|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import warnings | 
					
						
						|  | from functools import partial | 
					
						
						|  | from typing import Optional | 
					
						
						|  | from typing import Tuple, List | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | import torch.nn.functional as F | 
					
						
						|  | from torch import nn | 
					
						
						|  | from torch import Tensor | 
					
						
						|  | from torch.nn.functional import * | 
					
						
						|  | from torch.nn.init import trunc_normal_ | 
					
						
						|  | from torch.nn.modules.activation import * | 
					
						
						|  | from transformers.integrations import is_deepspeed_zero3_enabled | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_2d_sincos_pos_embed(embed_dim, image_size): | 
					
						
						|  | """ | 
					
						
						|  | image_size: image_size or (image_height, image_width) | 
					
						
						|  | return: | 
					
						
						|  | pos_embed: [image_height, image_width, embed_dim] | 
					
						
						|  | """ | 
					
						
						|  | if isinstance(image_size, int): | 
					
						
						|  | grid_h_size, grid_w_size = image_size, image_size | 
					
						
						|  | else: | 
					
						
						|  | grid_h_size, grid_w_size = image_size[0], image_size[1] | 
					
						
						|  |  | 
					
						
						|  | grid_h = np.arange(grid_h_size, dtype=np.float32) | 
					
						
						|  | grid_w = np.arange(grid_w_size, dtype=np.float32) | 
					
						
						|  | grid = np.meshgrid(grid_w, grid_h) | 
					
						
						|  | grid = np.stack(grid, axis=0) | 
					
						
						|  |  | 
					
						
						|  | pos_embed = get_2d_sincos_pos_embed_from_grid(embed_dim, grid) | 
					
						
						|  | return pos_embed | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_2d_sincos_pos_embed_from_grid(embed_dim, grid): | 
					
						
						|  | assert embed_dim % 2 == 0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | emb_h = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[0]) | 
					
						
						|  | emb_w = get_1d_sincos_pos_embed_from_grid_new(embed_dim // 2, grid[1]) | 
					
						
						|  |  | 
					
						
						|  | emb = np.concatenate([emb_h, emb_w], axis=-1) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def get_1d_sincos_pos_embed_from_grid_new(embed_dim, pos): | 
					
						
						|  | """ | 
					
						
						|  | embed_dim: output dimension for each position | 
					
						
						|  | pos: a list of positions to be encoded: size (H, W) | 
					
						
						|  | out: (H, W, D) | 
					
						
						|  | """ | 
					
						
						|  | assert embed_dim % 2 == 0 | 
					
						
						|  | omega = np.arange(embed_dim // 2, dtype=np.float32) | 
					
						
						|  | omega /= embed_dim / 2.0 | 
					
						
						|  | omega = 1.0 / 10000**omega | 
					
						
						|  |  | 
					
						
						|  | out = np.einsum("hw,d->hwd", pos, omega) | 
					
						
						|  |  | 
					
						
						|  | emb_sin = np.sin(out) | 
					
						
						|  | emb_cos = np.cos(out) | 
					
						
						|  |  | 
					
						
						|  | emb = np.concatenate([emb_sin, emb_cos], axis=-1) | 
					
						
						|  | return emb | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class Resampler(nn.Module): | 
					
						
						|  | """ | 
					
						
						|  | A 2D perceiver-resampler network with one cross attention layers by | 
					
						
						|  | given learnable queries and 2d sincos pos_emb | 
					
						
						|  | Outputs: | 
					
						
						|  | A tensor with the shape of (batch_size, num_queries, embed_dim) | 
					
						
						|  | """ | 
					
						
						|  |  | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | num_queries, | 
					
						
						|  | embed_dim, | 
					
						
						|  | num_heads, | 
					
						
						|  | kv_dim=None, | 
					
						
						|  | norm_layer=partial(nn.LayerNorm, eps=1e-6), | 
					
						
						|  | adaptive=False, | 
					
						
						|  | max_size=(70, 70), | 
					
						
						|  | ): | 
					
						
						|  | super().__init__() | 
					
						
						|  | self.num_queries = num_queries | 
					
						
						|  | self.embed_dim = embed_dim | 
					
						
						|  | self.num_heads = num_heads | 
					
						
						|  | self.adaptive = adaptive | 
					
						
						|  | self.max_size = max_size | 
					
						
						|  |  | 
					
						
						|  | self.query = nn.Parameter(torch.zeros(self.num_queries, embed_dim)) | 
					
						
						|  |  | 
					
						
						|  | if kv_dim is not None and kv_dim != embed_dim: | 
					
						
						|  | self.kv_proj = nn.Linear(kv_dim, embed_dim, bias=False) | 
					
						
						|  | else: | 
					
						
						|  | self.kv_proj = nn.Identity() | 
					
						
						|  |  | 
					
						
						|  | self.attn = MultiheadAttention(embed_dim, num_heads) | 
					
						
						|  | self.ln_q = norm_layer(embed_dim) | 
					
						
						|  | self.ln_kv = norm_layer(embed_dim) | 
					
						
						|  |  | 
					
						
						|  | self.ln_post = norm_layer(embed_dim) | 
					
						
						|  | self.proj = nn.Parameter((embed_dim**-0.5) * torch.randn(embed_dim, embed_dim)) | 
					
						
						|  |  | 
					
						
						|  | self._set_2d_pos_cache(self.max_size) | 
					
						
						|  |  | 
					
						
						|  | def _set_2d_pos_cache(self, max_size, device="cpu"): | 
					
						
						|  | if is_deepspeed_zero3_enabled(): | 
					
						
						|  | device = "cuda" | 
					
						
						|  | pos_embed = torch.from_numpy(get_2d_sincos_pos_embed(self.embed_dim, max_size)).float().to(device) | 
					
