *optional*):
         | 
| 2028 | 
            +
                            Updated cache of key-value pairs if `use_cache=True`.
         | 
| 2029 | 
            +
             | 
| 2030 | 
            +
                            If `return_dict=False`, a tuple is returned, where the format is:
         | 
| 2031 | 
            +
                            `(last_hidden_state, hidden_states, attentions)`, with `hidden_states` and `attentions`
         | 
| 2032 | 
            +
                            only present if their respective `output_*` arguments are set to `True`.
         | 
| 2033 | 
            +
             | 
| 2034 | 
            +
                    Example:
         | 
| 2035 | 
            +
                        >>> from transformers import AutoFeatureExtractor, WhisperConfig, WhisperForConditionalGeneration
         | 
| 2036 | 
            +
                        >>> import torch
         | 
| 2037 | 
            +
             | 
| 2038 | 
            +
                        >>> # Load a feature extractor and a Whisper model
         | 
| 2039 | 
            +
                        >>> feature_extractor = AutoFeatureExtractor.from_pretrained("openai/whisper-tiny.en")
         | 
| 2040 | 
            +
                        >>> model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny.en")
         | 
| 2041 | 
            +
             | 
| 2042 | 
            +
                        >>> # Assume you have audio (list of floats or numpy array) loaded from a file
         | 
| 2043 | 
            +
                        >>> # Then extract the mel features:
         | 
| 2044 | 
            +
                        >>> input_features = feature_extractor(audio, sampling_rate=16000, return_tensors="pt").input_features
         | 
| 2045 | 
            +
             | 
| 2046 | 
            +
                        >>> # Forward pass
         | 
| 2047 | 
            +
                        >>> outputs = model.encoder(
         | 
| 2048 | 
            +
                        ...     input_features=input_features,
         | 
| 2049 | 
            +
                        ...     output_hidden_states=True,
         | 
| 2050 | 
            +
                        ...     output_attentions=True,
         | 
| 2051 | 
            +
                        ...     use_cache=True
         | 
| 2052 | 
            +
                        ... )
         | 
| 2053 | 
            +
             | 
| 2054 | 
            +
                        >>> # Retrieve the last hidden state
         | 
| 2055 | 
            +
                        >>> last_hidden_state = outputs.last_hidden_state
         | 
| 2056 | 
            +
                        >>> print(last_hidden_state.shape)
         | 
| 2057 | 
            +
                        torch.Size([batch_size, seq_length, hidden_size])
         | 
| 2058 | 
            +
             | 
| 2059 | 
            +
                        >>> # Retrieve the intermediate hidden states if output_hidden_states=True
         | 
| 2060 | 
            +
                        >>> all_encoder_hidden_states = outputs.hidden_states
         | 
| 2061 | 
            +
             | 
| 2062 | 
            +
                        >>> # Retrieve attention weights if output_attentions=True
         | 
| 2063 | 
            +
                        >>> all_encoder_attentions = outputs.attentions
         | 
| 2064 | 
            +
             | 
| 2065 | 
            +
                        >>> # Retrieve updated past key values if use_cache=True
         | 
| 2066 | 
            +
                        >>> encoder_cache = outputs.past_key_values
         | 
| 2067 | 
            +
                    """
         | 
| 2068 | 
             
                    output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
         | 
| 2069 | 
             
                    output_hidden_states = (
         | 
| 2070 | 
             
                        output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
         | 
|  | |
| 2179 | 
             
                    )
         | 
| 2180 |  | 
| 2181 |  | 
| 2182 | 
            +
            # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
         | 
| 2183 | 
             
            class ConvNeXtBlock(nn.Module):
         | 
| 2184 | 
             
                def __init__(
         | 
| 2185 | 
             
                    self,
         | 
|  | |
| 2233 | 
             
                    return x
         | 
| 2234 |  | 
| 2235 |  | 
| 2236 | 
            +
            # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
         | 
| 2237 | 
             
            class GFSQ(nn.Module):
         | 
| 2238 | 
             
                def __init__(
         | 
| 2239 | 
             
                    self,
         | 
|  | |
| 2276 | 
             
                    return ind.transpose_(1, 2) if self.transpose else ind
         | 
| 2277 |  | 
| 2278 |  | 
| 2279 | 
            +
            # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
         | 
| 2280 | 
             
            class DVAEDecoder(nn.Module):
         | 
| 2281 | 
             
                def __init__(
         | 
| 2282 | 
             
                    self,
         | 
|  | |
| 2321 | 
             
                    return x
         | 
| 2322 |  | 
| 2323 |  | 
| 2324 | 
            +
            # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/dvae.py`
         | 
| 2325 | 
             
            class DVAE(nn.Module):
         | 
| 2326 | 
             
                def __init__(
         | 
| 2327 | 
             
                    self,
         | 
|  | |
| 2400 | 
             
                    return torch.mul(dec_out, self.coef, out=dec_out)
         | 
| 2401 |  | 
| 2402 |  | 
|  | |
| 2403 | 
             
            def apply_spk_emb(
         | 
| 2404 | 
             
                input_ids: torch.Tensor = None,
         | 
| 2405 | 
             
                spk_emb: torch.Tensor = None,
         | 
|  | |
| 2408 | 
             
                num_spk_embs: int = 1,
         | 
| 2409 | 
             
            ):
         | 
| 2410 | 
             
                """
         | 
| 2411 | 
            +
                Replace consecutive `num_spk_embs` speaker embedding placeholders in input_embeds with pre-prepared speaker embeddings. This is an in-place replacement, no new tensor is created, so no value is returned.
         | 
| 2412 |  | 
| 2413 | 
             
