--- base_model: - openbmb/MiniCPM-o-2_6 datasets: - openbmb/RLAIF-V-Dataset language: - multilingual library_name: transformers pipeline_tag: any-to-any tags: - minicpm-o - omni - vision - ocr - multi-image - video - custom_code - audio - speech - voice cloning - live Streaming - realtime speech conversation - asr - tts license: apache-2.0 ---

A GPT-4o Level MLLM for Vision, Speech and Multimodal Live Streaming on Your Phone

[GitHub](https://github.com/OpenBMB/MiniCPM-o) | [Online Demo](https://minicpm-omni-webdemo-us.modelbest.cn) | [Technical Blog](https://openbmb.notion.site/MiniCPM-o-2-6-A-GPT-4o-Level-MLLM-for-Vision-Speech-and-Multimodal-Live-Streaming-on-Your-Phone-185ede1b7a558042b5d5e45e6b237da9) | [Join Us](https://mp.weixin.qq.com/mp/wappoc_appmsgcaptcha?poc_token=HAV8UWijqB3ImPSXecZHlOns7NRgpQw9y9EI2_fE&target_url=https%3A%2F%2Fmp.weixin.qq.com%2Fs%2FKIhH2nCURBXuFXAtYRpuXg%3F) ## MiniCPM-o 2.6 int4 This is the int4 quantized version of [**MiniCPM-o 2.6**](https://github.com/RanchiZhao/AutoGPTQ). Running with int4 version would use lower GPU memory (about 9GB). ### Prepare code and install AutoGPTQ We are submitting PR to officially support minicpm-o 2.6 inference ```python git clone https://github.com/RanchiZhao/AutoGPTQ.git && cd AutoGPTQ git checkout minicpmo # install AutoGPTQ pip install -vvv --no-build-isolation -e . ``` ### Usage of **MiniCPM-o-2_6-int4** Change the model initialization part to `AutoGPTQForCausalLM.from_quantized` ```python import torch from transformers import AutoModel, AutoTokenizer from auto_gptq import AutoGPTQForCausalLM model = AutoGPTQForCausalLM.from_quantized( 'openbmb/MiniCPM-o-2_6-int4', torch_dtype=torch.bfloat16, device="cuda:0", trust_remote_code=True, disable_exllama=True, disable_exllamav2=True ) tokenizer = AutoTokenizer.from_pretrained( 'openbmb/MiniCPM-o-2_6-int4', trust_remote_code=True ) model.init_tts() ``` Usage reference [MiniCPM-o-2_6#usage](https://huggingface.co/openbmb/MiniCPM-o-2_6#usage)