						
						|  | self.register_buffer("pos_embed", pos_embed, persistent=False) | 
					
						
						|  |  | 
					
						
						|  | def _adjust_pos_cache(self, tgt_sizes, device): | 
					
						
						|  | max_h = torch.max(tgt_sizes[:, 0]) | 
					
						
						|  | max_w = torch.max(tgt_sizes[:, 1]) | 
					
						
						|  | if max_h > self.max_size[0] or max_w > self.max_size[1]: | 
					
						
						|  | self.max_size = [max(max_h, self.max_size[0]), max(max_w, self.max_size[1])] | 
					
						
						|  | self._set_2d_pos_cache(self.max_size, device) | 
					
						
						|  |  | 
					
						
						|  | def _init_weights(self, m): | 
					
						
						|  | if isinstance(m, nn.Linear): | 
					
						
						|  | trunc_normal_(m.weight, std=0.02) | 
					
						
						|  | if isinstance(m, nn.Linear) and m.bias is not None: | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | elif isinstance(m, nn.LayerNorm): | 
					
						
						|  | nn.init.constant_(m.bias, 0) | 
					
						
						|  | nn.init.constant_(m.weight, 1.0) | 
					
						
						|  |  | 
					
						
						|  | def forward(self, x, tgt_sizes=None): | 
					
						
						|  | assert x.shape[0] == tgt_sizes.shape[0] | 
					
						
						|  | bs = x.shape[0] | 
					
						
						|  |  | 
					
						
						|  | device = x.device | 
					
						
						|  | dtype = x.dtype | 
					
						
						|  |  | 
					
						
						|  | patch_len = tgt_sizes[:, 0] * tgt_sizes[:, 1] | 
					
						
						|  |  | 
					
						
						|  | self._adjust_pos_cache(tgt_sizes, device=device) | 
					
						
						|  |  | 
					
						
						|  | max_patch_len = torch.max(patch_len) | 
					
						
						|  | key_padding_mask = torch.zeros((bs, max_patch_len), dtype=torch.bool, device=device) | 
					
						
						|  |  | 
					
						
						|  | pos_embed = [] | 
					
						
						|  | for i in range(bs): | 
					
						
						|  | tgt_h, tgt_w = tgt_sizes[i] | 
					
						
						|  | pos_embed.append(self.pos_embed[:tgt_h, :tgt_w, :].reshape((tgt_h * tgt_w, -1)).to(dtype)) | 
					
						
						|  | key_padding_mask[i, patch_len[i] :] = True | 
					
						
						|  |  | 
					
						
						|  | pos_embed = torch.nn.utils.rnn.pad_sequence(pos_embed, batch_first=True, padding_value=0.0).permute( | 
					
						
						|  | 1, 0, 2 | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | x = self.kv_proj(x) | 
					
						
						|  | x = self.ln_kv(x).permute(1, 0, 2) | 
					
						
						|  |  | 
					
						
						|  | q = self.ln_q(self.query) | 
					
						
						|  |  | 
					
						
						|  | out = self.attn( | 
					
						
						|  | self._repeat(q, bs), | 
					
						
						|  | x + pos_embed, | 
					
						
						|  | x, | 
					
						
						|  | key_padding_mask=key_padding_mask, | 
					
						
						|  | )[0] | 
					
						
						|  |  | 
					
						
						|  | x = out.permute(1, 0, 2) | 
					
						
						|  |  | 
					
						
						|  | x = self.ln_post(x) | 
					
						
						|  | x = x @ self.proj | 
					
						
						|  | return x | 
					
						
						|  |  | 
					
						
						|  | def _repeat(self, query, N: int): | 
					
						
						|  | return query.unsqueeze(1).repeat(1, N, 1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class MultiheadAttention(nn.MultiheadAttention): | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | embed_dim, | 
					
						
						|  | num_heads, | 
					
						
						|  | dropout=0.0, | 
					
						
						|  | bias=True, | 
					
						
						|  | add_bias_kv=False, | 
					
						
						|  | add_zero_attn=False, | 
					
						
						|  | kdim=None, | 
					
						
						|  | vdim=None, | 
					
						
						|  | batch_first=False, | 
					
						
						|  | device=None, | 
					
						
						|  | dtype=None, | 
					
						
						|  | ): | 
					
						
						|  | super().__init__( | 
					
						
						|  | embed_dim, num_heads, dropout, bias, add_bias_kv, add_zero_attn, kdim, vdim, batch_first, device, dtype | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | self.out_proj = nn.Linear(embed_dim, embed_dim, bias=bias, device=device, dtype=dtype) | 
					
						
						|  |  | 
					
						
						|  | def forward( | 
					
						
						|  | self, | 
					
						
						|  | query: Tensor, | 
					
						
						|  | key: Tensor, | 
					
						
						|  | value: Tensor, | 
					
						
						|  | key_padding_mask: Optional[Tensor] = None, | 
					
						
						|  | need_weights: bool = True, | 
					
						
						|  | attn_mask: Optional[Tensor] = None, | 
					
						
						|  | average_attn_weights: bool = True, | 
					
						
						|  | is_causal: bool = False, | 
					
						
						|  | ) -> Tuple[Tensor, Optional[Tensor]]: | 
					
						
						|  | why_not_fast_path = "" | 
					
						
						|  | if ( | 
					
						
						|  | (attn_mask is not None and torch.is_floating_point(attn_mask)) | 
					
						
						|  | or (key_padding_mask is not None) | 
					
						
						|  | and torch.is_floating_point(key_padding_mask) | 
					
						
						|  | ): | 
					
						
						|  | why_not_fast_path = "floating-point masks are not supported for fast path." | 
					