                Args:
         | 
| 2414 | 
             
                    input_ids (torch.Tensor): Input ID tensor, shape [batch_size, seq_len_max]
         | 
|  | |
| 2447 | 
             
                use_spk_emb: bool = True,
         | 
| 2448 | 
             
            ) -> torch.Tensor:
         | 
| 2449 | 
             
                """
         | 
| 2450 | 
            +
                In streaming audio generation, determine which `text` positions the TTS model can attend to when generating each chunk of `audio` tokens.
         | 
| 2451 |  | 
| 2452 | 
             
                This function creates a mask that allows the model to attend to a specific chunk of text
         | 
| 2453 | 
             
                tokens when generating each chunk of audio tokens, enabling streaming TTS generation.
         | 
|  | |
| 2504 | 
             
                return causal_mask
         | 
| 2505 |  | 
| 2506 |  | 
| 2507 | 
            +
            # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py`
         | 
| 2508 | 
             
            class CustomRepetitionPenaltyLogitsProcessorRepeat:
         | 
| 2509 | 
             
                def __init__(self, penalty: float, max_input_ids: int, past_window: int):
         | 
| 2510 | 
             
                    if not isinstance(penalty, float) or not (penalty > 0):
         | 
|  | |
| 2563 |  | 
| 2564 |  | 
| 2565 | 
             
            class ConditionalChatTTS(PreTrainedModel):
         | 
| 2566 | 
            +
                """A conditional text-to-speech model that can generate speech from text with speaker conditioning.
         | 
| 2567 | 
            +
             | 
| 2568 | 
            +
                This model extends PreTrainedModel to provide text-to-speech capabilities with:
         | 
| 2569 | 
            +
                - LLM hidden state conditioning
         | 
| 2570 | 
            +
                - Streaming generation
         | 
| 2571 | 
            +
             | 
| 2572 | 
            +
                The model uses a transformer architecture with LLM hidden states and can operate in both
         | 
| 2573 | 
            +
                streaming and non-streaming modes for flexible deployment.
         | 
| 2574 | 
            +
             | 
| 2575 | 
            +
                The model process sequence in the following format:
         | 
| 2576 | 
            +
                | text bos token | LLM embedding projected to tts embedding space | text tokens (fixed length, reserved for future tokens) | audio bos token | audio tokens (audio token length is not fixed)| audio eos token |
         | 
| 2577 | 
            +
             | 
| 2578 | 
            +
                The format is designed to support LLM-conditioned streaming audio generation.
         | 
| 2579 | 
            +
             | 
| 2580 | 
            +
                Usage:
         | 
| 2581 | 
            +
                To support streaming generation, two global variables should be maintained outside of the model.
         | 
| 2582 | 
            +
                    1. `audio_input_ids`: stores *discrete* audio codes. It is a tensor with shape [1, sequence length+1, num_vq].
         | 
| 2583 | 
            +
                    2. `past_key_values`: stores the KV cache for both text tokens and audio codes. It is a list of tuples, each tuple contains two tensors with shape [1, num_attention_heads, sequence length, hidden_size // num_attention_heads]
         | 
| 2584 | 
            +
             | 
| 2585 | 
            +
                where `num_vq` is the number of audio codebooks, in default setting, it is `4`.
         | 
| 2586 | 
            +
             | 
| 2587 | 
            +
                1. Create an empty `past_key_values` with
         | 
| 2588 | 
            +
                ```python
         | 
| 2589 | 
            +
                initial_kv_cache_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len # where `1` denotes the `bos` token
         | 
| 2590 | 
            +
                dtype = model.emb_text.weight.dtype
         | 
| 2591 | 
            +
                device = model.emb_text.weight.device
         | 
| 2592 | 
            +
                past_key_values = [
         | 
| 2593 | 
            +
                    (
         | 
| 2594 | 
            +
                        torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device),
         | 
| 2595 | 
            +
                        torch.zeros(1, model.config.num_attention_heads, initial_kv_cache_length, model.config.hidden_size // model.config.num_attention_heads, dtype=dtype, device=device)
         | 
| 2596 | 
            +
                    )
         | 
| 2597 | 
            +
                    for _ in range(model.config.num_hidden_layers)
         | 
| 2598 | 
            +
                ]
         | 
| 2599 | 
            +
             | 
| 2600 | 
            +
                2. At the same time, create an empty `audio_input_ids` with shape [1, sequence length, num_vq], `num_vq` denotes multiple layer audio codebooks. But here we also include text tokens in the sequence, but they will be zeros, and will not be used, just a placeholder.
         | 
| 2601 | 
            +
             | 
| 2602 | 
            +
                ```python
         | 
| 2603 | 
            +
                initial_audio_input_ids_length = 1 + model.num_spk_embs + model.streaming_text_reserved_len + 1
         | 
| 2604 | 
            +
                # [bos token, speaker embeddings, text tokens, audio bos token]
         | 
| 2605 | 
            +
                audio_input_ids = torch.zeros(batch_size=1, initial_audio_input_ids_length, model.num_vq)
         | 
| 2606 | 
            +
                ```
         | 
| 2607 | 
            +
             | 
| 2608 | 
            +
                2. Prefill some text tokens to TTS model (for example, 10 tokens) using `prefill_text` method.
         | 
| 2609 | 
            +
             | 
| 2610 | 
            +
                ```python
         | 
| 2611 | 
            +
                outputs = llm.generate(**kwargs)
         | 
| 2612 | 
            +
                llm_tokens = some_function_to_extract_llm_tokens(outputs)
         | 
| 2613 | 
            +
                lm_spk_emb_last_hidden_states = some_function_to_extract_lm_spk_emb_last_hidden_states(outputs)
         | 
| 2614 | 
            +
                tts_text_input_ids = tts_tokenizer.encode(llm_tokenizer.decode(llm_tokens))
         | 
| 2615 | 
            +
                # here assume we are prefilling text token 0 to text token 9 (included), totally 10 tokens.
         | 
| 2616 | 
            +
                begin = 0
         | 
| 2617 | 
            +
                end = 9+1
         | 
| 2618 | 
            +
                position_ids = torch.arange(begin, end, dtype=torch.long, device=device)
         | 
| 2619 | 
            +
             | 
| 2620 | 
            +
                past_key_values = model.prefill_text(
         | 
| 2621 | 
            +
                    input_ids=tts_text_input_ids,
         | 
| 2622 | 
            +
                    position_ids=position_ids,
         | 
| 2623 | 
            +
                    past_key_values=past_key_values,
         | 
| 2624 | 
            +
                    lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
         | 
| 2625 | 
            +
                )
         | 
| 2626 | 
            +
                ```
         | 
| 2627 | 
            +
             | 
| 2628 | 
            +
                3. Make a `streaming_tts_text_mask` to denote which position contains valid text tokens, similar to `attention_mask` in standard causal attention.
         | 
| 2629 | 
            +
             | 
| 2630 | 
            +
                ```python
         | 
| 2631 | 
            +
                streaming_tts_text_mask = torch.zeros(model.streaming_reserved_length)
         | 
| 2632 | 
            +
                streaming_tts_text_mask[0:end] = 1 # denotes these post
         | 
| 2633 | 
            +
                ```
         | 
| 2634 | 
            +
             | 
| 2635 | 
            +
                3. Generate audio codes using `generate` method.
         | 
| 2636 | 
            +
             | 
| 2637 | 
            +
                ```python
         | 
| 2638 | 
            +
                outputs = model.generate(
         | 
| 2639 | 
            +
                    input_ids=audio_input_ids,
         | 
| 2640 | 
            +
                    past_key_values=past_key_values,
         | 
| 2641 | 
            +
                    streaming_tts_text_mask=streaming_tts_text_mask,
         | 
| 2642 | 
            +
                    max_new_token=50,
         | 
| 2643 | 
            +
                )
         | 
| 2644 | 
            +
             | 
| 2645 | 
            +
                # update past_key_values and input_ids
         | 
| 2646 | 
            +
                past_key_values = outputs.past_key_values
         | 
| 2647 | 
            +
                audio_input_ids = outputs.input_ids
         | 
| 2648 | 
            +
                ```
         | 
| 2649 | 
            +
             | 
| 2650 | 
            +
                The `past_key_values` is extended by `max_new_token=50`, and `audio_input_ids` is also extended by `max_new_token=50` after `generate` calling.
         | 
| 2651 | 
            +
             | 
| 2652 | 
            +
                4. Notice that after prefilling `10` text tokens, the model can generate up to `50` audio tokens, if you want to generate more audio tokens, you need to prefill next `10` text tokens. And it is okay to only generate `25` audio tokens for faster initial response.
         | 
| 2653 | 
            +
             | 
| 2654 | 
            +
                5. Repeat steps `2,3,4` as needed in your streaming audio generation cases, but ensure usage complies with the following guidelines discussed above.
         | 
| 2655 | 
            +
                """
         | 
| 2656 | 
            +
             | 
| 2657 | 
             
                config_class = ConditionalChatTTSConfig
         | 
| 2658 |  | 
| 2659 | 
             
                def __init__(self, config: ConditionalChatTTSConfig):
         | 
|  | |
| 2711 | 
             
                    self.model = model
         | 
| 2712 |  | 
| 2713 | 
             
                @torch.inference_mode()
         | 
| 2714 | 
            +
                def merge_inputs_embeds(
         | 
| 2715 | 
             
                    self,
         | 
| 2716 | 
             
                    input_ids: torch.Tensor,
         | 
| 2717 | 
             
                    lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
         | 
|  | |
| 2718 | 
             