						
						|  |  | 
					
						
						|  | is_batched = query.dim() == 3 | 
					
						
						|  |  | 
					
						
						|  | key_padding_mask = _canonical_mask( | 
					
						
						|  | mask=key_padding_mask, | 
					
						
						|  | mask_name="key_padding_mask", | 
					
						
						|  | other_type=F._none_or_dtype(attn_mask), | 
					
						
						|  | other_name="attn_mask", | 
					
						
						|  | target_type=query.dtype, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | attn_mask = _canonical_mask( | 
					
						
						|  | mask=attn_mask, | 
					
						
						|  | mask_name="attn_mask", | 
					
						
						|  | other_type=None, | 
					
						
						|  | other_name="", | 
					
						
						|  | target_type=query.dtype, | 
					
						
						|  | check_other=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not is_batched: | 
					
						
						|  | why_not_fast_path = f"input not batched; expected query.dim() of 3 but got {query.dim()}" | 
					
						
						|  | elif query is not key or key is not value: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | why_not_fast_path = "non-self attention was used (query, key, and value are not the same Tensor)" | 
					
						
						|  | elif self.in_proj_bias is not None and query.dtype != self.in_proj_bias.dtype: | 
					
						
						|  | why_not_fast_path = ( | 
					
						
						|  | f"dtypes of query ({query.dtype}) and self.in_proj_bias ({self.in_proj_bias.dtype}) don't match" | 
					
						
						|  | ) | 
					
						
						|  | elif self.in_proj_weight is None: | 
					
						
						|  | why_not_fast_path = "in_proj_weight was None" | 
					
						
						|  | elif query.dtype != self.in_proj_weight.dtype: | 
					
						
						|  |  | 
					
						
						|  | why_not_fast_path = ( | 
					
						
						|  | f"dtypes of query ({query.dtype}) and self.in_proj_weight ({self.in_proj_weight.dtype}) don't match" | 
					
						
						|  | ) | 
					
						
						|  | elif self.training: | 
					
						
						|  | why_not_fast_path = "training is enabled" | 
					
						
						|  | elif (self.num_heads % 2) != 0: | 
					
						
						|  | why_not_fast_path = "self.num_heads is not even" | 
					
						
						|  | elif not self.batch_first: | 
					
						
						|  | why_not_fast_path = "batch_first was not True" | 
					
						
						|  | elif self.bias_k is not None: | 
					
						
						|  | why_not_fast_path = "self.bias_k was not None" | 
					
						
						|  | elif self.bias_v is not None: | 
					
						
						|  | why_not_fast_path = "self.bias_v was not None" | 
					
						
						|  | elif self.add_zero_attn: | 
					
						
						|  | why_not_fast_path = "add_zero_attn was enabled" | 
					
						
						|  | elif not self._qkv_same_embed_dim: | 
					
						
						|  | why_not_fast_path = "_qkv_same_embed_dim was not True" | 
					
						
						|  | elif query.is_nested and (key_padding_mask is not None or attn_mask is not None): | 
					
						
						|  | why_not_fast_path = "supplying both src_key_padding_mask and src_mask at the same time \ | 
					
						
						|  | is not supported with NestedTensor input" | 
					
						
						|  | elif torch.is_autocast_enabled(): | 
					
						
						|  | why_not_fast_path = "autocast is enabled" | 
					
						
						|  |  | 
					
						
						|  | if not why_not_fast_path: | 
					
						
						|  | tensor_args = ( | 
					
						
						|  | query, | 
					
						
						|  | key, | 
					
						
						|  | value, | 
					
						
						|  | self.in_proj_weight, | 
					
						
						|  | self.in_proj_bias, | 
					
						
						|  | self.out_proj.weight, | 
					
						
						|  | self.out_proj.bias, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if torch.overrides.has_torch_function(tensor_args): | 
					
						
						|  | why_not_fast_path = "some Tensor argument has_torch_function" | 
					
						
						|  | elif _is_make_fx_tracing(): | 
					
						
						|  | why_not_fast_path = "we are running make_fx tracing" | 
					
						
						|  | elif not all(_check_arg_device(x) for x in tensor_args): | 
					
						
						|  | why_not_fast_path = ( | 
					
						
						|  | "some Tensor argument's device is neither one of " | 
					
						
						|  | f"cpu, cuda or {torch.utils.backend_registration._privateuse1_backend_name}" | 
					
						
						|  | ) | 
					
						
						|  | elif torch.is_grad_enabled() and any(_arg_requires_grad(x) for x in tensor_args): | 
					
						
						|  | why_not_fast_path = ( | 
					
						
						|  | "grad is enabled and at least one of query or the " | 
					
						
						|  | "input/output projection weights or biases requires_grad" | 
					
						
						|  | ) | 
					
						
						|  | if not why_not_fast_path: | 
					
						
						|  | merged_mask, mask_type = self.merge_masks(attn_mask, key_padding_mask, query) | 
					
						
						|  |  | 
					
						
						|  | if self.in_proj_bias is not None and self.in_proj_weight is not None: | 
					
						
						|  | return torch._native_multi_head_attention( | 
					
						
						|  | query, | 
					
						
						|  | key, | 
					
						
						|  | value, | 
					
						
						|  | self.embed_dim, | 
					
						
						|  | self.num_heads, | 
					
						
						|  | self.in_proj_weight, | 
					
						
						|  | self.in_proj_bias, | 
					
						
						|  | self.out_proj.weight, | 
					
						
						|  | self.out_proj.bias, | 
					
						
						|  | merged_mask, | 
					
						
						|  | need_weights, | 
					
						
						|  | average_attn_weights, | 
					
						
						|  | mask_type, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | any_nested = query.is_nested or key.is_nested or value.is_nested | 
					
						
						|  | assert not any_nested, ( | 
					
						
						|  | "MultiheadAttention does not support NestedTensor outside of its fast path. " | 
					