                ):
         | 
| 2719 | 
            +
                    """Merge `input_ids` and `lm_spk_emb_last_hidden_states` to `inputs_embeds`.
         | 
|  | |
| 2720 |  | 
| 2721 | 
             
                    Args:
         | 
| 2722 | 
             
                        input_ids (torch.Tensor): Input token IDs.
         | 
| 2723 | 
             
                        lm_spk_emb_last_hidden_states (Optional[torch.Tensor], optional): Last hidden states of speaker embeddings from the language model. Defaults to None.
         | 
|  | |
| 2724 |  | 
| 2725 | 
             
                    Raises:
         | 
| 2726 | 
             
                        NotImplementedError: If speaker embedding is not used and language model hidden states are not implemented.
         | 
|  | |
| 2750 | 
             
                                num_spk_embs=self.num_spk_embs,
         | 
| 2751 | 
             
                            )
         | 
| 2752 | 
             
                    else:
         | 
|  | |
|  | |
| 2753 | 
             
                        raise NotImplementedError
         | 
| 2754 |  | 
| 2755 | 
             
                    return inputs_embeds
         | 
|  | |
| 2761 | 
             
                    position_ids: torch.LongTensor,
         | 
| 2762 | 
             
                    past_key_values: List[Tuple[torch.Tensor, torch.Tensor]],
         | 
| 2763 | 
             
                    lm_spk_emb_last_hidden_states: Optional[torch.Tensor] = None,
         | 
|  | |
| 2764 | 
             
                ):
         | 
| 2765 | 
             
                    """Prefill a chunk of new text tokens in streaming setting.
         | 
| 2766 | 
            +
                    Specifically speaking, update `past_key_values` using new text tokens, then the model will read the new text tokens.
         | 
| 2767 |  | 
| 2768 | 
             
                    Args:
         | 
| 2769 | 
             
                        input_ids (Tensor): Tensor of shape [batch_size, seq_len]
         | 
|  | |
| 2777 | 
             
                    assert input_ids.shape[0] == 1
         | 
| 2778 | 
             
                    assert past_key_values is not None
         | 
| 2779 |  | 
| 2780 | 
            +
                    # Merge text and LLM embeddings
         | 
| 2781 | 
            +
                    inputs_embeds = self.merge_inputs_embeds(
         | 
| 2782 | 
             
                        input_ids=input_ids,
         | 
| 2783 | 
             
                        lm_spk_emb_last_hidden_states=lm_spk_emb_last_hidden_states,
         | 
|  | |
| 2784 | 
             
                    )
         | 
| 2785 |  | 
| 2786 | 
             
                    # Clone KV Cache
         | 
|  | |
| 2807 | 
             
                    # Get model updated KV Cache
         | 
| 2808 | 
             
                    past_key_values_for_prefill_updated = outputs_prefill.past_key_values
         | 
| 2809 |  | 
| 2810 | 
            +
                    # Update generated KV Cache to input `past_key_values`
         | 
| 2811 | 
             
                    for layer_idx in range(len(past_key_values)):
         | 
| 2812 | 
             
                        # Update keys
         | 
| 2813 | 
             
                        past_key_values[layer_idx][0][:, :, position_ids[:, 0] : position_ids[:, -1] + 1, :] = (
         | 
|  | |
| 2835 | 
             
                    streaming_tts_text_mask=None,
         | 
| 2836 | 
             
                    add_audio_bos: bool = True,
         | 
| 2837 | 
             
                ):
         | 
| 2838 | 
            +
                    """Prefill a chunk of audio ids to the model. Used in sliding-window long audio generation.
         | 
| 2839 | 
            +
                    Specifically, prefill many audio ids (typically from last window) to the model in the new window.
         | 
| 2840 | 
            +
             | 
| 2841 | 
             
                    Args:
         | 
| 2842 | 
             
                        input_ids (torch.Tensor): (1, seq_len, num_vq) Audio input token ids.
         | 
| 2843 | 
             
                        past_key_values (List[Tuple[torch.Tensor, torch.Tensor]]): Past key values for attention mechanism.
         | 
|  | |
| 2867 | 
             
                        streaming_tts_text_mask=streaming_tts_text_mask,
         | 
| 2868 | 
             
                        streaming_reserved_length=self.streaming_text_reserved_len,
         | 
| 2869 | 
             
                        streaming_text_chunk_size=self.streaming_text_chunk_size,
         | 
| 2870 | 
            +
                    )  # [1, 1, 1, past_key_values_length + input_len]
         | 
| 2871 |  | 
| 2872 | 
             
                    # Model forward
         | 
| 2873 | 
             
                    outputs: BaseModelOutputWithPast = self.model(
         | 
|  | |
| 2897 | 
             
                    logits_processors: List[CustomRepetitionPenaltyLogitsProcessorRepeat] = [],
         | 
| 2898 | 
             
                    show_tqdm=False,
         | 
| 2899 | 
             
                ):
         | 
| 2900 | 
            +
                    """Generate audio codes in streaming setting or non-streaming setting.
         | 
| 2901 | 
             
                    Specifically speaking, generate audio codes when not all text tokens are prefilled.
         | 
| 2902 |  | 
| 2903 | 
            +
                    Always pass a valid `past_key_values` to the method. The method does not do `prefill` by itself. It relies on `prefill_text` method to provide valid `past_key_values`. Please refer to docstring of this class for more details.
         | 
|  | |
| 2904 |  | 
| 2905 | 
            +
                    In this method, we borrowed a lot of codes from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/gpt.py`.
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 2906 |  | 
| 2907 | 
             
                    Args:
         | 
| 2908 | 
             
                        input_ids (torch.Tensor): Input token ids.
         | 
|  | |
| 2914 | 
             
                        logits_warpers (List[LogitsWarper], optional): List of logits warpers. Defaults to [].
         | 
| 2915 | 
             
                        logits_processors (List[CustomRepetitionPenaltyLogitsProcessorRepeat], optional): List of logits processors. Defaults to [].
         | 
| 2916 | 
             
                        show_tqdm (bool, optional): Whether to show progress bar. Defaults to True.
         | 
| 2917 | 
            +
             | 
|  | |
| 2918 | 
             
                    Returns:
         | 
| 2919 | 
             
                        GenerationOutputs: Generation outputs.
         | 
| 2920 | 
             
                    """
         | 
|  | |
| 2942 | 
             
                        device=input_ids.device,
         | 
| 2943 | 
             
                    )
         | 
| 2944 |  | 
| 2945 | 
            +
                    # Copy existing `input_ids` to `input_ids_buf`
         | 
| 2946 | 
             
                    input_ids_buf.narrow(1, 0, progress).copy_(input_ids)
         | 
| 2947 |  | 
| 2948 | 
             
                    del input_ids
         | 
|  | |
| 2961 | 
             
                    for i in range(max_new_token):
         | 
| 2962 | 
             
                        # Prepare generation inputs
         | 
| 2963 | 
             
                        audio_bos = False
         | 
| 2964 | 
            +
             | 
| 2965 | 
            +
                        # If this is the first audio token, the case is SPECIAL
         | 
| 2966 | 
             
                        if progress == condition_length:
         | 
| 2967 | 
             
                            audio_bos = True
         | 
| 2968 |  | 
| 2969 | 
            +
                        assert progress == (
         | 
| 2970 | 
            +
                            past_key_values[0][0].shape[2] + 1
         | 
| 2971 | 
            +
                        )  # If you are using according to the guidelines, this should be passed.
         | 
| 2972 | 
            +
             | 
| 2973 | 
             
                        if audio_bos:
         | 
| 2974 | 
            +
                            # Generate the first token, activate the model with `self.audio_bos_token_id`, the model will predict a new audio token. This is a special case because without the `audio bos token`, it is impossible to generate the first audio token in our streaming setting.
         | 
|  | |
| 2975 | 
             
                            narrowed_input_ids = torch.tensor([[self.audio_bos_token_id]], dtype=torch.long, device=self.device)
         | 
| 2976 | 
             
                            inputs_embeds = self.emb_text(narrowed_input_ids)
         | 
| 2977 | 
             
                            del narrowed_input_ids
         | 
| 2978 | 
             
                        else:
         | 
| 2979 | 
            +
                            # Generate the following audio tokens, it is applicable to all other cases, including second and the following calling of `generate`.
         | 
|  | |
| 2980 | 
             
                            narrowed_input_ids = input_ids.narrow(dim=1, start=input_ids.shape[1] - 1, length=1)
         | 
| 2981 | 
             
                            code_emb = [self.emb_code[i](narrowed_input_ids[:, :, i]) for i in range(self.num_vq)]
         | 
| 2982 | 
             
                            inputs_embeds = torch.stack(code_emb, 3).sum(3)
         | 
|  | |
| 2986 | 
             
                        ).unsqueeze(0)
         | 
| 2987 |  | 
| 2988 | 
             
                        cache_position = position_ids.clone()
         | 
| 2989 | 
            +
             | 
| 2990 | 
            +
                        # Make causal mask
         | 
| 2991 | 
             