						
						|  | + f"The fast path was not hit because {why_not_fast_path}" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if self.batch_first and is_batched: | 
					
						
						|  |  | 
					
						
						|  | if key is value: | 
					
						
						|  | if query is key: | 
					
						
						|  | query = key = value = query.transpose(1, 0) | 
					
						
						|  | else: | 
					
						
						|  | query, key = (x.transpose(1, 0) for x in (query, key)) | 
					
						
						|  | value = key | 
					
						
						|  | else: | 
					
						
						|  | query, key, value = (x.transpose(1, 0) for x in (query, key, value)) | 
					
						
						|  |  | 
					
						
						|  | if not self._qkv_same_embed_dim: | 
					
						
						|  | attn_output, attn_output_weights = self.multi_head_attention_forward( | 
					
						
						|  | query, | 
					
						
						|  | key, | 
					
						
						|  | value, | 
					
						
						|  | self.embed_dim, | 
					
						
						|  | self.num_heads, | 
					
						
						|  | self.in_proj_weight, | 
					
						
						|  | self.in_proj_bias, | 
					
						
						|  | self.bias_k, | 
					
						
						|  | self.bias_v, | 
					
						
						|  | self.add_zero_attn, | 
					
						
						|  | self.dropout, | 
					
						
						|  | self.out_proj.weight, | 
					
						
						|  | self.out_proj.bias, | 
					
						
						|  | training=self.training, | 
					
						
						|  | key_padding_mask=key_padding_mask, | 
					
						
						|  | need_weights=need_weights, | 
					
						
						|  | attn_mask=attn_mask, | 
					
						
						|  | use_separate_proj_weight=True, | 
					
						
						|  | q_proj_weight=self.q_proj_weight, | 
					
						
						|  | k_proj_weight=self.k_proj_weight, | 
					
						
						|  | v_proj_weight=self.v_proj_weight, | 
					
						
						|  | average_attn_weights=average_attn_weights, | 
					
						
						|  | is_causal=is_causal, | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | attn_output, attn_output_weights = self.multi_head_attention_forward( | 
					
						
						|  | query, | 
					
						
						|  | key, | 
					
						
						|  | value, | 
					
						
						|  | self.embed_dim, | 
					
						
						|  | self.num_heads, | 
					
						
						|  | self.in_proj_weight, | 
					
						
						|  | self.in_proj_bias, | 
					
						
						|  | self.bias_k, | 
					
						
						|  | self.bias_v, | 
					
						
						|  | self.add_zero_attn, | 
					
						
						|  | self.dropout, | 
					
						
						|  | self.out_proj.weight, | 
					
						
						|  | self.out_proj.bias, | 
					
						
						|  | training=self.training, | 
					
						
						|  | key_padding_mask=key_padding_mask, | 
					
						
						|  | need_weights=need_weights, | 
					
						
						|  | attn_mask=attn_mask, | 
					
						
						|  | average_attn_weights=average_attn_weights, | 
					
						
						|  | is_causal=is_causal, | 
					
						
						|  | ) | 
					
						
						|  | if self.batch_first and is_batched: | 
					
						
						|  | return attn_output.transpose(1, 0), attn_output_weights | 
					
						
						|  | else: | 
					
						
						|  | return attn_output, attn_output_weights | 
					
						
						|  |  | 
					
						
						|  | def multi_head_attention_forward( | 
					
						
						|  | self, | 
					
						
						|  | query: Tensor, | 
					
						
						|  | key: Tensor, | 
					
						
						|  | value: Tensor, | 
					
						
						|  | embed_dim_to_check: int, | 
					
						
						|  | num_heads: int, | 
					
						
						|  | in_proj_weight: Optional[Tensor], | 
					
						
						|  | in_proj_bias: Optional[Tensor], | 
					
						
						|  | bias_k: Optional[Tensor], | 
					
						
						|  | bias_v: Optional[Tensor], | 
					
						
						|  | add_zero_attn: bool, | 
					
						
						|  | dropout_p: float, | 
					
						
						|  | out_proj_weight: Tensor, | 
					
						
						|  | out_proj_bias: Optional[Tensor], | 
					
						
						|  | training: bool = True, | 
					
						
						|  | key_padding_mask: Optional[Tensor] = None, | 
					
						
						|  | need_weights: bool = True, | 
					
						
						|  | attn_mask: Optional[Tensor] = None, | 
					
						
						|  | use_separate_proj_weight: bool = False, | 
					
						
						|  | q_proj_weight: Optional[Tensor] = None, | 
					
						
						|  | k_proj_weight: Optional[Tensor] = None, | 
					
						
						|  | v_proj_weight: Optional[Tensor] = None, | 
					
						
						|  | static_k: Optional[Tensor] = None, | 
					
						
						|  | static_v: Optional[Tensor] = None, | 
					
						
						|  | average_attn_weights: bool = True, | 
					
						
						|  | is_causal: bool = False, | 
					
						
						|  | ) -> Tuple[Tensor, Optional[Tensor]]: | 
					
						
						|  | tens_ops = (query, key, value, in_proj_weight, in_proj_bias, bias_k, bias_v, out_proj_weight, out_proj_bias) | 
					
						
						|  |  | 
					
						
						|  | is_batched = _mha_shape_check(query, key, value, key_padding_mask, attn_mask, num_heads) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not is_batched: | 
					
						
						|  |  | 
					
						
						|  | query = query.unsqueeze(1) | 
					
						
						|  | key = key.unsqueeze(1) | 
					
						
						|  | value = value.unsqueeze(1) | 
					
						
						|  | if key_padding_mask is not None: | 
					
						
						|  | key_padding_mask = key_padding_mask.unsqueeze(0) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | tgt_len, bsz, embed_dim = query.shape | 
					