                        causal_mask = make_streaming_chunk_mask_generation(
         | 
| 2992 | 
             
                            inputs_embeds=inputs_embeds,
         | 
| 2993 | 
             
                            past_seen_tokens=past_key_values[0][0].shape[2],
         | 
|  | |
| 3079 | 
             
                        finish.logical_or_(finish_or)
         | 
| 3080 |  | 
| 3081 | 
             
                        del finish_or
         | 
| 3082 | 
            +
                        # Store new `token` into `input_ids_buf`
         | 
| 3083 | 
             
                        input_ids_buf.narrow(1, progress, 1).copy_(idx_next.unsqueeze_(1))
         | 
| 3084 |  | 
| 3085 | 
             
                        if i == 0 and finish.any():
         | 
|  | |
| 3123 | 
             
                def decode_to_mel_specs(
         | 
| 3124 | 
             
                    self,
         | 
| 3125 | 
             
                    result_list: List[torch.Tensor],
         | 
|  | |
| 3126 | 
             
                ):
         | 
| 3127 | 
            +
                    """Decode discrete audio codes to mel spectrograms.
         | 
| 3128 | 
            +
             | 
| 3129 | 
            +
                    Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/core.py`
         | 
| 3130 | 
            +
             | 
| 3131 | 
            +
                    Args:
         | 
| 3132 | 
            +
                        result_list (List[torch.Tensor]): Audio codes output from `generate`.
         | 
| 3133 | 
            +
             | 
| 3134 | 
            +
                    Returns:
         | 
| 3135 | 
            +
                        torch.Tensor: Mel spectrograms.
         | 
| 3136 | 
            +
                    """
         | 
| 3137 | 
            +
             | 
| 3138 | 
             
                    decoder = self.dvae
         | 
| 3139 | 
             
                    max_x_len = -1
         | 
| 3140 | 
             
                    if len(result_list) == 0:
         | 
|  | |
| 3157 | 
             
                    return mel_specs
         | 
| 3158 |  | 
| 3159 |  | 
| 3160 | 
            +
            # Borrowed from `https://github.com/2noise/ChatTTS/blob/main/ChatTTS/model/processors.py`
         | 
| 3161 | 
             
            def gen_logits(
         | 
| 3162 | 
             
                num_code: int,
         | 
| 3163 | 
             
                top_P=0.7,
         | 
    	
        modeling_navit_siglip.py
    CHANGED
    
    | @@ -851,6 +851,7 @@ class SiglipVisionTransformer(SiglipPreTrainedModel): | |
| 851 | 
             
                config_class = SiglipVisionConfig
         | 
| 852 | 
             
                main_input_name = "pixel_values"
         | 
| 853 | 
             
                _supports_flash_attn_2 = True
         | 
|  | |
| 854 |  | 
| 855 | 
             
                def __init__(self, config: SiglipVisionConfig):
         | 
| 856 | 
             
                    super().__init__(config)
         | 
|  | |
| 851 | 
             
                config_class = SiglipVisionConfig
         | 
| 852 | 
             
                main_input_name = "pixel_values"
         | 
| 853 | 
             
                _supports_flash_attn_2 = True
         | 
| 854 | 
            +
                _no_split_modules = []
         | 
| 855 |  | 
| 856 | 
             
                def __init__(self, config: SiglipVisionConfig):
         | 
| 857 | 
             
                    super().__init__(config)
         | 
    	
        processing_minicpmo.py
    CHANGED
    
    | @@ -309,8 +309,10 @@ class MiniCPMOProcessor(ProcessorMixin): | |
| 309 | 
             
                        )
         | 
| 310 | 
             
                        return MiniCPMOBatchFeature(data={**model_inputs})
         | 
| 311 |  | 
| 312 | 
            -
                     | 
| 313 | 
            -
                     | 
|  | |
|  | |
| 314 | 
             
                    split_pattern = f"({image_pattern}|{audio_pattern})"
         | 
| 315 |  | 
| 316 | 
             
                    if isinstance(texts, str):
         | 
| @@ -343,13 +345,13 @@ class MiniCPMOProcessor(ProcessorMixin): | |
| 343 | 
             
                        image_id = 0
         | 
| 344 | 
             
                        audio_id = 0
         | 
| 345 | 
             
                        for i, chunk in enumerate(text_chunks):
         | 
| 346 | 
            -
                            if chunk ==  | 
| 347 | 
             
                                image_placeholder = self.image_processor.get_slice_image_placeholder(
         | 
| 348 | 
             
                                    image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
         | 
| 349 | 
             
                                )
         | 
| 350 | 
             
                                image_id += 1
         | 
| 351 | 
             
                                text_chunks[i] = image_placeholder
         | 
| 352 | 
            -
                            elif chunk ==  | 
| 353 | 
             
                                audio_placeholder = audio_phs[index][audio_id]
         | 
| 354 | 
             
                                audio_id += 1
         | 
| 355 | 
             
                                text_chunks[i] = audio_placeholder
         | 
| @@ -494,9 +496,6 @@ class ChatTTSProcessor: | |
| 494 | 
             
                        try:
         | 
| 495 | 
             
                            mel = self.audio_processor(audio)  # [100(num_mel_bins), seq_len_mel]
         | 
| 496 | 
             
                        except Exception as e:
         | 
| 497 | 
            -
                            print(
         | 
| 498 | 
            -
                                "fuck! there is an error with audio waveform. If you use a dataset __getitem__, will skip and use next data as compensate, will not halt training."
         | 
| 499 | 
            -
                            )
         | 
| 500 | 
             
                            raise e
         | 
| 501 | 
             
                        audio_features_varlen.append(mel)
         | 
| 502 |  | 
|  | |
| 309 | 
             
                        )
         | 
| 310 | 
             
                        return MiniCPMOBatchFeature(data={**model_inputs})
         | 
| 311 |  | 
| 312 | 
            +
                    image_tag = "(<image>./</image>)"
         | 
| 313 | 
            +
                    image_pattern = "\(<image>./</image>\)"
         | 
| 314 | 
            +
                    audio_tag = "(<audio>./</audio>)"
         | 
| 315 | 
            +
                    audio_pattern = "\(<audio>./</audio>\)"
         | 
| 316 | 
             
                    split_pattern = f"({image_pattern}|{audio_pattern})"
         | 
| 317 |  | 
| 318 | 
             
                    if isinstance(texts, str):
         | 
|  | |
| 345 | 
             
                        image_id = 0
         | 
| 346 | 
             
                        audio_id = 0
         | 
| 347 | 
             
                        for i, chunk in enumerate(text_chunks):
         | 
| 348 | 
            +
                            if chunk == image_tag:
         | 
| 349 | 
             
                                image_placeholder = self.image_processor.get_slice_image_placeholder(
         | 
| 350 | 
             
                                    image_sizes[index][image_id], image_id, max_slice_nums, use_image_id
         | 
| 351 | 
             
                                )
         | 
| 352 | 
             
                                image_id += 1
         | 
| 353 | 
             
                                text_chunks[i] = image_placeholder
         | 
| 354 | 
            +
                            elif chunk == audio_tag:
         | 
| 355 | 
             
                                audio_placeholder = audio_phs[index][audio_id]
         | 
| 356 | 
             
                                audio_id += 1
         | 
| 357 | 
             
                                text_chunks[i] = audio_placeholder
         | 
|  | |
| 496 | 
             
                        try:
         | 
| 497 | 
             
                            mel = self.audio_processor(audio)  # [100(num_mel_bins), seq_len_mel]
         | 
| 498 | 
             
                        except Exception as e:
         | 
|  | |
|  | |
|  | |
| 499 | 
             
                            raise e
         | 
| 500 | 
             
                        audio_features_varlen.append(mel)
         | 
| 501 |  | 
    	
        utils.py
    CHANGED
    
    | @@ -13,8 +13,8 @@ | |
| 13 | 
             
            # See the License for the specific language governing permissions and
         | 
| 14 | 
             
            # limitations under the License.
         | 
| 15 |  | 
| 16 | 
            -
            import re
         | 
| 17 | 
             
            import logging
         | 
|  | |
| 18 |  | 
| 19 | 
             
            import librosa
         | 
| 20 | 
             
            import numpy as np
         | 
| @@ -42,6 +42,28 @@ def sentence_end(txt): | |
| 42 |  | 
| 43 |  | 
| 44 | 
             
            class NumberToTextConverter:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 45 | 
             
                def __init__(self):
         | 
| 46 | 
             
                    self.num_to_chinese = {
         | 
| 47 | 
             
                        "0": "零",
         | 
| @@ -103,6 +125,31 @@ class NumberToTextConverter: | |
| 103 |  | 
| 104 |  | 
| 105 | 
             
            class VoiceChecker:
         | 
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
|  | |
| 106 | 
             
                def __init__(self):
         | 
| 107 | 
             
                    self.previous_mel = None
         | 
| 108 | 
             
                    self.consecutive_zeros = 0
         | 
| @@ -129,7 +176,9 @@ class VoiceChecker: | |
| 129 | 
             
                        mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]
         | 
| 130 |  | 
| 131 | 
             
                        distance = self.compute_distance(audio_chunk, mel_spec_chunk)
         | 
| 132 | 
            -
                        logger.warning( | 
|  | |
|  | |
| 133 | 
             