						
						|  | src_len, _, _ = key.shape | 
					
						
						|  |  | 
					
						
						|  | key_padding_mask = _canonical_mask( | 
					
						
						|  | mask=key_padding_mask, | 
					
						
						|  | mask_name="key_padding_mask", | 
					
						
						|  | other_type=F._none_or_dtype(attn_mask), | 
					
						
						|  | other_name="attn_mask", | 
					
						
						|  | target_type=query.dtype, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if is_causal and attn_mask is None: | 
					
						
						|  | raise RuntimeError( | 
					
						
						|  | "Need attn_mask if specifying the is_causal hint. " | 
					
						
						|  | "You may use the Transformer module method " | 
					
						
						|  | "`generate_square_subsequent_mask` to create this mask." | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if is_causal and key_padding_mask is None and not need_weights: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_mask = None | 
					
						
						|  | else: | 
					
						
						|  | attn_mask = _canonical_mask( | 
					
						
						|  | mask=attn_mask, | 
					
						
						|  | mask_name="attn_mask", | 
					
						
						|  | other_type=None, | 
					
						
						|  | other_name="", | 
					
						
						|  | target_type=query.dtype, | 
					
						
						|  | check_other=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if key_padding_mask is not None: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | is_causal = False | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | embed_dim == embed_dim_to_check | 
					
						
						|  | ), f"was expecting embedding dimension of {embed_dim_to_check}, but got {embed_dim}" | 
					
						
						|  | if isinstance(embed_dim, torch.Tensor): | 
					
						
						|  |  | 
					
						
						|  | head_dim = embed_dim.div(num_heads, rounding_mode="trunc") | 
					
						
						|  | else: | 
					
						
						|  | head_dim = embed_dim // num_heads | 
					
						
						|  | assert head_dim * num_heads == embed_dim, f"embed_dim {embed_dim} not divisible by num_heads {num_heads}" | 
					
						
						|  | if use_separate_proj_weight: | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | key.shape[:2] == value.shape[:2] | 
					
						
						|  | ), f"key's sequence and batch dims {key.shape[:2]} do not match value's {value.shape[:2]}" | 
					
						
						|  | else: | 
					
						
						|  | assert key.shape == value.shape, f"key shape {key.shape} does not match value shape {value.shape}" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not use_separate_proj_weight: | 
					
						
						|  | assert in_proj_weight is not None, "use_separate_proj_weight is False but in_proj_weight is None" | 
					
						
						|  | q, k, v = _in_projection_packed(query, key, value, in_proj_weight, in_proj_bias) | 
					
						
						|  | else: | 
					
						
						|  | assert q_proj_weight is not None, "use_separate_proj_weight is True but q_proj_weight is None" | 
					
						
						|  | assert k_proj_weight is not None, "use_separate_proj_weight is True but k_proj_weight is None" | 
					
						
						|  | assert v_proj_weight is not None, "use_separate_proj_weight is True but v_proj_weight is None" | 
					
						
						|  | if in_proj_bias is None: | 
					
						
						|  | b_q = b_k = b_v = None | 
					
						
						|  | else: | 
					
						
						|  | b_q, b_k, b_v = in_proj_bias.chunk(3) | 
					
						
						|  | q, k, v = _in_projection(query, key, value, q_proj_weight, k_proj_weight, v_proj_weight, b_q, b_k, b_v) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attn_mask is not None: | 
					
						
						|  |  | 
					
						
						|  | if attn_mask.dim() == 2: | 
					
						
						|  | correct_2d_size = (tgt_len, src_len) | 
					
						
						|  | if attn_mask.shape != correct_2d_size: | 
					
						
						|  | raise RuntimeError( | 
					
						
						|  | f"The shape of the 2D attn_mask is {attn_mask.shape}, but should be {correct_2d_size}." | 
					
						
						|  | ) | 
					
						
						|  | attn_mask = attn_mask.unsqueeze(0) | 
					
						
						|  | elif attn_mask.dim() == 3: | 
					
						
						|  | correct_3d_size = (bsz * num_heads, tgt_len, src_len) | 
					
						
						|  | if attn_mask.shape != correct_3d_size: | 
					
						
						|  | raise RuntimeError( | 
					
						
						|  | f"The shape of the 3D attn_mask is {attn_mask.shape}, but should be {correct_3d_size}." | 
					
						
						|  | ) | 
					
						
						|  | else: | 
					
						
						|  | raise RuntimeError(f"attn_mask's dimension {attn_mask.dim()} is not supported") | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if bias_k is not None and bias_v is not None: | 
					
						
						|  | assert static_k is None, "bias cannot be added to static key." | 
					
						
						|  | assert static_v is None, "bias cannot be added to static value." | 
					
						
						|  | k = torch.cat([k, bias_k.repeat(1, bsz, 1)]) | 
					
						
						|  | v = torch.cat([v, bias_v.repeat(1, bsz, 1)]) | 
					
						
						|  | if attn_mask is not None: | 
					
						
						|  | attn_mask = pad(attn_mask, (0, 1)) | 
					
						
						|  | if key_padding_mask is not None: | 
					
						
						|  | key_padding_mask = pad(key_padding_mask, (0, 1)) | 
					
						
						|  | else: | 
					
						
						|  | assert bias_k is None | 
					
						
						|  | assert bias_v is None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | q = q.view(tgt_len, bsz * num_heads, head_dim).transpose(0, 1) | 
					
						
						|  | if static_k is None: | 
					
						
						|  | k = k.view(k.shape[0], bsz * num_heads, head_dim).transpose(0, 1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | static_k.size(0) == bsz * num_heads | 
					
						
						|  | ), f"expecting static_k.size(0) of {bsz * num_heads}, but got {static_k.size(0)}" | 
					