                        if distance == 0:
         | 
| 134 | 
             
                            self.consecutive_low_distance = 0  # reset
         | 
| 135 | 
             
                            self.consecutive_zeros += 1
         | 
|  | |
| 13 | 
             
            # See the License for the specific language governing permissions and
         | 
| 14 | 
             
            # limitations under the License.
         | 
| 15 |  | 
|  | |
| 16 | 
             
            import logging
         | 
| 17 | 
            +
            import re
         | 
| 18 |  | 
| 19 | 
             
            import librosa
         | 
| 20 | 
             
            import numpy as np
         | 
|  | |
| 42 |  | 
| 43 |  | 
| 44 | 
             
            class NumberToTextConverter:
         | 
| 45 | 
            +
                r"""
         | 
| 46 | 
            +
                A helper class to ensure text-to-speech (TTS) systems read numeric digits
         | 
| 47 | 
            +
                in the desired language (Chinese or English) digit-by-digit. It forcibly
         | 
| 48 | 
            +
                replaces all numeric substrings in text with their language-specific
         | 
| 49 | 
            +
                textual representations, thereby reducing the likelihood of TTS mistakes
         | 
| 50 | 
            +
                on numbers.
         | 
| 51 | 
            +
                Note: MiniCPM-o 2.6 only use this in streaming mode.
         | 
| 52 | 
            +
             | 
| 53 | 
            +
                Attributes:
         | 
| 54 | 
            +
                    num_to_chinese (dict):
         | 
| 55 | 
            +
                        Mapping from digit (str) to its Chinese textual form (str).
         | 
| 56 | 
            +
                    num_to_english (dict):
         | 
| 57 | 
            +
                        Mapping from digit (str) to its English textual form (str).
         | 
| 58 | 
            +
             | 
| 59 | 
            +
                Example:
         | 
| 60 | 
            +
                    >>> converter = NumberToTextConverter()
         | 
| 61 | 
            +
                    >>> converter.replace_numbers_with_text("我有2个苹果", language="chinese")
         | 
| 62 | 
            +
                    '我有两个苹果'
         | 
| 63 | 
            +
                    >>> converter.replace_numbers_with_text("I have 23 books", language="english")
         | 
| 64 | 
            +
                    'I have two three books'
         | 
| 65 | 
            +
                """
         | 
| 66 | 
            +
             | 
| 67 | 
             
                def __init__(self):
         | 
| 68 | 
             
                    self.num_to_chinese = {
         | 
| 69 | 
             
                        "0": "零",
         | 
|  | |
| 125 |  | 
| 126 |  | 
| 127 | 
             
            class VoiceChecker:
         | 
| 128 | 
            +
                r"""
         | 
| 129 | 
            +
                A simple utility class to detect silence or low variation in consecutive audio chunks by comparing
         | 
| 130 | 
            +
                the mel-spectrogram distances. It keeps track of consecutive zero-distance and low-distance chunks
         | 
| 131 | 
            +
                to decide if the audio is considered "bad" (e.g., overly silent or not changing enough).
         | 
| 132 | 
            +
             | 
| 133 | 
            +
                Attributes:
         | 
| 134 | 
            +
                    previous_mel (`np.ndarray` or `None`):
         | 
| 135 | 
            +
                        Holds the previously observed mel-spectrogram in decibel scale. Used to compute
         | 
| 136 | 
            +
                        the next distance; reset via :meth:`reset`.
         | 
| 137 | 
            +
                    consecutive_zeros (`int`):
         | 
| 138 | 
            +
                        The number of consecutive chunks that were detected as silent (distance = 0).
         | 
| 139 | 
            +
                    consecutive_low_distance (`int`):
         | 
| 140 | 
            +
                        The number of consecutive chunks whose distance was below the threshold.
         | 
| 141 | 
            +
             | 
| 142 | 
            +
                Example:
         | 
| 143 | 
            +
                    >>> checker = VoiceChecker()
         | 
| 144 | 
            +
                    >>> # Suppose we have audio_wav (list or np.ndarray) and mel_spec (np.ndarray)
         | 
| 145 | 
            +
                    >>> # We split them into chunks and call checker.is_bad(...)
         | 
| 146 | 
            +
                    >>> is_audio_bad = checker.is_bad(audio_wav, mel_spec, chunk_size=2560, thresh=100.0)
         | 
| 147 | 
            +
                    >>> if is_audio_bad:
         | 
| 148 | 
            +
                    ...     print("Audio deemed bad!")
         | 
| 149 | 
            +
                    >>> # Reset states if needed
         | 
| 150 | 
            +
                    >>> checker.reset()
         | 
| 151 | 
            +
                """
         | 
| 152 | 
            +
             | 
| 153 | 
             
                def __init__(self):
         | 
| 154 | 
             
                    self.previous_mel = None
         | 
| 155 | 
             
                    self.consecutive_zeros = 0
         | 
|  | |
| 176 | 
             
                        mel_spec_chunk = mel_spec[:, i * mel_chunk_size : (i + 1) * mel_chunk_size]
         | 
| 177 |  | 
| 178 | 
             
                        distance = self.compute_distance(audio_chunk, mel_spec_chunk)
         | 
| 179 | 
            +
                        logger.warning(
         | 
| 180 | 
            +
                            f"mel dist: {distance:.1f}, zero: {self.consecutive_zeros}, low: {self.consecutive_low_distance}"
         | 
| 181 | 
            +
                        )
         | 
| 182 | 
             
                        if distance == 0:
         | 
| 183 | 
             
                            self.consecutive_low_distance = 0  # reset
         | 
| 184 | 
             
                            self.consecutive_zeros += 1
         | 