						
						|  | assert static_k.size(2) == head_dim, f"expecting static_k.size(2) of {head_dim}, but got {static_k.size(2)}" | 
					
						
						|  | k = static_k | 
					
						
						|  | if static_v is None: | 
					
						
						|  | v = v.view(v.shape[0], bsz * num_heads, head_dim).transpose(0, 1) | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | static_v.size(0) == bsz * num_heads | 
					
						
						|  | ), f"expecting static_v.size(0) of {bsz * num_heads}, but got {static_v.size(0)}" | 
					
						
						|  | assert static_v.size(2) == head_dim, f"expecting static_v.size(2) of {head_dim}, but got {static_v.size(2)}" | 
					
						
						|  | v = static_v | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if add_zero_attn: | 
					
						
						|  | zero_attn_shape = (bsz * num_heads, 1, head_dim) | 
					
						
						|  | k = torch.cat([k, torch.zeros(zero_attn_shape, dtype=k.dtype, device=k.device)], dim=1) | 
					
						
						|  | v = torch.cat([v, torch.zeros(zero_attn_shape, dtype=v.dtype, device=v.device)], dim=1) | 
					
						
						|  | if attn_mask is not None: | 
					
						
						|  | attn_mask = pad(attn_mask, (0, 1)) | 
					
						
						|  | if key_padding_mask is not None: | 
					
						
						|  | key_padding_mask = pad(key_padding_mask, (0, 1)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | src_len = k.size(1) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if key_padding_mask is not None: | 
					
						
						|  | assert key_padding_mask.shape == ( | 
					
						
						|  | bsz, | 
					
						
						|  | src_len, | 
					
						
						|  | ), f"expecting key_padding_mask shape of {(bsz, src_len)}, but got {key_padding_mask.shape}" | 
					
						
						|  | key_padding_mask = ( | 
					
						
						|  | key_padding_mask.view(bsz, 1, 1, src_len) | 
					
						
						|  | .expand(-1, num_heads, -1, -1) | 
					
						
						|  | .reshape(bsz * num_heads, 1, src_len) | 
					
						
						|  | ) | 
					
						
						|  | if attn_mask is None: | 
					
						
						|  | attn_mask = key_padding_mask | 
					
						
						|  | else: | 
					
						
						|  | attn_mask = attn_mask + key_padding_mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if not training: | 
					
						
						|  | dropout_p = 0.0 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if need_weights: | 
					
						
						|  | B, Nt, E = q.shape | 
					
						
						|  | q_scaled = q / math.sqrt(E) | 
					
						
						|  |  | 
					
						
						|  | assert not (is_causal and attn_mask is None), "FIXME: is_causal not implemented for need_weights" | 
					
						
						|  |  | 
					
						
						|  | if attn_mask is not None: | 
					
						
						|  | attn_output_weights = torch.baddbmm(attn_mask, q_scaled, k.transpose(-2, -1)) | 
					
						
						|  | else: | 
					
						
						|  | attn_output_weights = torch.bmm(q_scaled, k.transpose(-2, -1)) | 
					
						
						|  | attn_output_weights = softmax(attn_output_weights, dim=-1) | 
					
						
						|  | if dropout_p > 0.0: | 
					
						
						|  | attn_output_weights = dropout(attn_output_weights, p=dropout_p) | 
					
						
						|  |  | 
					
						
						|  | attn_output = torch.bmm(attn_output_weights, v) | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.transpose(0, 1).contiguous().view(tgt_len * bsz, embed_dim) | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  | attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1)) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | attn_output_weights = attn_output_weights.view(bsz, num_heads, tgt_len, src_len) | 
					
						
						|  | if average_attn_weights: | 
					
						
						|  | attn_output_weights = attn_output_weights.mean(dim=1) | 
					
						
						|  |  | 
					
						
						|  | if not is_batched: | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.squeeze(1) | 
					
						
						|  | attn_output_weights = attn_output_weights.squeeze(0) | 
					
						
						|  | return attn_output, attn_output_weights | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if attn_mask is not None: | 
					
						
						|  | if attn_mask.size(0) == 1 and attn_mask.dim() == 3: | 
					
						
						|  | attn_mask = attn_mask.unsqueeze(0) | 
					
						
						|  | else: | 
					
						
						|  | attn_mask = attn_mask.view(bsz, num_heads, -1, src_len) | 
					
						
						|  |  | 
					
						
						|  | q = q.view(bsz, num_heads, tgt_len, head_dim) | 
					
						
						|  | k = k.view(bsz, num_heads, src_len, head_dim) | 
					
						
						|  | v = v.view(bsz, num_heads, src_len, head_dim) | 
					
						
						|  |  | 
					
						
						|  | attn_output = F.scaled_dot_product_attention(q, k, v, attn_mask, dropout_p, is_causal) | 
					
						
						|  | attn_output = attn_output.permute(2, 0, 1, 3).contiguous().view(bsz * tgt_len, embed_dim) | 
					
						
						|  |  | 
					
						
						|  | attn_output = self.out_proj(attn_output) | 
					
						
						|  | attn_output = attn_output.view(tgt_len, bsz, attn_output.size(1)) | 
					
						
						|  | if not is_batched: | 
					
						
						|  |  | 
					
						
						|  | attn_output = attn_output.squeeze(1) | 
					
						
						|  | return attn_output, None | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _mha_shape_check( | 
					
						
						|  | query: Tensor, | 
					
						
						|  | key: Tensor, | 
					
						
						|  | value: Tensor, | 
					
						
						|  | key_padding_mask: Optional[Tensor], | 
					
						
						|  | attn_mask: Optional[Tensor], | 
					
						
						|  | num_heads: int, | 
					
						
						|  | ): | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if query.dim() == 3: | 
					
						
						|  |  | 
					
						
						|  | is_batched = True | 
					
						
						|  | assert key.dim() == 3 and value.dim() == 3, ( | 
					
						
						|  | "For batched (3-D) `query`, expected `key` and `value` to be 3-D" | 
					
						
						|  | f" but found {key.dim()}-D and {value.dim()}-D tensors respectively" | 
					
						
						|  | ) | 
					
						
						|  | if key_padding_mask is not None: | 
					
						
						|  | assert key_padding_mask.dim() == 2, ( | 
					
						
						|  | "For batched (3-D) `query`, expected `key_padding_mask` to be `None` or 2-D" | 
					
						
						|  | f" but found {key_padding_mask.dim()}-D tensor instead" | 
					
						
						|  | ) | 
					
						
						|  | if attn_mask is not None: | 
					
						
						|  | assert attn_mask.dim() in (2, 3), ( | 
					
						
						|  | "For batched (3-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" | 
					
						
						|  | f" but found {attn_mask.dim()}-D tensor instead" | 
					
						
						|  | ) | 
					
						
						|  | elif query.dim() == 2: | 
					
						
						|  |  | 
					
						
						|  | is_batched = False | 
					
						
						|  | assert key.dim() == 2 and value.dim() == 2, ( | 
					
						
						|  | "For unbatched (2-D) `query`, expected `key` and `value` to be 2-D" | 
					
						
						|  | f" but found {key.dim()}-D and {value.dim()}-D tensors respectively" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if key_padding_mask is not None: | 
					
						
						|  | assert key_padding_mask.dim() == 1, ( | 
					
						
						|  | "For unbatched (2-D) `query`, expected `key_padding_mask` to be `None` or 1-D" | 
					
						
						|  | f" but found {key_padding_mask.dim()}-D tensor instead" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if attn_mask is not None: | 
					
						
						|  | assert attn_mask.dim() in (2, 3), ( | 
					
						
						|  | "For unbatched (2-D) `query`, expected `attn_mask` to be `None`, 2-D or 3-D" | 
					
						
						|  | f" but found {attn_mask.dim()}-D tensor instead" | 
					
						
						|  | ) | 
					
						
						|  | if attn_mask.dim() == 3: | 
					
						
						|  | expected_shape = (num_heads, query.shape[0], key.shape[0]) | 
					
						
						|  | assert ( | 
					
						
						|  | attn_mask.shape == expected_shape | 
					
						
						|  | ), f"Expected `attn_mask` shape to be {expected_shape} but got {attn_mask.shape}" | 
					
						
						|  | else: | 
					
						
						|  | raise AssertionError( | 
					
						
						|  | f"query should be unbatched 2D or batched 3D tensor but received {query.dim()}-D query tensor" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | return is_batched | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _canonical_mask( | 
					
						
						|  | mask: Optional[Tensor], | 
					
						
						|  | mask_name: str, | 
					
						
						|  | other_type: Optional[DType], | 
					
						
						|  | other_name: str, | 
					
						
						|  | target_type: DType, | 
					
						
						|  | check_other: bool = True, | 
					
						
						|  | ) -> Optional[Tensor]: | 
					
						
						|  |  | 
					
						
						|  | if mask is not None: | 
					
						
						|  | _mask_dtype = mask.dtype | 
					
						
						|  | _mask_is_float = torch.is_floating_point(mask) | 
					
						
						|  | if _mask_dtype != torch.bool and not _mask_is_float: | 
					
						
						|  | raise AssertionError(f"only bool and floating types of {mask_name} are supported") | 
					
						
						|  | if check_other and other_type is not None: | 
					
						
						|  | if _mask_dtype != other_type: | 
					
						
						|  | warnings.warn( | 
					
						
						|  | f"Support for mismatched {mask_name} and {other_name} " | 
					
						
						|  | "is deprecated. Use same type for both instead." | 
					
						
						|  | ) | 
					
						
						|  | if not _mask_is_float: | 
					
						
						|  | mask = torch.zeros_like(mask, dtype=target_type).masked_fill_(mask, float("-inf")) | 
					
						
						|  | return mask | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _in_projection_packed( | 
					
						
						|  | q: Tensor, | 
					
						
						|  | k: Tensor, | 
					
						
						|  | v: Tensor, | 
					
						
						|  | w: Tensor, | 
					
						
						|  | b: Optional[Tensor] = None, | 
					
						
						|  | ) -> List[Tensor]: | 
					
						
						|  | r""" | 
					
						
						|  | Performs the in-projection step of the attention operation, using packed weights. | 
					
						
						|  | Output is a triple containing projection tensors for query, key and value. | 
					
						
						|  | Args: | 
					
						
						|  | q, k, v: query, key and value tensors to be projected. For self-attention, | 
					
						
						|  | these are typically the same tensor; for encoder-decoder attention, | 
					
						
						|  | k and v are typically the same tensor. (We take advantage of these | 
					
						
						|  | identities for performance if they are present.) Regardless, q, k and v | 
					
						
						|  | must share a common embedding dimension; otherwise their shapes may vary. | 
					
						
						|  | w: projection weights for q, k and v, packed into a single tensor. Weights | 
					
						
						|  | are packed along dimension 0, in q, k, v order. | 
					
						
						|  | b: optional projection biases for q, k and v, packed into a single tensor | 
					
						
						|  | in q, k, v order. | 
					
						
						|  | Shape: | 
					
						
						|  | Inputs: | 
					
						
						|  | - q: :math:`(..., E)` where E is the embedding dimension | 
					
						
						|  | - k: :math:`(..., E)` where E is the embedding dimension | 
					
						
						|  | - v: :math:`(..., E)` where E is the embedding dimension | 
					
						
						|  | - w: :math:`(E * 3, E)` where E is the embedding dimension | 
					
						
						|  | - b: :math:`E * 3` where E is the embedding dimension | 
					
						
						|  | Output: | 
					
						
						|  | - in output list :math:`[q', k', v']`, each output tensor will have the | 
					
						
						|  | same shape as the corresponding input tensor. | 
					
						
						|  | """ | 
					
						
						|  | E = q.size(-1) | 
					
						
						|  | if k is v: | 
					
						
						|  | if q is k: | 
					
						
						|  |  | 
					
						
						|  | proj = linear(q, w, b) | 
					
						
						|  |  | 
					
						
						|  | proj = proj.unflatten(-1, (3, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous() | 
					
						
						|  | return proj[0], proj[1], proj[2] | 
					
						
						|  | else: | 
					
						
						|  |  | 
					
						
						|  | w_q, w_kv = w.split([E, E * 2]) | 
					
						
						|  | if b is None: | 
					
						
						|  | b_q = b_kv = None | 
					
						
						|  | else: | 
					
						
						|  | b_q, b_kv = b.split([E, E * 2]) | 
					
						
						|  | q_proj = linear(q, w_q, b_q) | 
					
						
						|  | kv_proj = linear(k, w_kv, b_kv) | 
					
						
						|  |  | 
					
						
						|  | kv_proj = kv_proj.unflatten(-1, (2, E)).unsqueeze(0).transpose(0, -2).squeeze(-2).contiguous() | 
					
						
						|  | return (q_proj, kv_proj[0], kv_proj[1]) | 
					
						
						|  | else: | 
					
						
						|  | w_q, w_k, w_v = w.chunk(3) | 
					
						
						|  | if b is None: | 
					
						
						|  | b_q = b_k = b_v = None | 
					
						
						|  | else: | 
					
						
						|  | b_q, b_k, b_v = b.chunk(3) | 
					
						
						|  | return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def _in_projection( | 
					
						
						|  | q: Tensor, | 
					
						
						|  | k: Tensor, | 
					
						
						|  | v: Tensor, | 
					
						
						|  | w_q: Tensor, | 
					
						
						|  | w_k: Tensor, | 
					
						
						|  | w_v: Tensor, | 
					
						
						|  | b_q: Optional[Tensor] = None, | 
					
						
						|  | b_k: Optional[Tensor] = None, | 
					
						
						|  | b_v: Optional[Tensor] = None, | 
					
						
						|  | ) -> Tuple[Tensor, Tensor, Tensor]: | 
					
						
						|  | r""" | 
					
						
						|  | Performs the in-projection step of the attention operation. This is simply | 
					
						
						|  | a triple of linear projections, with shape constraints on the weights which | 
					
						
						|  | ensure embedding dimension uniformity in the projected outputs. | 
					
						
						|  | Output is a triple containing projection tensors for query, key and value. | 
					
						
						|  | Args: | 
					
						
						|  | q, k, v: query, key and value tensors to be projected. | 
					
						
						|  | w_q, w_k, w_v: weights for q, k and v, respectively. | 
					
						
						|  | b_q, b_k, b_v: optional biases for q, k and v, respectively. | 
					
						
						|  | Shape: | 
					
						
						|  | Inputs: | 
					
						
						|  | - q: :math:`(Qdims..., Eq)` where Eq is the query embedding dimension and Qdims are any | 
					
						
						|  | number of leading dimensions. | 
					
						
						|  | - k: :math:`(Kdims..., Ek)` where Ek is the key embedding dimension and Kdims are any | 
					
						
						|  | number of leading dimensions. | 
					
						
						|  | - v: :math:`(Vdims..., Ev)` where Ev is the value embedding dimension and Vdims are any | 
					
						
						|  | number of leading dimensions. | 
					
						
						|  | - w_q: :math:`(Eq, Eq)` | 
					
						
						|  | - w_k: :math:`(Eq, Ek)` | 
					
						
						|  | - w_v: :math:`(Eq, Ev)` | 
					
						
						|  | - b_q: :math:`(Eq)` | 
					
						
						|  | - b_k: :math:`(Eq)` | 
					
						
						|  | - b_v: :math:`(Eq)` | 
					
						
						|  | Output: in output triple :math:`(q', k', v')`, | 
					
						
						|  | - q': :math:`[Qdims..., Eq]` | 
					
						
						|  | - k': :math:`[Kdims..., Eq]` | 
					
						
						|  | - v': :math:`[Vdims..., Eq]` | 
					
						
						|  | """ | 
					
						
						|  | Eq, Ek, Ev = q.size(-1), k.size(-1), v.size(-1) | 
					
						
						|  | assert w_q.shape == (Eq, Eq), f"expecting query weights shape of {(Eq, Eq)}, but got {w_q.shape}" | 
					
						
						|  | assert w_k.shape == (Eq, Ek), f"expecting key weights shape of {(Eq, Ek)}, but got {w_k.shape}" | 
					
						
						|  | assert w_v.shape == (Eq, Ev), f"expecting value weights shape of {(Eq, Ev)}, but got {w_v.shape}" | 
					
						
						|  | assert b_q is None or b_q.shape == (Eq,), f"expecting query bias shape of {(Eq,)}, but got {b_q.shape}" | 
					
						
						|  | assert b_k is None or b_k.shape == (Eq,), f"expecting key bias shape of {(Eq,)}, but got {b_k.shape}" | 
					
						
						|  | assert b_v is None or b_v.shape == (Eq,), f"expecting value bias shape of {(Eq,)}, but got {b_v.shape}" | 
					
						
						|  | return linear(q, w_q, b_q), linear(k, w_k, b_k), linear(v, w_v, b_v) | 
					
						
						|  |  |